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ABSTRACT 
In this paper we present the impact of dynamically translating any 
sequence of instructions into combinational logic. The proposed 
approach combines a reconfigurable architecture with a binary 
translation mechanism, being totally transparent for the software 
designer. Besides ensuring software compatibility, the technique 
allows porting the same code for different machines tracking 
technological evolutions. The target processor is a Java machine 
able to execute Java bytecodes. Experimental results show that 
even code without any available parallelism can benefit from the 
proposed approach. Algorithms used in the embedded systems 
domain were accelerated 4.6 times in the mean, while spending 
10.89 times less energy in the average. We present results 
regarding the impact of area and power, and compare the 
proposed approach with other Java machines, including a VLIW 
one.   

Categories and Subject Descriptors 
C.1.3 [Processor Architectures]: Other Architecture Styles – 
adaptable architectures 

General Terms 
Performance, Design 

Keywords 
Java, Reconfigurable Processors, Binary Translation, Power 
Consumption 

1. INTRODUCTION 
The Embedded system market is expanding. The research and 
production of specific processors to be used inside cellular 
phones, mp3 players, digital cameras, microwaves, videogames, 
printers and others appliances is following the same growing path 
[1]. Moreover, dictated by market needs, the complexity of these 
embedded systems is increasing as well, since they are offering 
more and more functions to the user, like Internet access, color 
display, audio and video reproduction, videogames, among others 
[2]. Hence, these systems must have enough processing power to 
handle these complex tasks.  

Therefore, while still sustaining great performance, present 

days embedded systems must also have low power dissipation and 
support a huge software library to cope with stringent design 
times. Consequently, there is a clear need for architectures which 
can support all the software development effort currently required.  

Regarding potential platforms for embedded systems 
development, reconfigurable fabric has been shown to speed up 
critical parts of several data stream programs. By translating a 
sequence of operations into a combinational circuit performing 
the same computation, one could speed up the system and reduce 
energy consumption, at the obvious price of extra area. Using a 
reconfigurable array one is able to have exactly this kind of 
hardware substitution. Nevertheless, its wide spread use is still 
withhold by the need of special tools and compilers, which clearly 
preclude software portability. To handle these problems, recent 
works have already proposed dynamic analysis of the code to 
reconfigure the array at run-time [3][4]. However, these works 
used a fine-grain array, which brings a huge control overhead that 
increases the complexity of dynamic detection, and also increases   
reconfiguration time, thus requiring a large cache size to keep the 
array configurations. As a consequence, just critical parts of the 
software, like the most executed loops, with some restrictions, can 
benefit from using the reconfigurable array. 

On the other hand, our work uses a coarse-grain granularity 
array that, in turn, is not limited to the complexity of fine-grain 
configurations. The algorithm for the dynamic detection and 
configuration of the array becomes simpler, and less memory for 
keep these configurations is necessary. Hence, we can optimize 
any part of the algorithm that, because of the limitations of fine-
grain nature, was infeasible. Therefore, we can significantly 
increase the performance of any kind of software as well as 
reducing the energy consumption, not being limited to just DSP-
like or loop centered applications, as is [3][4]. 

Furthermore, coupling this coarse-grain array with binary 
translation (BT) [5], speedups are obtained even in algorithms 
that do not present a high level of parallelism, since the 
application of this technique can also transform in combinational 
logic sequences of instructions that could not present a high 
instruction level parallelism (ILP). This is a very useful 
characteristic, since the amount of parallelism during the 
execution usually varies [6]. In order to demonstrate that, we 
compare the processor coupled with the reconfigurable array with 
VLIW versions with the same instruction set. 

Thus, in this work we demonstrate the performance and 
energy gains of using a coarse-grain reconfigurable array with BT 
to explore every part of the algorithm, even in those which do not 
present a high level of parallelism, using a Java processor as case 
study. Thanks to the coupling of dynamic binary translation and 
Java, we can assure software compatibility in any level of the 
design cycle, without requiring any tools for the 
hardware/software partitioning or special compilers, allowing easy 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
DAC 2005, June 13–17, 2005, Anaheim, California, USA. 
Copyright 2005 ACM 1-59593-058-2/05/0006…$5.00. 

