
Dynamic Reconfiguration with Binary Translation:
Breaking the ILP Barrier with Software Compatibility

Antonio Carlos S. Beck
Universidade Federal do Rio Grande do Sul

Instituto de Informática - Av. Bento Gonçalves, 9500
Campus do Vale - Porto Alegre, Brasil

caco@inf.ufrgs.br

Luigi Carro
Universidade Federal do Rio Grande do Sul

Instituto de Informática - Av. Bento Gonçalves, 9500
Campus do Vale - Porto Alegre, Brasil

carro@inf.ufrgs.br
ABSTRACT
In this paper we present the impact of dynamically translating any
sequence of instructions into combinational logic. The proposed
approach combines a reconfigurable architecture with a binary
translation mechanism, being totally transparent for the software
designer. Besides ensuring software compatibility, the technique
allows porting the same code for different machines tracking
technological evolutions. The target processor is a Java machine
able to execute Java bytecodes. Experimental results show that
even code without any available parallelism can benefit from the
proposed approach. Algorithms used in the embedded systems
domain were accelerated 4.6 times in the mean, while spending
10.89 times less energy in the average. We present results
regarding the impact of area and power, and compare the
proposed approach with other Java machines, including a VLIW
one.

Categories and Subject Descriptors
C.1.3 [Processor Architectures]: Other Architecture Styles –
adaptable architectures

General Terms
Performance, Design

Keywords
Java, Reconfigurable Processors, Binary Translation, Power
Consumption

1. INTRODUCTION
The Embedded system market is expanding. The research and
production of specific processors to be used inside cellular
phones, mp3 players, digital cameras, microwaves, videogames,
printers and others appliances is following the same growing path
[1]. Moreover, dictated by market needs, the complexity of these
embedded systems is increasing as well, since they are offering
more and more functions to the user, like Internet access, color
display, audio and video reproduction, videogames, among others
[2]. Hence, these systems must have enough processing power to
handle these complex tasks.

Therefore, while still sustaining great performance, present

days embedded systems must also have low power dissipation and
support a huge software library to cope with stringent design
times. Consequently, there is a clear need for architectures which
can support all the software development effort currently required.

Regarding potential platforms for embedded systems
development, reconfigurable fabric has been shown to speed up
critical parts of several data stream programs. By translating a
sequence of operations into a combinational circuit performing
the same computation, one could speed up the system and reduce
energy consumption, at the obvious price of extra area. Using a
reconfigurable array one is able to have exactly this kind of
hardware substitution. Nevertheless, its wide spread use is still
withhold by the need of special tools and compilers, which clearly
preclude software portability. To handle these problems, recent
works have already proposed dynamic analysis of the code to
reconfigure the array at run-time [3][4]. However, these works
used a fine-grain array, which brings a huge control overhead that
increases the complexity of dynamic detection, and also increases
reconfiguration time, thus requiring a large cache size to keep the
array configurations. As a consequence, just critical parts of the
software, like the most executed loops, with some restrictions, can
benefit from using the reconfigurable array.

On the other hand, our work uses a coarse-grain granularity
array that, in turn, is not limited to the complexity of fine-grain
configurations. The algorithm for the dynamic detection and
configuration of the array becomes simpler, and less memory for
keep these configurations is necessary. Hence, we can optimize
any part of the algorithm that, because of the limitations of fine-
grain nature, was infeasible. Therefore, we can significantly
increase the performance of any kind of software as well as
reducing the energy consumption, not being limited to just DSP-
like or loop centered applications, as is [3][4].

Furthermore, coupling this coarse-grain array with binary
translation (BT) [5], speedups are obtained even in algorithms
that do not present a high level of parallelism, since the
application of this technique can also transform in combinational
logic sequences of instructions that could not present a high
instruction level parallelism (ILP). This is a very useful
characteristic, since the amount of parallelism during the
execution usually varies [6]. In order to demonstrate that, we
compare the processor coupled with the reconfigurable array with
VLIW versions with the same instruction set.

