Formally verifying a microprocessor usng a simulaion methodology

Derek L. Beatty
Cadence Berkeley Laboratories
Cadence Design Systems, Inc.

beat t y@adence. com

Randal E. Bryant
Carnegie Méllon University
bryant+@s. cnmu. edu

Abstr act processor impliesthat ad-hoc techniqueswill not suffice, soits
verification requirescareful attention to methodology. Hector
Formal verification is becoming a useful means of validating dejg g 16-hit CISC fabricated in 1985. Its 2-address architecture
signs. Wehavedevel oped amethodology for formally verifying datq—ssi milar tothe PDP-11, but with more (16) registers and fewer
intensive circuits (e.g., processors) with sophisticated timing (e'gaddrng modes. System state isheld in the register file and a
pipdining) against high-le/el declarative specificati ons. Previous éw condition code bits. The implementation is microcoded; at

formally verifying amicroprocessor required the use of an automatic . L . . .
Y yind P & themicrocode level itisdlightly pipelined, but at theinstruction

theorem prover, but our technique requires little more than a sym- - 1) il
ocset level itis not. ™ The bus interface issimilar to the Motorola

bolicsimulator. Wehareformal ly verified apre-existing 16-bit Cl
mi croprocessor circuit extracted from thefabri cated lay out.

| ntroduction

Previoudly, symbolic switch-level simulation has been used to
verify some small or simple data-intensive circuits (RA Ms,
stacks, register files, ALUs, and smple pipelines) [2, 3]. In
doing 2, the necessary simulation patter nswere developed by
hand or by using ad-hoc techniques, and it was then argued
thatthe patternsw ere sufficient, and that their gener ation could
be automated. We have developed aufficient theory to fully
support such claims, and used this methodology to verify a
representative set of operations (initialization and interrupt as
well as indructions) of a microprocessor [1].

To verify a circuit, a designer writes assertions to specify
high-level gperations. He or she also writes mappingsillustrat-
ing how abstract state and 10 is realized by the circuit. From
these, our verifier generates symbolic smulation tests, which
are localized intime and space. In other words, they are short
patterns (typically single operationg which exercise parts o
the circuit. Our theory then guarantees, fromthes local tests,
that an arbitrary squence of operationswill work correctly.

I n developing our methodology, our touchgone was a mi-
croprocessor called Hector [10, 5]. Thecomplexity of amicro-

0

6800. |In additionto a reset line, there isa wait line, DMA,
prioritized interrupts, and a single-step facility. Hectar has no
cache and does not support virtual memory.

Hector includes an ALU with condition codes. Of its ad-
dressable registers, 7 are completely general-purpose, and 9
are sometimes specialized (e.g., PC, stack pointer, interrupt
vectors). Hectar has four addressing modes: register, indi-
rect, indirect with post-increment, and indexed. Additional
addressing modes can be synthesized since the stack pointer
and program counter are addressable. (This also gives some
pathological addressing modes.)

We did not participate in Hector' sdesign In modeling Hec-
tor for verification, wefir stextracteda switch-level circuitfrom
layout. We made few changes to the extracted circuit—just
those necessary to model it at the switch level. (We used the
switch level due to our expertise there, but our methodology
could be easily used at a higher level instead. The key require-
mentson the mulation are that it be symbolic, and efficiently
support an “unknown” signal value, such asthe switch-level X
value.)

Thus, we started with a pre-existing circuit. A C program
simulating Hector's instruction set was also available, but we
did not use it directly. Instead, we wrote a higher-level, declar-
ative formal specification of the instruction set. (It might also
be possible to extract such higher-level descriptions from HD L
programs[8]. We have not pursued this.)

1 Actually, theeisavery slight degree of pipdining: theprocessor senses
the state of the interrupt | ines as it compl etes exeauti onof esch instruction.

For mal verification

“Formal verification” (or simply FV) consists of egablishing
that a mathematical relation holds between two descriptions
of a system. The particular relation established varies with
the approach to verification. A high-level description, called
the “specification,” is taken to be correct and a lower-level
description, called the “realization,” ischecked.

Our approach to FV divides the specification into 2 parts.
The main part is a set of asertions, which are descriptions of
desired state-transition behavior. The other part describes | O
encodings. Once we have verified acircuit, mathematically we
have established a relation between 10 sequences of the speci-
fication andl O signalsof the circuit. Informally, everything the
circuit does must be something allowed by the specification.