44.3

732



software porting for different machines tracking technological 
evolutions. Algorithms used in the embedded systems domain 
were accelerated 4.6 times in the mean, while spending 10.89 
times less energy in average. 

This paper is organized as follows: Section 2 shows a brief 
review of the existing reconfigurable processors and some other 
approaches regarding dynamic translation of instructions. In 
Section 3 we discuss the different architectures of Java machines 
that will be evaluated. Section 4 explains the advantages of 
applying binary translation technique to work with the 
reconfigurable array and some more details about them. Section 5 
shows the results regarding power consumption, performance and 
area. The last Section draws some conclusions and introduces 
future work. 

2. RELATED WORK 
Reconfigurable systems have already showed to be very effective, 
implementing some parts of the software in a hardware 
reconfigurable logic. Huge software speedups [8][9] as well as a 
reduction in system energy have been achieved [10][11]. These 
systems can be implemented together with processors like 
Chimaera [12] and ConCISe [13], with a tightly coupled 
reconfigurable array in the processor core, limited to 
combinational logic. The array is, in fact, an additional functional 
unit in the processor pipeline, sharing the same resources of the 
other ones. This makes the control logic simpler, diminishing the 
overhead required in the communication between the 
reconfigurable array and the rest of the system. Nevertheless, as 
the majority of reconfigurable systems, it is necessary additional 
tools at the design time or special instructions in the processor to 
make the array works. 

Another approach to cope with high performance allied to low 
energy dissipation is the use of binary translation. In this 
approach, the system itself monitors the binary of executing 
program, detects the frequently executed software kernels, and 
optimizes them. Existing optimizations include dynamic 
recompilation and caching of previous binary translation results 
[5]. The Transmeta Crusoe is based on a VLIW processor where 
the application is analyzed at runtime in order to find the best 
parts of the software for the binary translation to better explore the 
ILP [14]. One of the advantages of using this technique is that the 
partitioning process is transparent, requiring no extra designer 
effort, and causing no disruption to the standard tool flow. 

In [15] Stitt, Lysecky and Vahid  presented the first studies 
about the benefits and feasibility of dynamic partitioning using 
reconfigurable logic. In [3], a modified place and route algorithm 
is used, supporting a larger range of benchmarks and requiring 
less computation time and memory resources, with the same 
objective: optimize the execution by dynamically moving critical 
software kernels to configurable logic at runtime, a process called 
warp processing. However, this technique is limited to critical 
parts of the software, as some loops, and a fine-grain configurable 
fabric was used. 

Most of the presented works on dynamic optimization focus 
on single loops within an application. However, as it has been 
demonstrated by [6], the amount of available parallelism during 
the execution of a program largely varies. For this reason, the 
allocation of loop optimizations at compile time does not explore 
all the reconfiguration potential. However, when applied to a 
coarse grain reconfigurable substrate, binary translation brings in 

a new feature: since the optimizations can be developed for any 
sequence of instructions, we are not limited to optimize only 
critical loops or to the parallelism available in the application, but 
rather we can run the whole program faster.  
Using binary translation and Java, we ensure at the same time 
software compatibility and no extra efforts or tools at design time, 
which means that the underlying hardware can be changed 
without the need for recompilation or to write a new compiler. 
Also, there are three main advantages of using a tightly coupled 
coarse-grain array: it allows a quick reconfiguration; the huge 
power dissipation and control overhead in a fine grain 
architectures is avoided; and finally  the overhead of the 
communication between the system and the array is minimal, 
consequently saving power.  

3. JAVA EXECUTION 
Java is becoming increasingly popular in embedded environments. 
It is estimated that devices with embedded Java such as cellular 
phones, PDAs and pagers will grow from 176 million in 2001 to 
721 million in 2005 [16]. Nevertheless, it is predicted that at least 
80 percent of mobile phones will support Java by 2006 [17]. As 
one can observe, the presence of Java in embedded systems is 
becoming more significant. This means that current design goals 
might include a careful look on embedded Java processors, and 
their performance versus power tradeoffs must be taken into 
account. 