Thus, in this work we demonstrate the performance and
energy gains of using a coarse-grain reconfigurable array with BT
to explore every part of the algorithm, even in those which do not
present a high level of parallelism, using a Java processor as case
study. Thanks to the coupling of dynamic binary translation and
Java, we can assure software compatibility in any level of the
design cycle, without requiring any tools for the
hardware/software partitioning or special compilers, allowing easy

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC 2005, June 13–17, 2005, Anaheim, California, USA.
Copyright 2005 ACM 1-59593-058-2/05/0006…$5.00.

44.3

732

software porting for different machines tracking technological
evolutions. Algorithms used in the embedded systems domain
were accelerated 4.6 times in the mean, while spending 10.89
times less energy in average.

This paper is organized as follows: Section 2 shows a brief
review of the existing reconfigurable processors and some other
approaches regarding dynamic translation of instructions. In
Section 3 we discuss the different architectures of Java machines
that will be evaluated. Section 4 explains the advantages of
applying binary translation technique to work with the
reconfigurable array and some more details about them. Section 5
shows the results regarding power consumption, performance and
area. The last Section draws some conclusions and introduces
future work.

2. RELATED WORK
Reconfigurable systems have already showed to be very effective,
implementing some parts of the software in a hardware
reconfigurable logic. Huge software speedups [8][9] as well as a
reduction in system energy have been achieved [10][11]. These
systems can be implemented together with processors like
Chimaera [12] and ConCISe [13], with a tightly coupled
reconfigurable array in the processor core, limited to
combinational logic. The array is, in fact, an additional functional
unit in the processor pipeline, sharing the same resources of the
other ones. This makes the control logic simpler, diminishing the
overhead required in the communication between the
reconfigurable array and the rest of the system. Nevertheless, as
the majority of reconfigurable systems, it is necessary additional
tools at the design time or special instructions in the processor to
make the array works.

Another approach to cope with high performance allied to low
energy dissipation is the use of binary translation. In this
approach, the system itself monitors the binary of executing
program, detects the frequently executed software kernels, and
optimizes them. Existing optimizations include dynamic
recompilation and caching of previous binary translation results
[5]. The Transmeta Crusoe is based on a VLIW processor where
the application is analyzed at runtime in order to find the best
parts of the software for the binary translation to better explore the
ILP [14]. One of the advantages of using this technique is that the
partitioning process is transparent, requiring no extra designer
effort, and causing no disruption to the standard tool flow.

In [15] Stitt, Lysecky and Vahid presented the first studies
about the benefits and feasibility of dynamic partitioning using
reconfigurable logic. In [3], a modified place and route algorithm
is used, supporting a larger range of benchmarks and requiring
less computation time and memory resources, with the same
objective: optimize the execution by dynamically moving critical
software kernels to configurable logic at runtime, a process called
warp processing. However, this technique is limited to critical
parts of the software, as some loops, and a fine-grain configurable
fabric was used.

Most of the presented works on dynamic optimization focus
on single loops within an application. However, as it has been
demonstrated by [6], the amount of available parallelism during
the execution of a program largely varies. For this reason, the
allocation of loop optimizations at compile time does not explore
all the reconfiguration potential. However, when applied to a
coarse grain reconfigurable substrate, binary translation brings in

a new feature: since the optimizations can be developed for any
sequence of instructions, we are not limited to optimize only
critical loops or to the parallelism available in the application, but
rather we can run the whole program faster.
Using binary translation and Java, we ensure at the same time
software compatibility and no extra efforts or tools at design time,
which means that the underlying hardware can be changed
without the need for recompilation or to write a new compiler.
Also, there are three main advantages of using a tightly coupled
coarse-grain array: it allows a quick reconfiguration; the huge
power dissipation and control overhead in a fine grain
architectures is avoided; and finally the overhead of the
communication between the system and the array is minimal,
consequently saving power.