Some researchers make a didinction between “property
checking” (or design verification) and “machine comparison”
(or implementation verification). The assertions comprising
one of our specifications define (implicitly) a gate machine.
Thus, inatechnical sense, wear e perfor ming machine compar-
ison. However, strict division betw een two kindsof verification
is unhelpful in evaluating this work—surely one sees a signif-
icant difference between the statements “this microprocessor
implementsthisinstruction set” and “these two state machines
are simlar.”

Other wor k

Previously, microprocessor shave been f ormally verified using
automatic theorem provers[6, 7, 4, 13]. Our methodology re-
quires little more than a symbolic simulator. Frocessors have

been verified by Madre and colleagues without using theorem
provers[8, 9], hut the specification and circuit were required
to have identical latch structuresand timing, and a unique reset
state. We do not have these redrictions. We can also us more
detailed circuit models and handle detailed circuit iming in

cluding pipelining. Our specificationsare at the ingr uction- set

level, a higher level than most previous work. Unlike ap-

proachesbased purely onlogic, we can structure our gecifica-
tionsto avad the danger of antecedent failure.

Verifying circuits

We give two examples: alatch, to illustrate ideas in smplest
form, and Hector, toillustrate their actual application. Thefirst
step informally verifying a designisto specify it formally.

Abdr act specification

Data-intensive systems perform operations on data values.
Their state trandtions implement such operations. A latch
hastwo kinds of operations: it canload a new data value, and

2In gererd the specificai on mi ght either desaribe t he system completely
(but abstrectly), or give some propertties t hesyst em shoul d have or both.

it can gore an old one. Formally, we can describe such op-
erations usng assertions. An assertion consists of two logical
farmulas, which describe setsof states Its antecedent, or pre-
condition, describes gates before the operation occurs. For
example, before a“load” operation inalatch, some new value
must be given to the latch, and the latch must be told to load the
value. An assertion’s consequent, or post-condition, describes
states afterward. After a*“load” operation, the new value will
be stored in the latch. For example, we can describe a latch
using the two asrtions

op=loadhD = = 0 = w

op= holdhid == 2 0=
These say that if the operation isa“load” and the input It has
value », then afterward the state & will have value~. If the
operationisa “hold” andthe state hasvalue=, it will remain .

The symbol 2 , which we read as“ thenimplies’ or “ leads to,”
indicates both that the lef t- hand side implies the right, and that
time passes.

A microprocessor has more kinds of operations. it can be
reset, it can regond to interrupts, and it has many types of
instructions. The Hector microprocessor is reset by applying
an external reset signal. Thissgnal must be applied for at least
7 clock cycles? but this detail is extraneousto the behavior of
the processor, so here we will concentrate on the abstract reset
operation, writing the assertion

control = r@eté:- invariant = 0
& BE[PC]=0
L E[SPl=0
A B[INT] =4
& BE[NMI]=2

| tstatesthat if the processor isgivenitsreset signal, it will then

enter a date where: _ _ _
= |twill be ready to executeinstructionsor respond to inter-
rupts, as reflected by an invariant condition, and

= Several register swill have specified initial values includ-
ingthe programcounter, the stack pointer, and the inter rupt

Vectors. , , .
Hector’sresponse to aninter rupt is specified by a more com-

plicated assertion. Part of the added complexity isin speci-

fying the conditions under which an interrupt occurs, for we
must include more o the processor’s state than was necessary
in specifying reset behavior. (Since the reset operation makes
no use of existing processor state, we did not need to describe
initial state in the reset assertion.)

The antecedent of the assertion describesinitial state:
control = nmi & invariant = 1 & W[=4

Alr ENMIAr £ SPAr £PC) =+ R[] =

& BINMI] = w
MRS =
AR[RC] = p

! cyCC = cyh ovCC = ovil ngCC = ng
hzeCC= ze M intCC = int
hr#£0 =+ RO ==

3Thi s numbe was found empiricaly, then veii fied formally.