Our Low-Power Java processor [18] has a five stages pipeline: 
instruction fetch, instruction decoding, operand fetch, execution, 
and write back, as shown in figure 1. The VLIW processor [19] is 
an extension of the pipelined one. Basically it has its functional 
units and instruction decoders replicated. The VLIW packet has a 
variable size, avoiding unnecessary memory accesses. The search 
for ILP in the Java program is done at the bytecode level.  

 
 
 
 
 

4. BT AND RECONFIGURABLE ARRAY 
By transforming any sequence of bytecodes into a single 
combinational instruction in the array using BT one can achieve 
great gains. Although the delay for the reconfiguration might be 
higher, if the sequence of instructions is going to be repeated a 
certain number of times, performance and energy gains are 
meaningful, since less access to program memory and less 
iterations on the datapath are required. In this section we explain 
the potential of using combinational logic, the architecture of our 
coarse-grain array and how the detection, the reconfiguration and 
execution work. 

4.1 Combinational Circuit Advantage 
There are always potential gains when passing the execution 

from sequential to combinational logic. This concept is better 
explained with a simple example. Let us have an nxn bit 
multiplier, with input and output registers. By implementing it 
with a cascade of adders, one might have in the worst case 

Tmult_combinational= tppFF  + 2*n*tcell +  tsetFF (1) 

Figure 1. Pipelined Java processor. 
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where tcell is the delay of an AND gate plus a 2-bits full-adder. 
The area of this multiplier is  

Acombinational = n2 * Acell + Aregisters (2) 
If one could do the same multiplier by the classical shift and 

add algorithm, and assuming a carry propagate adder, the 
multiplication time would be  

Tmult_sequential=n * (tppFF + n*tcell + tsetFF)     (3) 

And the area given by  
Asequential=n*Acell + Acontrol + Aregisters  (4) 
Clearly, by using a sequential circuit one trades area by 
performance. Any circuit implemented as a combinational circuit 
will be faster than a sequential one, but will most certainly take 
much more area. By the advances obtained by technology 
integration and in reconfigurable arrays architectures, one could 
imagine the use of a reconfigurable array as a programmable 
combinational area. However, the use of this array for just a single 
algorithm would have a prohibitively high cost. In our approach, 
by coupling the array with a BT mechanism, we can reuse the 
array in a SW compatible environment. Also, as we translate 
sequences of instructions into combinational logic, we do not 
depend on the available application parallelism to speed up the 
code to be executed, but rather on sequences of instructions that 
appear several times in the code. 

4.2 Dynamic Detection 
A separated unit, which is a simple multicycle Java processor 
[20], is responsible for dynamic analyzing the instructions in 
order to find the sequences that can be executed in the array. This 
is done concurrently while the main processor fetches valid 
instructions. When this unit realizes that there are a certain 
number of instructions which are worth to be executed in the 
array, the configuration for this sequence is saved in a 
reconfiguration cache. The next time this sequence is found, the 
array will execute it instead of the normal execution in the 
processor. 

The search for the sequence of instructions in the Java 
program is done at the bytecode level, similarly to what the VLIW 
static analyzer does, classifying sequence of instructions that 
depend on each other in an operand block. The detection 
operation to find these blocks is very simple: when the stack 
pointer returns to the start address previously saved, an operand 
block is found. This explains why the instruction analysis can be 
developed at run time with a small overhead.  

4.3 Architecture of the Array 
The reconfigurable array is tightly coupled to the processor. It is 
implemented as a functional unit in the execution stage, using the 
same approach of Chimaera and ConCISe, cited before.  

