
Formally verifying a microprocessor using a simulation methodology

Derek L. Beatty
Cadence Berkeley Laboratories
Cadence Design Systems, Inc.
beatty@Cadence.com

Randal E. Bryant
Carnegie Mellon University
bryant+@cs.cmu.edu

Abstract

Formal verificat ion is becoming a useful means of validat ing de-
s igns . We have developed a methodology for formally veri fying data-
intens ive ci rcui ts (e.g., processors) with sophis ticated t iming (e.g. ,
p ipelining) agains t h igh-level declarat ive specifications. Previously,
formally verify ing a microprocessor required the use of an automatic
theorem prover, bu t our technique requi res li tt le more than a sym-
bol ic s imulator. We have formal ly verified a pre-exist ing 16-b it CISC
microprocessor circu it ext racted from the fabricated layout.

Introduction

Previously, symbolic switch-level simulation has been used to
verify some small or simple data-intensive circuits (RAMs,
stacks, register files, ALUs, and simple pipelines) [2, 3]. In
doing so, the necessary simulation patterns were developed by
hand or by using ad-hoc techniques, and it was then argued
that the patterns were sufficient, and that their generation could
be automated. We have developed sufficient theory to fully
support such claims, and used this methodology to verify a
representative set of operations (initia lization and interrupt as
well as instructions) of a microprocessor [1].

To verify a circuit, a designer writes assertions to specify
high-level operations. He or she also writes mappings illustrat-
ing how abstract state and IO is realized by the circuit. From
these, our verifier generates symbolic simulation tests, which
are localized in time and space. In other words, they are short
patterns (typically single operations) which exercise parts of
the circuit. Our theory then guarantees, f rom these local tests,
that an arbitrary sequence of operations will work correctly.

In developing our methodology, our touchstone was a mi-
croprocessor called Hector [10, 5]. The complexity of a micro-

0

processor implies that ad-hoc techniques will not suffice, so its
ver ification requires careful attention to methodology. Hector
is a 16-bit CISC fabricated in 1985. Its 2-address architecture
is similar to the PDP-11, but with more (16) registers and fewer
addressing modes. System state is held in the register file and a
few condition code bits. The implementation is microcoded; at
the microcode level it is slightly pipelined, but at the instruction
set level it is not.1 The bus interface is similar to the Motorola
6800. In addition to a reset line, there is a wait line, DMA,
prior itized interrupts, and a single-step facility. Hector has no
cache and does not support vir tual memory.

Hector includes an ALU with condition codes. Of its ad-
dressable registers, 7 are completely general-purpose, and 9
are sometimes specialized (e.g., PC, stack pointer, interrupt
vectors). Hector has four addressing modes: register, indi-
rect, indirect with post-increment, and indexed. Additional
addressing modes can be synthesized since the stack pointer
and program counter are addressable . (This also gives some
pathological addressing modes.)

We did not par ticipate in Hector’s design. In modeling Hec-
tor for verification, we firstextracteda switch-level circuit f rom
layout. We made few changes to the extracted circuit—just
those necessary to model it at the switch level. (We used the
switch level due to our expertise there, but our methodology
could be easily used at a higher level instead. The key require-
ments on the simulation are that it be symbolic , and efficiently
support an “unknown” signal value, such as the switch-levelX
value.)

Thus, we started with a pre-existing circuit. A C program
simulating Hector’s instruction set was also available , but we
did not use it directly. Instead, we wrote a higher-level, declar-
ative formal specification of the instruction set. (It might also
be possible to extract such higher-level descriptions from HDL
programs [8]. We have not pursued this.)

1 Actually, there is a very s light degree of pipel ining: theprocessor senses
the state of the interrupt l ines as it completes executi onof each instruct ion.

Formal verification

“Formal verification” (or simply FV) consists of establishing
that a mathematical relation holds between two descr iptions
of a system. The particular relation established varies with
the approach to verification. A high-level descr iption, called
the “specification,” is taken to be correct and a lower-level
description, called the “realization,” is checked.2

Our approach to FV divides the specification into 2 parts.
The main part is a set of assertions, which are descriptions of
desired state-transition behavior. The other part describes IO
encodings. Once we have verified a circuit, mathematically we
have established a relation between IO sequences of the speci-
fication andIO signalsof the circuit. Informally, everything the
circuit does must be something allowed by the specification.