3. JAVA EXECUTION
Java is becoming increasingly popular in embedded environments.
It is estimated that devices with embedded Java such as cellular
phones, PDAs and pagers will grow from 176 million in 2001 to
721 million in 2005 [16]. Nevertheless, it is predicted that at least
80 percent of mobile phones will support Java by 2006 [17]. As
one can observe, the presence of Java in embedded systems is
becoming more significant. This means that current design goals
might include a careful look on embedded Java processors, and
their performance versus power tradeoffs must be taken into
account.

Our Low-Power Java processor [18] has a five stages pipeline:
instruction fetch, instruction decoding, operand fetch, execution,
and write back, as shown in figure 1. The VLIW processor [19] is
an extension of the pipelined one. Basically it has its functional
units and instruction decoders replicated. The VLIW packet has a
variable size, avoiding unnecessary memory accesses. The search
for ILP in the Java program is done at the bytecode level.

4. BT AND RECONFIGURABLE ARRAY
By transforming any sequence of bytecodes into a single
combinational instruction in the array using BT one can achieve
great gains. Although the delay for the reconfiguration might be
higher, if the sequence of instructions is going to be repeated a
certain number of times, performance and energy gains are
meaningful, since less access to program memory and less
iterations on the datapath are required. In this section we explain
the potential of using combinational logic, the architecture of our
coarse-grain array and how the detection, the reconfiguration and
execution work.

4.1 Combinational Circuit Advantage
There are always potential gains when passing the execution

from sequential to combinational logic. This concept is better
explained with a simple example. Let us have an nxn bit
multiplier, with input and output registers. By implementing it
with a cascade of adders, one might have in the worst case

Tmult_combinational= tppFF + 2*n*tcell + tsetFF (1)

Figure 1. Pipelined Java processor.

00110...

733

where tcell is the delay of an AND gate plus a 2-bits full-adder.
The area of this multiplier is

Acombinational = n2 * Acell + Aregisters (2)
If one could do the same multiplier by the classical shift and

add algorithm, and assuming a carry propagate adder, the
multiplication time would be

Tmult_sequential=n * (tppFF + n*tcell + tsetFF) (3)

And the area given by
Asequential=n*Acell + Acontrol + Aregisters (4)
Clearly, by using a sequential circuit one trades area by
performance. Any circuit implemented as a combinational circuit
will be faster than a sequential one, but will most certainly take
much more area. By the advances obtained by technology
integration and in reconfigurable arrays architectures, one could
imagine the use of a reconfigurable array as a programmable
combinational area. However, the use of this array for just a single
algorithm would have a prohibitively high cost. In our approach,
by coupling the array with a BT mechanism, we can reuse the
array in a SW compatible environment. Also, as we translate
sequences of instructions into combinational logic, we do not
depend on the available application parallelism to speed up the
code to be executed, but rather on sequences of instructions that
appear several times in the code.

4.2 Dynamic Detection
A separated unit, which is a simple multicycle Java processor
[20], is responsible for dynamic analyzing the instructions in
order to find the sequences that can be executed in the array. This
is done concurrently while the main processor fetches valid
instructions. When this unit realizes that there are a certain
number of instructions which are worth to be executed in the
array, the configuration for this sequence is saved in a
reconfiguration cache. The next time this sequence is found, the
array will execute it instead of the normal execution in the
processor.

The search for the sequence of instructions in the Java
program is done at the bytecode level, similarly to what the VLIW
static analyzer does, classifying sequence of instructions that
depend on each other in an operand block. The detection
operation to find these blocks is very simple: when the stack
pointer returns to the start address previously saved, an operand
block is found. This explains why the instruction analysis can be
developed at run time with a small overhead.

4.3 Architecture of the Array
The reconfigurable array is tightly coupled to the processor. It is
implemented as a functional unit in the execution stage, using the
same approach of Chimaera and ConCISe, cited before.