The array is divided in blocks, called cells. The operand block 
(a sequence of bytecodes) previously detected is fitted in one ore 
more of these cells in the array. The cell can be observed in Figure 
2. The initial part of the cell is composed by three functional units 
(ALU, shifter, ld/st). After the first part, six identical parts follow 
in sequence. This number was chosen based on time delays 
presented in [21], where it is compared the delay of the booth 
multiplier (used in our processor) with adders. Each cell of the 
array has just one multiplier and takes exactly one processor cycle 

to complete execution, being limited to its critical path, bringing 
no delay overhead in the processor pipeline. 

At the end of each cell, there are two additional functional 
units: a branch unit and an extended ld/st one, made for the 
execution of the iastore (fetches a static value from memory, 
taking the address from the stack) instruction, since this 
instruction needs three operands, instead of two, as usual. 
For each cell in the array 327 reconfiguration bits are necessary. 
Consequently, if the array is formed by 3 cells, 971 bits in the 
reconfiguration cache are necessary. To these one must add  58 
bits of  additional information, like as how many cycles the 
execution takes and what is the initial ROM address that this 
sequence is located, totalizing 1029 bits for each configuration of 
the array. 

 

4.4 Reconfiguration and Execution 
The array is reconfigured using the data of the cache specially 
designed for it. Each cell in the array has its own reconfiguration 
cache. Therefore, the reconfiguration of each cell can be done in 
parallel. While the program executes, when an address of a 
reconfigurable instruction group is found, the reconfigurable unit 
detector sends information for the main processor. Then, its 
control unit configures the array as the active functional unit, 
stops the rest of the processor while the array is performing it 
functions, and upgrades the Program Counter with the new 
address, in order to continue the normal operation after the 
execution of that sequence of instructions by the array. At the 
same time, the configurations in the reconfiguration cache for that 
address are sent to the reconfigurable array, since they are indexed 
by addresses of the instruction memory.  

As the detection for the address that will be used in the 
reconfiguration is done in the first stage of the pipeline, and the 
reconfigurable array is in the fourth stage, there are 3 cycles 
available between the detection and the use of the array. As one 
cycle is necessary to find the cache line that has the array 
configuration, two cycles are available for the reconfiguration.  

Figure 2. Architecture of the array 
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Considering the follow example, we show the potential gains 
using a reconfigurable array in a Java machine: if there are five 
simple arithmetical or logic operations, one needs at least 11 
cycles for the execution: 6 for pushing the operands into the stack, 
plus 5 cycles for the operations themselves. This is the optimal 
execution, without considering pipeline stalls due to data 
dependency. On the other hand, the array would execute in just 
one cycle everything, after the first time it finds this sequence and 
saves it in the reconfiguration cache. If this sequence is repeated a 
certain number of times, meaningful gains can be achieved.  

For the execution, the first two operand values will be used as 
the first operation. After that, for each basic part of the cell, the 
first operand is always the result of the previous operation. This is 
another characteristic of stack machines, and makes the control 
and the hardware of the array simpler. In each cell it is possible to 
make 7 simple operations (arithmetic, logical, shift). If a 
multiplication is found, the result of the current cell is bypassed 
until the end. This multiplication will be executed in the next cell. 

Special attention must be given to some bytecode instructions, 
whenever they are in the reconfiguration or in the execution 
phases. If a getstatic instruction is found (loads a value from main 
memory), the pointer field in the cache is used. This pointer tells 
where the access is made. The value of the getstatic instruction 
will be fetched from a special cache (dual-ported with 1kB of 
size) during the reconfiguration phase, since the access address is 
static. The value fetched is saved in the operands field.  

It is during the reconfiguration phase that the local variables 
of the method are fetched as well. These local variables are kept in 
a dual-ported register bank in the processor, and can be fetched at 
the same time the static values from the memory are.  

Some unexpected actions can be taken during these fetches. 
Cache misses can occur in the case of getstatic accesses and other 
instructions could be accessing the register bank making 
impossible the load of local variables. In this case, more cycles to 
treat the cache misses or to wait the instructions that are accessing 
the register bank are necessary for the reconfiguration of the array. 