Some researchers make a distinction between “property
checking” (or design verification) and “machine comparison”
(or implementation verification). The asser tions comprising
one of our specifications define (implicitly) a state machine.
Thus, in a technical sense, we are performing machine compar-
ison. However, str ict division between two kindsof verification
is unhelpful in evaluating this work—surely one sees a signif-
icant difference between the statements “this microprocessor
implements this instruction set” and “these two state machines
are similar.”

Other work

Previously, microprocessors have been formally verified using
automatic theorem provers [6, 7, 4, 13]. Our methodology re-
quires little more than a symbolic simulator. Processors have
been verified by Madre and colleagues without using theorem
provers [8, 9] , but the specification and circuit were required
to have identical la tch structures and timing, and a unique reset
state . We do not have these restr ic tions. We can also use more
detailed circuit models, and handle detailed circuit timing in-
cluding pipelining. Our specifications are at the instruction-set
level, a higher level than most previous work. Unlike ap-
proaches based purely on logic, we can structure our specifica-
tions to avoid the danger of antecedent failure .

Verifying circuits

We give two examples: a latch, to illustrate ideas in simplest
form, and Hector, to illustrate their actualapplication. The first
step in formally verifying a design is to specify it formally.

Abstract specification

Data- intensive systems perform operations on data values.
Their state transitions implement such operations. A latch
has two kinds of operations: it can load a new data value, and

2 In general the specificati on might either describe the system completely
(but abstractly), orgive some propert ies t he syst em should have, or both.

it can store an old one. Formally, we can describe such op-
erations using assertions. An assertion consists of two logical
formulas, which describe sets of states. Its antecedent, or pre-
condition, descr ibes states before the operation occurs. For
example, before a “load” operation in a latch, some new value
must be given to the latch, and the latch mustbe told to load the
value. An assertion’s consequent, or post-condition, descr ibes
states afterward. After a “load” operation, the new value will
be stored in the latch. For example, we can describe a latch
using the two assertions

op � load�D � v
�
� Q� v

op � hold�Q � v
�
� Q� v

These say that if the operation is a “load” and the inputD has
value v, then afterward the state Q will have value v . I f the
operation is a “hold” and the state has value v , it will remain v.

The symbol
�
�, which we read as “then implies” or “leads to,”

indicates both that the lef t-hand side implies the right, and that
time passes.

A microprocessor has more kinds of operations: it can be
reset, it can respond to interrupts, and it has many types of
instructions. The Hector microprocessor is reset by applying
an external reset signal. This signal must be applied for at least
7 clock cycles,3 but this detail is extraneous to the behavior of
the processor, so here we will concentrate on the abstract reset
operation, writing the asser tion

control � reset
�
� invariant � 0

�R�PC� � 0
�R�SP� � 0
�R�INT� � 4
�R�NMI � � 2

Itstates that if the processor is given its reset signal, it will then
enter a state where:
� It will be ready to execute instructions or respond to inter-

rupts, as reflected by an invariant condition, and

� Several registers will have specified initial values, includ-
ingthe programcounter, the stack pointer, and the interrupt
vectors.

Hector’s response to an interrupt is specified by a more com-
plicated assertion. Part of the added complexity is in speci-
fying the conditions under which an interrupt occurs, for we
must include more of the processor’s state than was necessary
in specifying reset behavior. (Since the reset operation makes
no use of existing processor state, we did not need to describe
initia l state in the reset assertion.)

The antecedent of the asser tion descr ibes initia l state:
control � nmi� invar iant � 1�M �l� � d

��r �� NMI�r �� SP�r �� PC�� R�r � � v

�R�NMI� � n

�R�SP� � s

�R�PC� � p
�cyCC � cy�ovCC � ov� ngCC � ng
�zeCC � ze� intCC � int
��r �� 0� � R�0� �w

3 Thi s number was found empirically, then verified formally.

I t descr ibes the conditions in which a non-maskable interrupt
occurs. A non-maskable interrupt occurs when the abstract
input is “nmi.” Any arbitrary memory location l holds some
arbitrary data word d. Any arbitrary register r (other than the
special registers: NMI, which holds the address of the inter-
rupt service routine; SP, the stack pointer; or PC, the program
counter) holds some arbitrary value v. The special registers
and condition codes hold arbitrary special values n, s, and p.
Register 0 also holds some arbitrary word w (unless register
0 was the arbitrary register r selected above; if so, we have
already stated that it has a value, namely v) .