The array is divided in blocks, called cells. The operand block
(a sequence of bytecodes) previously detected is fitted in one ore
more of these cells in the array. The cell can be observed in Figure
2. The initial part of the cell is composed by three functional units
(ALU, shifter, ld/st). After the first part, six identical parts follow
in sequence. This number was chosen based on time delays
presented in [21], where it is compared the delay of the booth
multiplier (used in our processor) with adders. Each cell of the
array has just one multiplier and takes exactly one processor cycle

to complete execution, being limited to its critical path, bringing
no delay overhead in the processor pipeline.

At the end of each cell, there are two additional functional
units: a branch unit and an extended ld/st one, made for the
execution of the iastore (fetches a static value from memory,
taking the address from the stack) instruction, since this
instruction needs three operands, instead of two, as usual.
For each cell in the array 327 reconfiguration bits are necessary.
Consequently, if the array is formed by 3 cells, 971 bits in the
reconfiguration cache are necessary. To these one must add 58
bits of additional information, like as how many cycles the
execution takes and what is the initial ROM address that this
sequence is located, totalizing 1029 bits for each configuration of
the array.

4.4 Reconfiguration and Execution
The array is reconfigured using the data of the cache specially
designed for it. Each cell in the array has its own reconfiguration
cache. Therefore, the reconfiguration of each cell can be done in
parallel. While the program executes, when an address of a
reconfigurable instruction group is found, the reconfigurable unit
detector sends information for the main processor. Then, its
control unit configures the array as the active functional unit,
stops the rest of the processor while the array is performing it
functions, and upgrades the Program Counter with the new
address, in order to continue the normal operation after the
execution of that sequence of instructions by the array. At the
same time, the configurations in the reconfiguration cache for that
address are sent to the reconfigurable array, since they are indexed
by addresses of the instruction memory.

As the detection for the address that will be used in the
reconfiguration is done in the first stage of the pipeline, and the
reconfigurable array is in the fourth stage, there are 3 cycles
available between the detection and the use of the array. As one
cycle is necessary to find the cache line that has the array
configuration, two cycles are available for the reconfiguration.

Figure 2. Architecture of the array

734

Considering the follow example, we show the potential gains
using a reconfigurable array in a Java machine: if there are five
simple arithmetical or logic operations, one needs at least 11
cycles for the execution: 6 for pushing the operands into the stack,
plus 5 cycles for the operations themselves. This is the optimal
execution, without considering pipeline stalls due to data
dependency. On the other hand, the array would execute in just
one cycle everything, after the first time it finds this sequence and
saves it in the reconfiguration cache. If this sequence is repeated a
certain number of times, meaningful gains can be achieved.

For the execution, the first two operand values will be used as
the first operation. After that, for each basic part of the cell, the
first operand is always the result of the previous operation. This is
another characteristic of stack machines, and makes the control
and the hardware of the array simpler. In each cell it is possible to
make 7 simple operations (arithmetic, logical, shift). If a
multiplication is found, the result of the current cell is bypassed
until the end. This multiplication will be executed in the next cell.

Special attention must be given to some bytecode instructions,
whenever they are in the reconfiguration or in the execution
phases. If a getstatic instruction is found (loads a value from main
memory), the pointer field in the cache is used. This pointer tells
where the access is made. The value of the getstatic instruction
will be fetched from a special cache (dual-ported with 1kB of
size) during the reconfiguration phase, since the access address is
static. The value fetched is saved in the operands field.

It is during the reconfiguration phase that the local variables
of the method are fetched as well. These local variables are kept in
a dual-ported register bank in the processor, and can be fetched at
the same time the static values from the memory are.

Some unexpected actions can be taken during these fetches.
Cache misses can occur in the case of getstatic accesses and other
instructions could be accessing the register bank making
impossible the load of local variables. In this case, more cycles to
treat the cache misses or to wait the instructions that are accessing
the register bank are necessary for the reconfiguration of the array.

During the execution, for instructions that save a value in the
main memory, a buffer is used in order not to retard the execution
of the cells. In the case of instructions that load/store values in
main memory, or the local variable storage of the method, values
can be bypassed. One example of this is when there is a load
instruction in a local variable soon after a store in the same local
variable. This avoids unnecessary accesses in the register bank or
in the main memory, accelerating the execution and saving power.