I t describes the conditions in which a non- maskable inter rupt
occurs A non-maskable interrupt occurs when the abstract
input is“nm.” Arny arhitrary menmory location I' holds some
arbitrary dataword 4. Any arbitrary register = (other than the
special registers: NMI, which holds the address of the inter-
rupt service routine; SP, the stack pointer; or FC, the program
counter) holds some arbitrary value ». The special regigers
and condition codes hold arbitrary gecial values w, 7, and .
Register 0 also holds some arbitrary word = (unless register
0 was the arhitrary register r selected above; if so, we have
already stated that it hasa value, namely »).

The consequent of the assertion describesthe conditions that
follow receipt of a non-maskable interrupt.

invariant= 0
AI#EFr—1A8I#Fr-2 a4 MM[]=4
& M[r - 1K4: Oy = intzengovcy

AU [r-2]=F

MER[F=r-2

Ar#FSH =4 B[] = =

& cyCC =cy AovCC = ovihngCC = ng
hzeCC= zelh intCC=1

& B[RC] = w

A BINMI] = &

After aninterrupt isreceived memory will be unchanged, except
for the stack, which will hold the previous condition codes and
program counter. The stack pointer will have been updated.
Most condition codes will be unchanged, but the “interrupt’
flag will be asserted. The program counter will now point
to the interrupt service routine (whose address also remains
in the NMI register). Snce Hector does not allow instruc-
tionsto be interrupted, i.e., interruptsare sensed only between
instructions;* this assertion captures all possible conditionsin
which aninterrupt could occur.

| tisimportanttoobservethat in these assertionsthere aretwo
diff erent kindsof variables. Some variables—those on the left
of “=" signs—correspond to abstract sygemstate (or | O), such
as @ in the latch, or B in the microprocessor. Other variables
are used in representing the values that these abstract states
can take on, such asw in the latch, or 4, n, r, =, and = in the
microprocessor. We must consider the firstkind of variables,
which represent components of abstract system state, whenwe
define mappingsfrom abstr act state onto circuit state.

Observe that assertions are local properties in two ways.
First, each describe a very short computation: an isolated, sin-
gle state trandtion. Second, each describes the operation of
only partof the circuit. For example, the “ hold” assertion for
thelatch does notinvolve the It input, and for the processor, the
specification of the intialization oper ation says nothing about
the memory. Thus, individual assertions are partial goecifica
tions, and do not define the transition behavior of the speci-

4Thisisvaifiel duing veification of i nstructions, by checking tha once
an instrudion has begun exeaution, it i s completed regardl ess of subsequent
adivity on theinterupt li newhile theinstrudion is comple ed.

ficaion machine, but they constrain the transition behavior?
so that the set of all assertions taken together does define a
transition relation. Though the assertions are localized, by
checking them we can guarantee global properties which hold
far computations of any length involving the entire circuit.

M appings
IO and timing

An abstract description of state-trarsition behavior is insuffi-

cientto gpecify acircuit. Circuitsdo nottake abstractinputsand
produce abstract outputs. | ngead, they have input and output
signals. Thus, itisalso necessary o specify the way inwhich
abgract 10 is encoded ascircuit 10. Input variables in the as-
sertions (L' and ¢ f or the latch) will be mapped onto particular
voltage levels at particular times. The zero point with respect
to which time is measured is the “nominal beginning” of the

operation. We will also specify the possible durations of the
operation by specifying the“ nominal ending” of the operation.

(The beginning of any successive operationwill, of course, be
the ending of the current operation.)

Although we use a textual representation to express map-
pingsintheactua verifier, it is easiest to show thiswith iming
diagrams. Rather than giving nominal beginning and ending
time pointsas numbers, we can more easily give them asiden-
tifying markers—vertical lines sketched on a timing diagram.
Figure 1 showshow we map the abstract latch oper ations onto
one particular circuit.

Load

Start

Hold

Start
ext Next

Figurel: A simplelatchanditsmapped assertionsastiming diagrams.
For each signal, adoublehori zonta lineindicatesthat either ahighor
alow valuemight be present; the absence of any lineindi cates that we
don’t know or don't careabout thevaue.

State mappings

It is insufficient to consider only the inputs and outputs of
sequential systems. Operation depends crucially on stored in-
ternal state. Thus, we also describe the way inwhich abstract
state isencoded as circuit date.

5For exanple to show tha unintended state changes do not ocaur, it is
necessary to express this condition, but it could be wiitten & a new asserti on,
or incorpora ed int oexisti ng ones.