During the execution, for instructions that save a value in the 
main memory, a buffer is used in order not to retard the execution 
of the cells. In the case of instructions that load/store values in 
main memory, or the local variable storage of the method, values 
can be bypassed. One example of this is when there is a load 
instruction in a local variable soon after a store in the same local 
variable. This avoids unnecessary accesses in the register bank or 
in the main memory, accelerating the execution and saving power.  

Moreover, if there is an instruction iaload, which makes an 
access in the memory and calculates the access address 
dynamically, the value is fetched from the same cache of the 
getstatic. If there is a cache miss, the penalty is paid and that cell 
in the array starts to be executed again. 

5. RESULTS 
Our experiments are supported by simulation, where different 
versions of the Java Processor execute algorithms used in 
embedded system domain, as presented before. The tool utilized 
to provide data on the energy consumption, memory usage and 

performance is a configurable compiled-code cycle-accurate 
simulator [22].  

Different types of algorithms were implemented and simulated 
over the architectures described in Section 3 and 4, from simple 
ones to a complex full MP3 player. Sin computation using the 
cordic method, as a representative of arithmetic libraries; sort – 
bubble, select and quick, in a array of 10 or 100 elements – and 
search (binary and sequential), used in schedulers; IMDCT 
(Inverse Modified Discrete Cosine Transformation) plus more 
three unrolled version in order to expose the parallelism, an 
important part present in various decompression algorithms; a 
library to emulate sums of floating point numbers, since the Java 
processors can be configured without a floating point unit in order 
to save area; and finally a complete MP3 player that executes 4 
frames of 40kbit, 22050Hz, joint stereo, where the algorithm is 
divided in six parts. 

Initially, in Table 1 we evaluate the performance of all our 
benchmark set in the Low Power architecture and in the different 
versions of the VLIW, and compare those to the Java processor 
coupled to the reconfigurable array. As can be observed in this 
table, for the VLIW processor better results are found when 
unrolled versions are used (IMDCT u1, IMDCT u2 and IMDCT 
u3). The reason for this is that there are less conditional branches, 
which reduces the number of cycles lost because of braches miss 
predictions, and mainly because there is more parallelism 
exposed. On the other hand, algorithms like the floating point 
sums emulation do not show performance improvements when the 
number of instructions available per packet in the VLIW grows. 
This occurs because there is no more parallelism available in the 
application to be explored, so increasing the size of the VLIW 
packet does not matter. 

In the same table, in the column Reconfigurable Array – 
Sequential, we show the greatest advantage of using an array with 
BT to explore every part of the algorithm. Even in algorithms that 
do not present a high level of parallelism to be explored like the 
floating point sums emulation, or in the sort or search ones, great 
gains are achieved. Furthermore, in algorithms which show a 
good performance in the VLIW architecture because of the high 
level of parallelism available, like de unrolled versions of 
IMDCT, the array presents even better results. A good example of 
how the array with BT can be better exploited is in the sort family 
of algorithms. When we ran the versions that sort 100 elements, 
more array configurations are reused, bringing an even better 
result with no area overhead (the number of different 
reconfigurations and cells in the array do not increase). It is 
important to mention that we explored the available parallelism in 
the array as well. This data can be observed in the column 
Reconfigurable Array – Parallel. Significant improvements were 
obtained just in a few algorithms, mainly in the unrolled versions 
of IMDCT, which were changed to have their parallelism more 
exposed. This reinforces our idea of exploring any sequential part 
of the software, and not being dependent of the parallelism 
available. 
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In the second part of this table we present data concerning the 

reconfigurable array coupled to the Java architecture. In the first 
column of this second part we show how many instruction 
sequences were saved to the cache and were reused in the array. In 
the second, we demonstrate the amount of reuse obtained for these 
sequences. The next column shows the maximum number of 
cycles necessary to reconfigure the array from the cache. The forth 
column exhibits the maximum number of cells (showed in section 
4.3) that these sequences occupied when there is no cells in 
parallel.  When the parallelism among the cells is explored, 
sometimes are necessary more cells to allocate the parallel 
sequences. The last column shows these values. 