Moreover, if there is an instruction iaload, which makes an
access in the memory and calculates the access address
dynamically, the value is fetched from the same cache of the
getstatic. If there is a cache miss, the penalty is paid and that cell
in the array starts to be executed again.

5. RESULTS
Our experiments are supported by simulation, where different
versions of the Java Processor execute algorithms used in
embedded system domain, as presented before. The tool utilized
to provide data on the energy consumption, memory usage and

performance is a configurable compiled-code cycle-accurate
simulator [22].

Different types of algorithms were implemented and simulated
over the architectures described in Section 3 and 4, from simple
ones to a complex full MP3 player. Sin computation using the
cordic method, as a representative of arithmetic libraries; sort –
bubble, select and quick, in a array of 10 or 100 elements – and
search (binary and sequential), used in schedulers; IMDCT
(Inverse Modified Discrete Cosine Transformation) plus more
three unrolled version in order to expose the parallelism, an
important part present in various decompression algorithms; a
library to emulate sums of floating point numbers, since the Java
processors can be configured without a floating point unit in order
to save area; and finally a complete MP3 player that executes 4
frames of 40kbit, 22050Hz, joint stereo, where the algorithm is
divided in six parts.

Initially, in Table 1 we evaluate the performance of all our
benchmark set in the Low Power architecture and in the different
versions of the VLIW, and compare those to the Java processor
coupled to the reconfigurable array. As can be observed in this
table, for the VLIW processor better results are found when
unrolled versions are used (IMDCT u1, IMDCT u2 and IMDCT
u3). The reason for this is that there are less conditional branches,
which reduces the number of cycles lost because of braches miss
predictions, and mainly because there is more parallelism
exposed. On the other hand, algorithms like the floating point
sums emulation do not show performance improvements when the
number of instructions available per packet in the VLIW grows.
This occurs because there is no more parallelism available in the
application to be explored, so increasing the size of the VLIW
packet does not matter.

In the same table, in the column Reconfigurable Array –
Sequential, we show the greatest advantage of using an array with
BT to explore every part of the algorithm. Even in algorithms that
do not present a high level of parallelism to be explored like the
floating point sums emulation, or in the sort or search ones, great
gains are achieved. Furthermore, in algorithms which show a
good performance in the VLIW architecture because of the high
level of parallelism available, like de unrolled versions of
IMDCT, the array presents even better results. A good example of
how the array with BT can be better exploited is in the sort family
of algorithms. When we ran the versions that sort 100 elements,
more array configurations are reused, bringing an even better
result with no area overhead (the number of different
reconfigurations and cells in the array do not increase). It is
important to mention that we explored the available parallelism in
the array as well. This data can be observed in the column
Reconfigurable Array – Parallel. Significant improvements were
obtained just in a few algorithms, mainly in the unrolled versions
of IMDCT, which were changed to have their parallelism more
exposed. This reinforces our idea of exploring any sequential part
of the software, and not being dependent of the parallelism
available.

735

In the second part of this table we present data concerning the

reconfigurable array coupled to the Java architecture. In the first
column of this second part we show how many instruction
sequences were saved to the cache and were reused in the array. In
the second, we demonstrate the amount of reuse obtained for these
sequences. The next column shows the maximum number of
cycles necessary to reconfigure the array from the cache. The forth
column exhibits the maximum number of cells (showed in section
4.3) that these sequences occupied when there is no cells in
parallel. When the parallelism among the cells is explored,
sometimes are necessary more cells to allocate the parallel
sequences. The last column shows these values.

In figure 3 we compare the energy consumption in the ROM
and RAM of the Low-Power version with and without the array
with the 4 instruction/packet VLIW version, since the values of
energy spent in RAM and ROM accesses in this architecture are
very similar to the 2 and 8 instructions/packet ones. Because of
space restrictions, we grouped the algorithms in categories. We
present the total sum of energy of all algorithms in each group.