State variables in the asertions (&' for the latch assertiong
will be mapped onto charge stored on circuit nodes, over inter-
vals o time measured relativetoa “ marker.” Thisisillustrated
with the last two rows of the timing diagram. Note that, ab-
stractly, thevalue stored inthelatchisalso itsoutput value, but
in the circuit, the node controlling the stored value (%) and the
output (&) are separate nodes

For the microprocessor, the mapping is more complex, and
it must take into account the separation of processor state and
memory state, butitiscongructed similarly. Processor state is
mapped normally, while memory state is mapped onto memory
operations. Weilludrate thisinFig. 2 For example, the initial
program counter value is mapped onto register 15, Hector’' spc
register, at the beginning of the operation.

Given such a specification and a ymbolic simulation model
for a circuit, we can verify it. We check each as®rtion sepa-
rately. For each assertion, we use the mappings that we have
defined to gener ate symbolic simulation patterns.

We gener ate the stimu us using the precondition of the asser-
tion. Mapping the abstract input variablesof the specification
yields a short circuit input sequence, which also contains two
markers Mapping the abdract state variables of the gecifica-
tionyieldsacircuit state sequence, defined relative to a marker.
Wealign thismarker with the first marker of the input sequence
to get the entire stimulus.

We generate the response using the postcondition of the as
sertion. Mapping the abstract state variables of the gecifica-
tion (which also srve as outputs) yields another circuit sate
sequence defined relative to a marker, but we align this marker
with the second mar ker of the input sequence, to get the desired
r esponse.

This explains what happens to the abstract input and state
variables that appeared in the specification. The specification
als containedanother kind of variables: those used tor epresent
valuesthatthe abstract gate could takeon (e.g., = inthe latch, 4
inthe processor). We have not explained what happensto these
variables because nothing happensto them they are preserved,
so that they appear in the Smulation patterns (Since we are
using asymbolic smulator, variablescan appear in smulation
patterns.)

We check the generated patterns using symbolic trgjectory
evaluation, aform of symbolic simulation which allows precise
constraining and checking of system state during sequences o
operation [12]. This exploits the power of the switch-level
model’ sternary & value inreducing extraneous analysis of cir-
cuitcomponentsthat do not participatein acalculation (thereby
reducing precision, but remaining accurate, i.e., not producing
incorrect binary valueg®

60f mursg asimulaor tha propagated X vd ues indisci minatdy would
be too blunt atool.

M or e about mappi ngs

The specification here issimgified. | nthe actual specification
[1, appendx B], refer encesto valuesstoredinmemory are given
with an extra parameter, a small integer. Itisa“hint,” used to
edablish the clock cycle on which a memory operation takes
place. Formally, hints are unnecessary. To be most general,
assertionsshould be mapped so that they allow any sequence of
memory operationsthat yieldsthe dedred effect. For example,
the order in which locations are read from memory does not
matter. However, checking all possible ordersis expensive.
For Hector, itiseasy toidertify the specific order that actually
is used, by examining the instruction level smulator. The
generated assertion isthen specific to the particular sequencing
that wasasaumed, and we wouldbe unableto verify aprocessor
that attempted to perfor m the memory oper ations in a diff erent
order. Hints do not compromise the validity of verification.

Definition of “implementation”

The relation established by our verification is one between 10
sequencesof the specification andl Osignalsof thecircuit. This
is a global property. However, the illustration above has dis-
cussed only individual assertionsin isolation—Iocal pr operties.
I'tis not particularly interesting to guarantee that a processor
will execute one ingruction correctly—we must show that it
will execute entire programscorrectly.

The theory underlying our verifier explains how establishing
the local property is sufficient to establish the global property.
Bef ore explaining it, we should be more precise about exactly
what is established. We give an abstract definion and an
example.

Formally, circuits (realizations) and their formal specifica-
tions are bah computational agents, which are nondeter min-
istic, Moore-type, finite-state machines without defined initial
states. (A nondeterminigic machine is one whose response to
a simulus is not entirely determined. For example, we don't
know what values most of a procesor’sregister swill have af -
ter we reset the processor, and we may not know what output
a circuit will produce when it is first powered up.) However,
to define what we really mean when we say that the circuit
implements its specification, we need very few details about
agents. All we need to know isthat each agent takes an input
seguence and produces an output sequence (which may not be
uniquely determined). Since the specificationismore abstract
than the redlization, we also have a “mapping” which “fillsin
the details,” i.e., for each specification sequence, it produces
a corresponding circuit sequence. This mapping may also be
nondeterministic, for there may be more than one circuit se-
guence that correspondsto a single specification sequence.