In figure 3 we compare the energy consumption in the ROM 
and RAM of the Low-Power version with and without the array 
with the 4 instruction/packet VLIW version, since the values of 
energy spent in RAM and ROM accesses in this architecture are 
very similar to the 2 and 8 instructions/packet ones. Because of 
space restrictions, we grouped the algorithms in categories. We 
present the total sum of energy of all algorithms in each group. 

As can be observed, the array saves energy in ROM accesses, 
since instructions that would be fetched in the memory are 
executed in the array, because the dataflow equivalent of this 
sequence is saved in the reconfiguration cache. In the same way, 
power consumed in the RAM memory and in the register bank are 
saved, because now there are a specific cache for loads of static 
values and the bypass of operands inside the array. Regarding the 
energy spent in the core, presented in Figure 4, even with the 
increment of the reconfiguration cache on it, there are still gains 
in terms of energy consumption in some algorithms. This occurs 
because, even consuming more power because of the cache, a 
considerable amount of instructions that would use the five stages 
of the pipeline of the processor and its sequential logic are now 
being executed in a combinational logic in the array.  

In Figure 5 we show the total energy consumption of the 
system considering the RAM, ROM, the core and the additional 
processor that makes the dynamic code analysis. It is important to 
note that great gains where achieved in energy consumption in all 
algorithms, proving our technique effectiveness. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5. Total energy spent by the architectures 

CG

Figure 4. Energy spent in the core 

CG 

Figure 3. Energy spent in ROM and RAM accesses 

CG 

Number of cycles Data about the array 
VLIW (instructions per 

packet) Reconfigurable Array Algorithm Low-
Power 2 4 8 Sequencial Paralel 

#dif.  
reconf. 

#Seq. 
 reused 

#max 
rec. 

#max 
Seq. cells 

#max 
Par. 
cells 

Sin 755 599 592 583 383 383 8 64 3 2 2 
BubbleSort 10 2424 2013 1923 1923 712 600 7 177 3 4 4 
SelectSort 10 1930 1689 1689 1689 532 514 8 182 3 3 6 
QuickSort 10 1516 1246 1246 1246 496 496 13 132 3 2 2 
BuubleSort 100 339797 268610 268610 268610 61541 47840 7 22458 3 4 6 
SelectSort 100 134090 127466 127533 127533 30700 30502 8 15280 3 3 6 
QuickSort 100 13239 10649 10649 10649 5007 5007 13 2804 3 2 2 
Binary Search 403 369 365 365 176 176 5 33 3 2 2 
Sequencial Search 1997 1776 1774 1774 658 658 2 253 3 2 2 
IMDCT 40306 33128 33071 32994 9399 4287 7 2407 4 10 15 
IMDCT u1 31500 18062 12191 9604 7624 2512 16 825 4 10 15 
IMDCT u2 30372 17329 11546 9114 6972 2436 13 804 4 10 15 
IMDCT u3 18858 11230 9838 7807 2852 2780 7 745 3 4 6 
Floating Point Sums 14531 12475 12314 12296 6760 6729 37 660 4 3 4 
MP3 part 1 242153 210818 200721 183818 103549 102936 140 12317 5 4 6 
MP3 part 2 109396 92735 92735 92735 65010 65010 11 8138 3 3 3 
MP3 part 3 64488 49346 49346 49346 45525 45525 22 9190 3 2 2 
MP3 part 4 41587 33860 34471 31436 22097 22097 5 2876 4 3 3 
MP3 part 5 35895 34405 15905 8959 9016 9016 5 1212 3 3 3 
MP3 part 6 159017 103441 73482 51124 36405 31485 53 6005 7 11 15 

Table 1. Performance of the architectures 
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Table 2 shows the area occupied by the Low Power and VLIW 
versions of our Java processors. In Table 3 we present the area 
occupied by the Low-Power version with different configurations of 
the reconfigurable array (the maximum number of reconfigurations 
allowed versus the total number of cells available in the array), 
counting its cache and the processor responsible for the detection of 
the sequences of instructions and to make the reconfiguration. As 
can be observed in this table, the reconfigurable array, when coupled 
to the Java processor, even in its simpler version, brings area 
overhead when compared to the 8 instructions/packet VLIW 
architecture. However, this was expected, since reconfigurable 
arrays are very area-intensive due to their great number of functional 
units. The area was evaluated using the Leonardo Spectrum for 
Windows [24] and was computed in number of gates, after synthesis 
of the VHDL versions of them. 