As can be observed, the array saves energy in ROM accesses,
since instructions that would be fetched in the memory are
executed in the array, because the dataflow equivalent of this
sequence is saved in the reconfiguration cache. In the same way,
power consumed in the RAM memory and in the register bank are
saved, because now there are a specific cache for loads of static
values and the bypass of operands inside the array. Regarding the
energy spent in the core, presented in Figure 4, even with the
increment of the reconfiguration cache on it, there are still gains
in terms of energy consumption in some algorithms. This occurs
because, even consuming more power because of the cache, a
considerable amount of instructions that would use the five stages
of the pipeline of the processor and its sequential logic are now
being executed in a combinational logic in the array.

In Figure 5 we show the total energy consumption of the
system considering the RAM, ROM, the core and the additional
processor that makes the dynamic code analysis. It is important to
note that great gains where achieved in energy consumption in all
algorithms, proving our technique effectiveness.

Figure 5. Total energy spent by the architectures

CG

Figure 4. Energy spent in the core

CG

Figure 3. Energy spent in ROM and RAM accesses

CG

Number of cycles Data about the array
VLIW (instructions per

packet) Reconfigurable Array Algorithm Low-
Power 2 4 8 Sequencial Paralel

#dif.
reconf.

#Seq.
 reused

#max
rec.

#max
Seq. cells

#max
Par.
cells

Sin 755 599 592 583 383 383 8 64 3 2 2
BubbleSort 10 2424 2013 1923 1923 712 600 7 177 3 4 4
SelectSort 10 1930 1689 1689 1689 532 514 8 182 3 3 6
QuickSort 10 1516 1246 1246 1246 496 496 13 132 3 2 2
BuubleSort 100 339797 268610 268610 268610 61541 47840 7 22458 3 4 6
SelectSort 100 134090 127466 127533 127533 30700 30502 8 15280 3 3 6
QuickSort 100 13239 10649 10649 10649 5007 5007 13 2804 3 2 2
Binary Search 403 369 365 365 176 176 5 33 3 2 2
Sequencial Search 1997 1776 1774 1774 658 658 2 253 3 2 2
IMDCT 40306 33128 33071 32994 9399 4287 7 2407 4 10 15
IMDCT u1 31500 18062 12191 9604 7624 2512 16 825 4 10 15
IMDCT u2 30372 17329 11546 9114 6972 2436 13 804 4 10 15
IMDCT u3 18858 11230 9838 7807 2852 2780 7 745 3 4 6
Floating Point Sums 14531 12475 12314 12296 6760 6729 37 660 4 3 4
MP3 part 1 242153 210818 200721 183818 103549 102936 140 12317 5 4 6
MP3 part 2 109396 92735 92735 92735 65010 65010 11 8138 3 3 3
MP3 part 3 64488 49346 49346 49346 45525 45525 22 9190 3 2 2
MP3 part 4 41587 33860 34471 31436 22097 22097 5 2876 4 3 3
MP3 part 5 35895 34405 15905 8959 9016 9016 5 1212 3 3 3
MP3 part 6 159017 103441 73482 51124 36405 31485 53 6005 7 11 15

Table 1. Performance of the architectures

736

Table 2 shows the area occupied by the Low Power and VLIW
versions of our Java processors. In Table 3 we present the area
occupied by the Low-Power version with different configurations of
the reconfigurable array (the maximum number of reconfigurations
allowed versus the total number of cells available in the array),
counting its cache and the processor responsible for the detection of
the sequences of instructions and to make the reconfiguration. As
can be observed in this table, the reconfigurable array, when coupled
to the Java processor, even in its simpler version, brings area
overhead when compared to the 8 instructions/packet VLIW
architecture. However, this was expected, since reconfigurable
arrays are very area-intensive due to their great number of functional
units. The area was evaluated using the Leonardo Spectrum for
Windows [24] and was computed in number of gates, after synthesis
of the VHDL versions of them.