Giventhisnotion of computational agents we say that a cir-
cuit implements a specification if thefollowing holdsfor every
specification input sequence: for every corresponding circuit
input sequence, every possble resulting circuit output sequence
is within the image, under the mapping, of some specification

/\
/\
/\

==>

/\
/\

— — -

i 1 -
74

I I il

lop = run/

7\ RPC] =p

I\ Mp] =instr.

t/\ cond. codes

dest] =j
ﬁpii]] bj/

j + vV—] I
M +p] |
RIPC| = p+2—] .
Mj+b] =op vV
cond. codes

Figure 2: Example of an assertion mapped onto the microprocesso
checked.

output sequence which the specification could have produced
fromthe original input sequence.

Detailsof “implementation”

The property we have just discussed isactually not implement
tation. Instead, it is what we call obedience. Implementation
comprises obedience plus two other technical conditions, con
formity and distinction.”

Without these additional conditions mathematically trivial
solutionsto the obedience condition are possile. We impose
the extra conditions to avoid these trivialites Conformity
requiresthat for every specification input ssquence there be a
corresponding circuit input sequence. Distinction requiresthat
any two different specification output sequences cannct have
the same corresponding circuit output sequence. These are
properties of the mapping, rather than of the circuit, sothey are
easy to check.

Theory

The theory underlying our methodology, which alows us to
concludethe implementation r el ation between | O sequences o
a circuit and its specification by perf orming symbolic simula-
tion testson only individual transitions isactuallyrather simple
but mathematically abstractinitsessential form D etailsappear
elewhere[1].

7 A corvenient mnemonic isafictitious mi litary boarding school withmot to
“Conformity, obedience, disti ndi on”

r. Signals beginning with A are applied, and those beginning with C are

Conclusion

Experimental results

As we developed the methodology sketched here, we verified
a number of diff erent operations and instructions of the H ector
microprocessor. We verified initialization and response to the
non-maskable interrupt. We verified instructionsincluding all
addressing modes of the CLR instruction, some branch instruc-
tions, andthe register addressing mode for the unary oper ations
(NOT, INC, DEC, SHL, ROL, SHR, ROR, LDF, STF and swaP) and
binary operations (ADD, ADDC, SUB, SUBC, AND, OR, XOR and
test-and-branch).

Our goal wasto demonstr ate the feasibility of symbolic sim-
ulation for formal verification, so we have not concentrated on
performance. FHg. 3 showsthe performance of the verifier for
several instructionsand operations. The tabe is useful for an
indication of the magnitude of the numbers involved, but not
far adetailed analysisof afactorscontributing to the verifier's
performance. As shown, checking an asertion is not a fast
process.

Checking each assertion involves a significant amount of
work. Consider the“clear” instructionwith indexedaddressng.
Ref erring back to the timing diagrams of Fig. 2 is instructive:
inorder toverify thisinstruction, 7 cyclesof sydem operation
must be simulated.

Debugging

Pinpointing suspected error sduring ver ification seemsstraight-
farwardin retrospect, when their causes can be sinply stated.
However, locating these errors was mog tedious. First, either
the specification or the circuit may be inerror. Second, with-
out schematics, it was difficult to even knowv what circuitry
surrounded the node exhibiting the error. Third, there is er-
ra latency, the activity between an error’s occurrence and its

Insr. Addr Time BDD size
Mode (9) fina max
clr reg. 518 240000
clr ind. 341 31000
clr inc. 380
clr indexed 853 159000
clr reg. 559 241000
clr indexed 819 156000
clr indexed 611 6930
add reg.reg.| 1711
xor reg.,reg. 647 22500 86000
b reg.,reg. [1090 122000
abc reg.,reg.| 1068 62000
add reg.reg.| 644 103000
or reg.,reg. 741 53000
xor reg.,reg. 893 67000
clr ind. 534 23000 45000
initialization 303 496 2376
nmi 790 4783 15445
initialization 369 256 2051

Figure 3: Performance of verifier on severa assertions. Time was
measured in user CPU seconds on a DECstation 5000/200 with 3
MB memory (25 MHz R3000 CPU, 19.9 SPECmark) under the Mach

2.6 operating system. The operations shown nore than once were

re-verified at different stages of tuning the verifier’s performance.

manif estation® Fourth, under standing the state of a symbolic
simulator is difficult.