The consequent of the assertion describes the conditions that
follow receipt of a non-maskable interrupt.

invariant � 0
� �l �� s� 1 � l �� s� 2��M �l� � d

�M �s� 1�h4 : 0i� int ze ng ovcy
�M �s� 2� � p

�R�SP� � s� 2
� �r �� SP� � R�r � � w

� cyCC � cy�ovCC � ov�ngCC � ng
� zeCC � ze� intCC � 1
�R�PC� � n

�R�NMI� � n

After an interrupt isreceived memory will be unchanged, except
for the stack, which will hold the previous condition codes and
program counter. The stack pointer will have been updated.
Most condition codes will be unchanged, but the “interrupt”
flag will be asser ted. The program counter will now point
to the interrupt service routine (whose address also remains
in the NMI register). Since Hector does not allow instruc-
tions to be interrupted, i.e. , interrupts are sensed only between
instructions,4 this asser tion captures all possible conditions in
which an interrupt could occur.

I t is important toobserve that in these assertionsthere are two
different kinds of variables. Some variables—those on the left
of “�” signs—correspond to abstract systemstate (or IO), such
as Q in the latch, or R in the microprocessor. Other variables
are used in representing the values that these abstract sta tes
can take on, such as v in the latch, or d, n, s, w , and v in the
microprocessor. We must consider the first kind of variables,
which represent components of abstract system state, when we
define mappings from abstract sta te onto circuit sta te.

Observe that assertions are local properties in two ways.
First, each describe a very short computation: an isolated, sin-
gle state transition. Second, each descr ibes the operation of
only part of the circuit. For example, the “hold” asser tion for
the latch does not involve theD input, and for the processor, the
specification of the initialization operation says nothing about
the memory. Thus, individual asser tions are partia l specifica-
tions, and do not define the transition behavior of the speci-

4 This i s verified during verification of instructions, by checking that once
an instruct ion has begun execution, it i s completed regardl ess of subsequent
act ivity on the interrupt li newhile the instruct ion is complet ed.

fication machine, but they constrain the transition behavior,5

so that the set of all asser tions taken together does define a
transition relation. Though the assertions are localized, by
checking them we can guarantee global properties which hold
for computations of any length involving the entire circuit.

Mappings

IO and timing

An abstract description of state-transition behavior is insuffi-
cient to specify a circuit. Circuits do not take abstract inputsand
produce abstract outputs. Instead, they have input and output
signals. Thus, it is also necessary to specify the way in which
abstract IO is encoded as circuit IO. Input variables in the as-
ser tions (D and op for the latch) will be mapped onto particular
voltage levels at par ticular times. The zero point with respect
to which time is measured is the “nominal beginning” of the
operation. We will also specify the possible durations of the
operation by specifying the “nominal ending” of the operation.
(The beginning of any successive operation will, of course, be
the ending of the current operation.)

Although we use a textual representation to express map-
pings in the actual verifier, it is easiest to show this with timing
diagrams. Rather than giving nominal beginning and ending
time points as numbers, we can more easily give them as iden-
tifying markers—vertical lines sketched on a timing diagram.
Figure 1 shows how we map the abstract latch operations onto
one particular circuit.

Q

L

D
S

L

D

S

Q

Start
Next

Start
Next

Load Hold

Figure1 : A simple latch and i ts mapped assert ions as t iming diagrams.
For each s ignal, a double horizontal line ind icates that either a h igh or
a low valuemight be present ; the absence of any line indicates that we
don’t know or don’t care about the value.

State mappings

I t is insufficient to consider only the inputs and outputs of
sequentia l systems. Operation depends crucially on stored in-
ternal sta te. Thus, we also descr ibe the way in which abstract
state is encoded as circuit sta te .