Table 2. Area occupied by the architectures

Table 3. Area occupied by the reconfigurable array

Finally, table 4 compares the Java processor with the

reconfigurable array with all other architectures, in terms of energy
and performance. This table shows how faster the version with the
reconfigurable array is, and how much less energy it spends. As it
can be observed, huge energy savings are achieved when compared
to any architecture (10.89 times less energy against the low-power
version), and there are meaningful performance gains even when
comparing to the 8 instructions/packet VLIW version (2.77 times
faster in the mean).

6. REFERENCES
[1] Schlett, M., “Trends in Embedded-Microprocessor Design”. In

Computer, vol. 31, n. 8, 1998, 44–49
[2] Nokia N-GAGE Home Page, available at http://www.n-gage.com
[3] Stitt, G., Lysecky, R., Vahid, F., “Dynamic Hardware/Software

Partitioning: A First Approach”. In Design Automation Conference
(DAC), 2003

[4] Lysecky, R., Vahid, F., “A Configurable Logic Architecture for
Dynamic Hardware/Software Partitioning”. In Design Automation And
Test in Europe Conference (DATE), 2004

[5] Gschwind, M., Altman, E., Sathaye, P., Ledak, Appenzeller, D.,
“Dynamic and Transparent Binary Translation”. In IEEE Computer,
vol. 3 n. 33, 2000, 54-59

[6] Bingxiong Xu, Albonesi, D., “Runtime Reconfiguration Techniques
for Efficient General-Purpose Computation”. In Design & Test of
Computers, vol. 17, n. 1, Jan.-Mar. 2000, 42 – 52

[7] Tiwari, V., Malik, S., Wolfe, A., “Power Analysis of Embedded
Software: A First Step Towards Software Power Minimization”. In
IEEE Transactions on VLSI Systems, vol. 2, n. 4, Dec. 1994, 437–445

[8] Henkel, J., Ernst, R., “A Hardware/Software Partitioner using a
Dynamically Determined Granularity”. In Design Automation
Conference, 1997

[9] Venkataramani, G., Najjar, W., Kurdahi, F., Bagherzadeh, N., Bohm
W., “A Compiler Framework for Mapping Applications to a Coarse-
grained Reconfigurable Computer Architecture. Conf. on Compiler”.
In Architecture and Synthesis for Embedded Systems (CASES), 2001

[10] Henkel, J., “A low power hardware/software partitioning approach for
core-based embedded systems”. In Design Automation Conference,
1999

[11] Stitt, G., Vahid F., “The Energy Advantages of Microprocessor
Platforms with On-Chip Configurable Logic”. In IEEE Design and
Test of Computers, 2002

[12] Hauck, S., Fry, T., Hosler, M., Kao, J., “The Chimaera reconfigurable
functional unit”. In Proc. IEEE Symp. FPGAs for Custom Computing
Machines, 1997, 87–96.

[13] Kastrup, B., Bink, A., Hoogerbrugge, J., “ConCISe: a compiler-driven
CPLD-based instruction set accelerator”. In Proc. 7th Annu. IEEE
Symp Field-Programmable Custom Computing Machines, Napa
Valley, 92–100.

[14] Klaiber, A., “The Technology Behind Crusoe Processors”. In
Transmeta Corporation White Paper, 2000.

[15] Stitt, G., Vahid, F., “Hardware/Software Partitioning of Software
Binaries”. In IEEE/ACM International Conference on Computer Aided
Design, 2002

[16] Takahashi, D., “Java Chips Make a Comeback”. In Red Herring, 2001
[17] Lawton, G., “Moving Java into Mobile Phones”. In Computer, vol. 35,

n. 6, 2002, 17-20
[18] Beck, A.C.S., Carro, L. “Low Power Java Processor for Embedded

Applications”. In: IFIP 12th International Conference on Very Large
Scale Integration, Germany, December, 2003

[19] Ito, S.A., Carro, L., Jacobi, R.P. “Making Java Work for
Microcontroller Applications”. In IEEE Design & Test of Computers,
vol. 18, n. 5, 2001, 100-110