A symbolic smulator represents not a single state for the
system being modeled, but many states one for each valua-
tion of the symbolic variables. Underganding even a simple
Boolean function of three variablestakes same thought, which
is more difficult if the function isexpressed in some automati-
cally generated form(e.g., asan ordered sum of products, or as
a BDD) rather than an expression designed for exposition. Un
derstanding alarge <t of even more conplicated functions, and
the structure of a circuit, and the relation betw een the two—at
the sametime—isall but impossible. Thus, whenerrorsarede-
tected by symbolic simulation, a diff erent drategy isrequired to
analyze them Selecting a valuation f or the symbolic variables
which manif ests the errar is the first step. Although in princi-
ple any such valuation will do, simpler ones—such asthose in
which most of the variablestake the value 0—are of ten easier
to understand. Examining the symbolic simulation state under
thisvaluation becomestractable, for the state values become0,
1, and X rather than complex functions.

I nour experience, when verifying toy circuits, the most dif-
ficult part of our methodology iswriting the mapping. For real
circuits, finding errorsin the abdract ecification itself also
becomes a significant task. For example, Hector’s “ SUBC” in
struction was difficult to verif y because itsuse of the carry flag
isquite subtleto specif y correctly, since it isactually necessary

8Thisisagood general rule of debuggi ng whi ch bears some repesting.

toallow 18-bit arithmetic in one case.

Ultimately we found no errors in the instructionswe exam
ined. Hector’s designers later confirmed that the only known
bug in Hector af fects aninstruction we had not tried to verify.
We did find that precisely stating instruction semantics was a
challenge. For example, Hector has a*“ push” instruction and
the PC isaddressable, so there isa “push PC” instruction which
stores into instruction memory then decr ements the PC (caus-
ing aloop). Thisisa usless instruction, but itisnecessary to
either specify itsbehavior, or specify that its behavior doesnot
matter (e.g., with an assertion whose consequent isthe constant
famulatrue).

Observations

We have verified that a microprocessor circuit implemerts its
intended instruction set using symbolic simulation. There are
somekey dff erencesbetween Hector and modern, commercial
dedgns, including size, pipelining, exceptions, and caches.

Oneof theprincipal danger sof f ormal verification iswhat we
have called antecedent failur€ Formally, implicationshavean
extensional meaning: they are al9 true if the antecedent con-
Blition isnot true. Antecedent failure means that we can speak
nonsense and not realize it'®> One grength of our approach
is that we can check for antecedent failure, and structure our
specifications so that antecedents never fail. While structuring
a ecification thisway lengthensit, itimproves our confidence
that the specification actually makes sense.

The danger of antecedent failure should not be underesti-
mated. If a logical proposition a is false, every implicative
statement having a asantecedent, “if a then £, is aways true.
W hen a iseasy to under stand, this posesno problem. If wishes
were horses, then beggars would ride. However, when state-
ment a concerns the very circuit being verified, it may not be
obvious that = isin fact false—the falsity of a might well be
dueto acircuit bug. “ If theinput ishigh, then the output islow”
isnot only trueof aninverter, but also true of ary circuit whose
input is accidertally shorted to ground. Thisis an example of
antecedent failure.

One way to avoid antecedent failure is to check that the an-
tecedent is, in fact, aways true. For the inverter, we would
discover the problem when we check that we can indeed setthe
input high. Incor porating such a check restrictsthe classof as-
sertionsthat can be verified to just those whose antecedentsare
true. When wefind an antecedent failure, werewrite assertions
so that their antecedentsremaintrue. (Thisisawayspossible.)
For example, the restrictionsin the second line of the inter rupt
antecedent, earlier in this paper, were added for this reason.

The methodology has some distinguishing features worth
noting.

9Thi s phenomenon is cdl ed one of the* Lewis prindpl es” by logiciars.
10 Ant ecerlent f& lurecan beaproblem in any approachto formal veri ficati on.
Techniques tha ae based entirdy on purelogi ¢ such as HOL, ae esped dly
pronetoit.