5 For example, to show that unintended state changes do not occur, it is
necessary to express this condition, but it could be writ ten as a new asserti on,
or incorporat ed intoexisti ng ones.

State variables in the assertions (Q for the latch assertions)
will be mapped onto charge stored on circuit nodes, over inter-
vals of time measured relative to a “marker.” This is illustrated
with the last two rows of the timing diagram. Note that, ab-
stractly, the value stored in the latch is also its output value, but
in the circuit, the node controlling the stored value (S) and the
output (Q) are separate nodes.

For the microprocessor, the mapping is more complex, and
it must take into account the separation of processor state and
memory state, but it is constructed similarly. Processor state is
mapped normally, while memory state is mapped onto memory
operations. We illustrate this in Fig. 2. For example, the initial
program counter value is mapped onto register 15, Hector’s PC

register, at the beginning of the operation.

Given such a specification and a symbolic simulation model
for a circuit, we can verify it. We check each assertion sepa-
rately. For each assertion, we use the mappings that we have
defined to generate symbolic simulation patterns.

We generate the stimulus using the precondition of the asser-
tion. Mapping the abstract input variables of the specification
yields a short circuit input sequence, which also contains two
markers. Mapping the abstract sta te variables of the specifica-
tion yields a circuit state sequence, defined relative to a marker.
We align this marker with the first marker of the inputsequence
to get the entire stimulus.

We generate the response using the postcondition of the as-
sertion. Mapping the abstract sta te var iables of the specifica-
tion (which also serve as outputs) yields another circuit sta te
sequence defined relative to a marker, but we align this marker
with the second marker of the input sequence, to get the desired
response.

This explains what happens to the abstract input and state
variables that appeared in the specification. The specification
also containedanother kind of variables: those used torepresent
values that the abstract sta te could take on (e.g., v in the latch, d
in the processor). We have not explained what happens to these
variables because nothing happens to them: they are preserved,
so that they appear in the simulation patterns. (Since we are
using a symbolic simulator, variables can appear in simulation
patterns.)

We check the generated patterns using symbolic trajectory
evaluation, a form of symbolic simulation which allows precise
constraining and checking of system state during sequences of
operation [12] . This exploits the power of the switch-level
model’s ternaryX value in reducing extraneous analysis of cir-
cuitcomponents that do notparticipate in a calculation (thereby
reducing precision, but remaining accurate , i.e ., not producing
incorrect binary values) .6

6 Of course, a simulator that propagated X values indiscriminately would
be too blunt a tool.

More about mappings

The specification here is simplified. In the actual specification
[1, appendix B], referencesto valuesstoredinmemoryare given
with an extra parameter, a small integer. I t is a “hint,” used to
establish the clock cycle on which a memory operation takes
place. Formally, hints are unnecessary. To be most general,
assertionsshould be mapped so that they allow any sequence of
memory operations that yields the desired effect. For example,
the order in which locations are read from memory does not
matter. However, checking all possible orders is expensive.
For Hector, it is easy to identify the specific order that actually
is used, by examining the instruction level simulator. The
generated assertion is then specific to the particular sequencing
that wasassumed, and we wouldbe unable to verify a processor
that attempted to perform the memory operations in a different
order. Hints do not compromise the validity of verification.

Definition of “implementation”

The relation established by our verification is one between IO
sequencesof the specification andIOsignals of the circuit. This
is a global property. However, the illustration above has dis-
cussed only individualassertionsin isolation—localproperties.
I t is not par ticularly interesting to guarantee that a processor
will execute one instruction correctly—we must show that it
will execute entire programs correctly.

The theory underlying our verifier explains how establishing
the local property is sufficient to establish the global property.
Before explaining it, we should be more precise about exactly
what is established. We give an abstract definition and an
example.

Formally, circuits (realizations) and their formal specifica-
tions are both computational agents, which are nondetermin-
istic , Moore-type, finite-state machines without defined initia l
states. (A nondeterministic machine is one whose response to
a stimulus is not entirely determined. For example, we don’t
know what values most of a processor’s registers will have af-
ter we reset the processor, and we may not know what output
a circuit will produce when it is first powered up.) However,
to define what we really mean when we say that the circuit
implements its specification, we need very few details about
agents. All we need to know is that each agent takes an input
sequence and produces an output sequence (which may not be
uniquely determined). Since the specification is more abstract
than the realization, we also have a “mapping” which “fills in
the details,” i.e. , for each specification sequence, it produces
a corresponding circuit sequence. This mapping may also be
nondeterministic, for there may be more than one circuit se-
quence that corresponds to a single specification sequence.