[20] Beck, A.C.S., Carro, L. “A VLIW Low Power Java Processor for
Embedded Applications”. In 17th Brazilian Symp. Integrated Circuit
Design (SBCCI 2004), Sep. 2004

[21] Callaway, T. K., Swartzlander Jr, E. E., “Power Delay Characteristics
of Multipliers”. In IEEE 13th Symposium on Computer Arithmetic
(ARITH ’97), Mar. 1997

[22] Beck, A.C.S., Mattos, J.C.B., Wagner, F.R., Carro, L. “CACO-PS: A
General Purpose Cycle-Accurate Configurable Power-Simulator”. In
16th Brazilian Symp. Integrated Circuit Design, Sep. 2003

[23] Chen, R., Irwin, M. J., Bajwa, R., “Architecture-Level Power
Estimation and Design Experiments”. In ACM Transactions on Design
Automation of Electronic Systems, v. 6, n. 1, Jan. 2001, 50-66

[24] Leonardo Spectrum, available at homepage: http://www.mentor.com

VLIW (INSTRUCTIONS/ PACKET) PROCESSOR LOW POWER
2 4 8

Area (gates) 131215 213850 367675 675395

 # Cells
Reconf. 2 3 4 7 10
5 757091 993999 1230907 1941630 2652353
10 1039631 1406301 1772971 2872981 3972990
15 1322172 1818604 2315036 3804332 5293628
20 1604712 2230906 2857100 4735683 6614265
40 2734873 3880116 5025358 8461087 11896815

 Energy Performance
Reconfigurable

Array vs.
Low

Power
VLIW

2
VLIW

4
VLIW

8
Low

Power
VLIW

2
VLIW

4
VLIW

8
Sin 1.89 1.93 1.79 1.83 1.97 1.56 1.55 1.52
Sort - Bubble 10 3.98 4.35 4.21 4.29 4.04 3.35 3.21 3.21
Sort - Select 10 8.09 7.76 7.76 7.91 3.76 3.29 3.29 3.29
Sort - Quick 10 3.19 3.18 3.18 3.24 3.05 2.51 2.51 2.51
Sort - Bubble 100 34.59 19.95 20.04 1.60 7.10 5.61 5.61 5.61
Sort - Select 100 26.23 24.17 24.17 24.67 4.40 4.18 4.18 4.18
Sort - Quick 100 5.74 5.73 5.72 5.82 2.64 2.13 2.13 2.13
Search - Binary 2.00 2.31 2.31 2.35 2.29 2.10 2.08 2.08
Search – Seq. 15.04 16.44 16.45 16.71 3.03 2.70 2.69 2.69
IMDCT 28.33 24.14 24.15 24.65 9.40 7.73 7.71 7.70
IMDCT u1 19.89 16.34 15.70 15.02 12.54 7.19 4.85 3.82
IMDCT u2 21.72 17.93 17.04 16.35 12.47 7.11 4.74 3.74
IMDCT u3 26.68 20.76 21.38 20.24 6.78 4.04 3.54 2.81
F. Point Sums 1.53 1.26 1.25 1.27 2.16 1.85 1.83 1.83
MP3 Part 1 1.87 0.79 0.82 0.86 2.35 2.05 1.95 1.79
MP3 Part 2 3.42 2.74 2.99 3.05 1.68 1.43 1.43 1.43
MP3 Part 3 1.19 1.95 1.95 1.99 1.42 1.08 1.08 1.08
MP3 Part 4 2.71 3.00 2.80 2.84 1.88 1.53 1.56 1.42
MP3 Part 5 4.91 4.67 7.94 13.96 3.98 3.82 1.76 0.99
MP3 Part 6 4.71 5.39 6.34 8.36 5.05 3.29 2.33 1.62

Average 10.89 9.24 9.40 8.85 4.60 3.43 3.00 2.77

Table 4. Comparison among the architectures

737