+ |t is most suited for verifying functional properties of

data intensive sygens, i.e., those whose operation can

be thought of as updating data values sored as compo-

nents of a large stored state, in response to a relatively

small number of operations.

+ Ou specifications are given at a high level. This re-

quiresan unconventional format. We have defined a new

language, based on assertionsr ather than imperative cont
mands, that is higher level than most hardware description
languages. It ispossible to derive assertions from more-
conventional HDL descriptions [11], but such assertions
would be too highly constrained for verification.

Future wor k

The goal of PV is to eliminate harmful design errors with
out compromising desgn goals The work outlined hereis a
step toward this ideal. Further work could solidify the theory,
implement itin robust tools, and demonstr ate their usefulness
on real circuits. Definition of mappings is an ideal task for a

graphical specification language. T he full generality of trajec-

tory evaluation should be explored at other levels. Supporting
existing HDL's in some way would facilitate acceptance of FV
techniques in industry.

When we choose circuits to verify, we must take care to
ensure that they differ from previous circuits, to advance the
state of the art in verification. In addressng the differencesbe-
tween Hector and mare moder n processors, one place to start

would be with simple pipelinesthat alow interruptsor excep-
tions. The ultimate goal of verification is to attain currency
with state-of -the-art design techniques, so it is imperative to
dea with superpipelined and superscalar designs. Although
we have given multiple-issue systems some thought while de-

veloping our theory, we have not given it wufficient srious
study. The approach of garting with simple examplesis usef ul,
but so far we are unaware of any simple superscalar designs.

References

(5]

(6]

[7]

(8]

[9]

(10]

(11]

[12]

[13]

[1] D.L.Beatty. A Methodology for For mal Hardware Verificati on,
with Application to Microprocessors. PhD thesis, published as

technical report CMU-CS-93-190. Comp. Sci. Dept., CMU,

Aug. 1993.
(2

D. L. Beatty, R. E. Bryant, and C.-J. H. Seger. Synchronous

circuit verification by symbolic simul ation: anillustration. Ad-

vanced Research in VLSI: Proc. 6th MIT Conf., pages 98-112.

MIT Press, Mar. 1990.
(3]

R.E.Bryant,D. L. Beatty, and C.-J. H. Sgyer. Forma hardware

verification by symbolic ternarytrajectory eval uati on. 28th DAC,

1991.
(4

Comp. L ab., May 1988.

A. Cohn. Correctness properti esof the Viper block model: the
second level. Technical report 134. University of Cambridge

K. W. Fernald, T. A. Cook, T. K. Miller Ill, and J. J. Paulos.
A microprocessor-based i mpl antabl e tel emetry system. IEEE
Computer, 24(3):23-30, Mar. 1991.

W. A.Hunt, Jr. FM8501: a \erified Microprocessor. PhD thesis.
Univ. of Texas, Austin, Dec. 1985.

J. J. Joyce. Multi Level \erification of Microprocessor -Based
Systems. PhD thesis, published as technical report 195. Univ.
of Cambridge, Comp. L ab., May 1990.

J.-C. Madreand J.-P. Billon. Proving circuit correctness using
formal comparison between expected and extracted behavior.
25th DAC, pages205-10, 1988.

J.-C. Madre, O. Coudert, M. Currat, A. Debreil, and C. Berthet.
Theformd verificationchain at BULL. EURO ASIC (Paris, 28
May—1 June 1990), pages 474-9. |EEE, 1990.

T.K.Millerlll, B.L.Bhuva R. L. Barnes, J.-C. Duh,H .-B. Lin,
and D. E. VandenBout. TheHECTOR microprocessor. ICCD,
pages406-11, 1986.

J. D. Oakley. Symbolic Execution of For mal MadchineDescrip-
tions. PhD thesis. CMU, Apr. 1979.

C.-J. H. Seger and R. E.Bryant. Formal verification by symbolic
evaluati on of parti all y-ordered traject ori es. Techni cal report 93—
8. Comp. Sci. Dept., Univ. of British Columbia, 1993.

M. Srivas and M. Bickford. Formal verification of apipé€lined
microprocessor. |IEEE Software, 7(5):52—-64, Sep. 1990.