Given this notion of computational agents, we say that a cir-
cuit implements a specification if the following holds for every
specification input sequence: for every corresponding circuit
inputsequence, every possible resulting circuit outputsequence
is within the image, under the mapping, of some specification

op = run
/\ R[PC] = p
/\ M[p] = instr.
/\ cond. codes
/\ R[dest] = j
/\ M[p+1] = b
/\ M[j+p] = v
==>
 R[PC] = p+2
/\ M[j+b] = op v
/\ cond. codes

Figure 2: Example of an assertion mapped onto the microprocessor. Signals beginning with A are appl ied , and those beginning with C are
checked .

output sequence which the specification could have produced
from the original input sequence.

Details of “implementation”

The property we have just discussed is actually not implemen-
tation. Instead, it is what we call obedience. Implementation
comprises obedience plus two other technical conditions, con-
formity and distinction.7

Without these additional conditions, mathematically trivial
solutions to the obedience condition are possible . We impose
the extra conditions to avoid these trivialities. Conformity
requires that for every specification input sequence there be a
corresponding circuit input sequence. Distinction requires that
any two different specification output sequences cannot have
the same corresponding circuit output sequence. These are
properties of the mapping, rather than of the circuit, so they are
easy to check.

Theory

The theory underlying our methodology, which allows us to
conclude the implementation relation between IO sequences of
a circuit and its specification by performing symbolic simula-
tion tests on only individual transitions, isactuallyrather simple
but mathematically abstract in its essentia l form. Detailsappear
elsewhere [1].

7 Aconvenient mnemonic is a fictitious mi litary boarding schoolwithmot to
“Conformity, obedience, disti ncti on.”

Conclusion

Experimental results

As we developed the methodology sketched here, we verified
a number of different operations and instructions of the Hector
microprocessor. We verified initialization and response to the
non-maskable interrupt. We verified instructions including all
addressing modes of the CLR instruction, some branch instruc-
tions, andthe register addressing mode for the unary operations
(NOT, INC, DEC, SHL, ROL, SHR, ROR, LDF, STF and SWAP) and
binary operations (ADD, ADDC, SUB, SUBC, AND, OR, XOR and
test-and-branch).

Our goal was to demonstrate the feasibility of symbolic sim-
ulation for formal verification, so we have not concentrated on
performance. Fig. 3 shows the performance of the verifier for
several instructions and operations. The table is useful for an
indication of the magnitude of the numbers involved, but not
for a detailed analysis of a factors contr ibuting to the verifier’s
performance. As shown, checking an assertion is not a fast
process.

Checking each assertion involves a significant amount of
work. Consider the “clear” instructionwith indexedaddressing.
Referr ing back to the timing diagrams of Fig. 2 is instructive:
in order to verify this instruction, 7 cycles of system operation
must be simulated.

Debugging

Pinpointing suspected errorsduring verification seemsstraight-
forward in retrospect, when their causes can be simply stated.
However, locating these errors was most tedious. First, either
the specification or the circuit may be in error. Second, with-
out schematics, it was difficult to even know what circuitry
surrounded the node exhibiting the error. Third, there is er-
ror latency, the activity between an error’s occurrence and its

Instr. Addr Time BDD size
Mode (s) final max

clr reg. 518 240000
clr ind. 341 31000
clr inc. 380
clr indexed 853 159000
clr reg. 559 241000
clr indexed 819 156000
clr indexed 611 6930
add reg. ,reg. 1711
xor reg. ,reg. 647 22500 86000
sub reg. ,reg. 1090 122000
subc reg. ,reg. 1068 62000
add reg. ,reg. 644 103000
or reg. ,reg. 741 53000
xor reg. ,reg. 893 67000
clr ind. 534 23000 45000
initialization 303 496 2376
nmi 790 4783 15445
initialization 369 256 2051

Figure 3 : Performance of verifier on several assertions. Time was
measured in user CPU seconds on a DECstat ion 5000/200 wi th 32
MB memory (25 MHz R3000 CPU, 19.9 SPECmark) under the Mach
2.6 operating sys tem. The operat ions shown more than once were
re-verified at di fferen t s tages of tun ing the verifier’s performance.

manifestation.8 Fourth, understanding the state of a symbolic
simulator is difficult.