Table 2. Area occupied by the architectures 

 
 

 
Table 3. Area occupied by the reconfigurable array 

 
 

 
 
 
Finally, table 4 compares the Java processor with the 

reconfigurable array with all other architectures, in terms of energy 
and performance. This table shows how faster the version with the 
reconfigurable array is, and how much less energy it spends. As it 
can be observed, huge energy savings are achieved when compared 
to any architecture (10.89 times less energy against the low-power 
version), and there are meaningful performance gains even when 
comparing to the 8 instructions/packet VLIW version (2.77 times 
faster in the mean).  
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VLIW (INSTRUCTIONS/ PACKET) PROCESSOR LOW POWER 
2 4 8 

Area (gates) 131215 213850 367675 675395 

              # Cells 
# Reconf. 2 3 4 7 10 
5 757091 993999 1230907 1941630 2652353 
10 1039631 1406301 1772971 2872981 3972990 
15 1322172 1818604 2315036 3804332 5293628 
20 1604712 2230906 2857100 4735683 6614265 
40 2734873 3880116 5025358 8461087 11896815 

  Energy Performance 
Reconfigurable 

Array vs. 
Low 

Power 
VLIW 

2 
VLIW 

4 
VLIW 

8 
Low 

Power 
VLIW

2 
VLIW

4 
VLIW

8 
Sin 1.89 1.93 1.79 1.83 1.97 1.56 1.55 1.52 
Sort - Bubble 10 3.98 4.35 4.21 4.29 4.04 3.35 3.21 3.21 
Sort - Select 10 8.09 7.76 7.76 7.91 3.76 3.29 3.29 3.29 
Sort - Quick 10 3.19 3.18 3.18 3.24 3.05 2.51 2.51 2.51 
Sort - Bubble 100 34.59 19.95 20.04 1.60 7.10 5.61 5.61 5.61 
Sort - Select 100 26.23 24.17 24.17 24.67 4.40 4.18 4.18 4.18 
Sort - Quick 100 5.74 5.73 5.72 5.82 2.64 2.13 2.13 2.13 
Search - Binary 2.00 2.31 2.31 2.35 2.29 2.10 2.08 2.08 
Search – Seq. 15.04 16.44 16.45 16.71 3.03 2.70 2.69 2.69 
IMDCT 28.33 24.14 24.15 24.65 9.40 7.73 7.71 7.70 
IMDCT u1 19.89 16.34 15.70 15.02 12.54 7.19 4.85 3.82 
IMDCT u2 21.72 17.93 17.04 16.35 12.47 7.11 4.74 3.74 
IMDCT u3 26.68 20.76 21.38 20.24 6.78 4.04 3.54 2.81 
F. Point Sums 1.53 1.26 1.25 1.27 2.16 1.85 1.83 1.83 
MP3 Part 1 1.87 0.79 0.82 0.86 2.35 2.05 1.95 1.79 
MP3 Part 2 3.42 2.74 2.99 3.05 1.68 1.43 1.43 1.43 
MP3 Part 3 1.19 1.95 1.95 1.99 1.42 1.08 1.08 1.08 
MP3 Part 4 2.71 3.00 2.80 2.84 1.88 1.53 1.56 1.42 
MP3 Part 5 4.91 4.67 7.94 13.96 3.98 3.82 1.76 0.99 
MP3 Part 6 4.71 5.39 6.34 8.36 5.05 3.29 2.33 1.62 

Average 10.89 9.24 9.40 8.85 4.60 3.43 3.00 2.77 

Table 4. Comparison among the architectures 
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