A symbolic simulator represents not a single state for the
system being modeled, but many states, one for each valua-
tion of the symbolic variables. Understanding even a simple
Boolean function of three variables takes some thought, which
is more difficult if the function is expressed in some automati-
cally generated form(e.g., as an ordered sum of products, or as
a BDD) rather than an expression designed for exposition. Un-
derstanding a large set of even more complicated functions, and
the structure of a circuit, and the relation between the two—at
the same time—is all but impossible . Thus, when errors are de-
tected by symbolic simulation, a different stra tegy is required to
analyze them. Selecting a valuation for the symbolic variables
which manifests the error is the first step. Although in princi-
ple any such valuation will do, simpler ones—such as those in
which most of the variables take the value 0—are often easier
to understand. Examining the symbolic simulation state under
this valuation becomes tractable, for the state values become 0,
1, andX ra ther than complex functions.

In our experience, when verifying toy circuits, the most dif-
ficult part of our methodology is writing the mapping. For real
circuits, finding errors in the abstract specification itself also
becomes a significant task. For example, Hector’s “SUBC” in-
struction was difficult to verify because its use of the carry flag
is quite subtle to specify correctly, since it is actually necessary

8 This is a good general rule ofdebugging which bears some repeating.

to allow 18-bit arithmetic in one case.
Ultimately we found no errors in the instructions we exam-

ined. Hector’s designers later confirmed that the only known
bug in Hector affects an instruction we had not tr ied to verify.
We did find that precisely stating instruction semantics was a
challenge. For example, Hector has a “push” instruction and
the PC is addressable , so there is a “push PC” instruction which
stores into instruction memory then decrements the PC (caus-
ing a loop). This is a useless instruction, but it is necessary to
either specify its behavior, or specify that its behavior does not
matter (e.g., with an assertion whose consequent is the constant
formula true).

Observations

We have verified that a microprocessor circuit implements its
intended instruction set using symbolic simulation. There are
some key differences between Hector and modern, commercial
designs, including size, pipelining, exceptions, and caches.

One of the principal dangersof formal verification is what we
have called antecedent failure.9 Formally, implications have an
extensional meaning: they are also true if the antecedent con-
dition is not true. Antecedent failure means that we can speak
nonsense and not realize it.10 One strength of our approach
is that we can check for antecedent failure , and structure our
specifications so that antecedents never fail. While structuring
a specification this way lengthens it, it improves our confidence
that the specification actually makes sense.

The danger of antecedent failure should not be underesti-
mated. If a logical proposition a is fa lse, every implicative
statement having a as antecedent, “ if a then c,” is always true.
When a is easy to understand, this poses no problem. If wishes
were horses, then beggars would ride. However, when state-
ment a concerns the very circuit being verified, it may not be
obvious that a is in fact false—the falsity of a might well be
due to a circuit bug. “If the input ishigh, then the output is low”
is not only true of an inverter, but also true of any circuit whose
input is accidentally shorted to ground. This is an example of
antecedent failure.

One way to avoid antecedent failure is to check that the an-
tecedent is, in fact, always true. For the inverter, we would
discover the problem when we check that we can indeed set the
input high. Incorporating such a check restricts the class of as-
ser tions thatcan be verified to just those whose antecedents are
true. When we find an antecedent failure , we rewrite assertions
so that their antecedents remain true. (This is always possible .)
For example, the restric tions in the second line of the interrupt
antecedent, earlier in this paper, were added for this reason.

The methodology has some distinguishing features worth
noting.

9 Thi s phenomenon is call ed one of the“Lewis principl es” by logicians .
10 Antecedent fai lurecanbeaproblem in anyapproach to formalverificati on.

Techniques that are based entirely on pure logi c, such as HOL, are especi all y
prone to it.

� I t is most suited for verifying functional properties of
data intensive systems, i.e., those whose operation can
be thought of as updating data values stored as compo-
nents of a large stored state, in response to a relatively
small number of operations.

� Our specifications are given at a high level. This re-
quires an unconventional format. We have defined a new
language, based on asser tions rather than imperative com-
mands, that is higher level than most hardware descr iption
languages. It is possible to derive assertions from more-
conventional HDL descriptions [11], but such assertions
would be too highly constrained for verification.

Future work

The goal of FV is to eliminate harmful design errors with-
out compromising design goals. The work outlined here is a
step toward this ideal. Further work could solidify the theory,
implement it in robust tools, and demonstrate their usefulness
on real circuits. Definition of mappings is an ideal task for a
graphical specification language. The full generality of trajec-
tory evaluation should be explored at other levels. Supporting
existing HDL’s in some way would facilita te acceptance of FV
techniques in industry.

When we choose circuits to verify, we must take care to
ensure that they differ from previous circuits, to advance the
state of the ar t in verification. In addressing the differences be-
tween Hector and more modern processors, one place to start
would be with simple pipelines that allow interrupts or excep-
tions. The ultimate goal of verification is to atta in currency
with state-of-the-art design techniques, so it is imperative to
deal with superpipelined and superscalar designs. Although
we have given multiple-issue systems some thought while de-
veloping our theory, we have not given it sufficient serious
study. The approach of starting with simple examples is useful,
but so far we are unaware of any simple superscalar designs.

References

[1] D. L. Beat ty . A Methodology for Formal Hardware Verification ,
with Appl ica tion to Microprocessors . PhD thesi s, publ ished as
technical report CMU–CS–93–190. Comp. Sci . Dept. , CMU,
Aug. 1993.

[2] D. L. Beatty, R. E. Bryant, and C.-J . H. Seger. Synchronous
circu it verification by symbol ic simulation : an i llus trat ion. Ad-
vanced Research in VLSI: Proc. 6 th MIT Conf ., pages 98–112.
MIT Press , Mar. 1990 .

[3] R. E. Bryant, D. L. Beatty, and C.-J . H. Seger. Formal hardware
verification bysymbol ic ternary t rajectory evaluation . 28th DAC,
1991 .

[4] A. Cohn. Correctness properties of the Viper b lock model : the
second level. Technical report 134. Univers ity of Cambridge
Comp. Lab., May 1988.

[5] K. W. Fernald, T. A. Cook, T. K. Mil ler III, and J. J. Paulos.
A microprocessor-based implantable telemetry sys tem. IEEE
Computer , 24(3):23–30, Mar. 1991 .

[6] W. A.Hunt, J r. FM8501: a Ver ified Microprocessor. PhD thesi s.
Univ. of Texas , Aus tin, Dec. 1985.

[7] J. J. Joyce. Mult i Level Ver ificat ion of Microprocessor-Based
Sys tems. PhD thesi s, publi shed as technical report 195. Univ.
of Cambridge, Comp. Lab., May 1990.

[8] J. -C. Madre and J .-P. Bil lon. Proving circu it correctness using
formal compari son between expected and extracted behavior.
25th DAC, pages 205–10, 1988.

[9] J. -C. Madre, O. Coudert, M. Currat, A. Debrei l, and C. Berthet.
The formal verificat ion chain at BULL. EURO ASIC (Pari s, 28
May–1 June 1990), pages 474–9. IEEE, 1990.

[10] T. K. Mi ller III, B. L . Bhuva, R. L. Barnes , J. -C. Duh, H.-B. Lin,
and D. E. Van den Bout . The HECTOR microprocessor. ICCD,
pages 406–11, 1986.

[11] J. D. Oakley. Symbol ic Execut ion of Formal Machine Descr ip-
tions. PhD thesi s. CMU, Apr. 1979 .

[12] C.-J. H. Seger and R. E.Bryant . Formal verification by symbolic
evaluation ofpartially-ordered t rajectories. Technical report 93–
8. Comp. Sci . Dept ., Univ. of Brit ish Columbia, 1993.

[13] M. Srivas and M. Bickford . Formal verification of a p ipelined
microprocessor. IEEE Software, 7(5):52–64, Sep . 1990.

