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ABSTRACT
We propose a system architecture for real-time hardware speech
recognition on low-cost, power-constrained devices. The system
is intended to support real-time speech-based user interfaces
as part of an effort to bring Information and Communication
Technologies (ICTs) to underdeveloped regions of the world.

Our system architecture exploits a shared infrastructure model.
The computationally intensive task of speech model training
and retraining is performed offline by shared servers, while the
actual recognition of speech is conducted on low-cost hand-held
devices using custom hardware.

The recognizer is extremely flexible and can support mul-
tiple languages or dialects with speaker-independent recogni-
tion.Dynamic loading of speech models is used for changing
language grammar and retraining, while reprogramming is used
to support evolution of recognition algorithms. The focus on
small sets of words (at one time) reduces the complexity, cost
and power consumption. We design the speech decoder, the
central component of the recognizer, and we validate it via a
prototype FPGA implementation. We then use ASIC synthesis
to estimate power and size for the design.

Our evaluations demonstrate an order of magnitude improve-
ment in power compared with optimized recognition software
running on a low-power embedded general-purpose processor of
the same technology and of similar capabilities. The synthesis
also estimates the area of the design to be about 2.5mm2, show-
ing potential for lower cost. In designing and testing our recog-
nizer we use datasets in both English and Tamil languages.

Categories and Subject Descriptors: C.3 [Special-Purpose
and Application-Based Systems]: Real-time and embedded sys-
tems; B.7.1 [Integrated Circuits]: Algorithms implemented in
hardware.
General Terms: Algorithms, Design, Measurement, Perfor-
mance.
Keywords: Speech recognition, low power, ASIC, tamil, TIER.

1. INTRODUCTION AND MOTIVATION
We believe that ICTs (Information and Communication Tech-

nologies) are empowering technologies with tremendous value,
but only for those with access to them. Unfortunately, statis-
tics [23] show that around 3 billion people have an annual pur-
chasing power of less than US$2000, and that 862 million adults
are illiterate; for these people, costs and current user interfaces
(UIs) prevent them from enjoying the benefits of ICT.

In this context, low-cost and low-power speech interfaces can
play an essential role in overcoming the above-mentioned barri-
ers [22]: they can provide ICT access to illiterate or semi-literate
people; they can reduce device cost by replacing expensive dis-
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plays and thereby decreasing power consumption, which trans-
lates into lower battery costs.

Consequently, we investigate hardware-based speech inter-
faces as an alternative, or complement, to visual interfaces.
Our goal is to enable the manufacture of very cheap, general or
application-specific devices, equipped with language tools that
are vital in overcoming language and literacy barriers [22].

The concept of speech recognizers based on custom hardware
is not new, mainly due to the potential for parallelization in
speech decoding. Although many architectures have been pro-
posed throughout the years [7], the impact of these approaches
has been limited. However, we believe that custom hardware
speech recognition is worth revisiting for several reasons:
• Focus on power: Very low-power solutions are required for
successful hand-held use in developing regions, and, as argued
by many, such as Broderson [6], custom hardware can be 100
times more power-efficient than software-based solutions.
• Potential for high volume (given low cost): As opposed
to the past, today’s abundance of embedded devices could make
the use of speech-based interfaces ubiquitous.
• On-chip memory: Memory bandwidth, a traditional bot-
tleneck in parallelizing speech computation, can be easily over-
come using today’s technology, by integrating multiple blocks of
FLASH or SRAM memory along with logic on the same chip.

We aim for a platform that is: a) flexible, allowing any lan-
guage and grammar to be loaded (India alone has over 16 lan-
guages and 400 dialects), and various recognition algorithms and
techniques to be used; b) re-trainable, for increasing recogni-
tion accuracy and speaker-dependent adaptation; c) scalable,
permitting accuracy to be increased by utilizing more resources,
but without modifying the underlying design; and d) efficient,
enabling real-time or near real-time recognition.

Our solution relies on HMMs (Hidden Markov Models), the
preferred modeling technique for accurate recognition, and we
reduce the complexity by using UI-specific recognition. Our
technique ensures that only a small set of words, typically less
than 100, are possible in a given context, although the whole ap-
plication may use a much larger vocabulary. Words are grouped
into active sets corresponding to applications and UI contexts.

Considering the above requirements, we implement only the
core recognition part of the problem in custom hardware. The
more computationally intensive process of training which can
also be done offline is delegated to shared servers. A full de-
scription of the recognition platform is given in section 8.

2. SPEECH RECOGNITION BASICS
HMM models are used for representing the possible symbol

sequences underlying speech utterances. Figure 1 shows the
flow of data in a speech recognition system. Training takes
as input a large number of speech utterances along with their
transcriptions into phonemes and outputs the speech models for
the phonemes. The utterances to be recognized first undergo a
spectral analysis stage, also called the feature extraction stage.
Typical feature representations are smoothed spectra or linear
prediction coefficients.

Speech decoding solves the following problem: given an obser-
vation sequence O = O1, O2 . . . On (each Oi represents a feature
vector), and a set of HMMs, (each representing a phoneme), the
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Figure 1: Generic Speech Recognition System

decoder tries to find the model (M) that best matches the ob-
servation sequence, such that the probability of the observation
sequence, P (O|M), given the model M is maximized.

An N-state Markov model is defined by a set of N states
forming a finite state machine such that aij is the transition
probability from state i to j. Each state is additionally associ-
ated with a probability density function bj(Ot) representing the
probability that a particular observation Ot is emitted by state
j for observation number t. These probabilities are estimated
during training. The observation probability distributions are
represented by Gaussian Mixture Densities.

The probability P (O|M) is approximated by the probability
of the state sequence Q maximizing P (O,Q|M). This can be
easily estimated using the Viterbi decoding algorithm. For a
given model M, let ψj(t) represent the maximum likelihood of
having observed the sequence O, and being in state j at time
t. This partial likelihood can be computed efficiently using the
following recursion:

ψj(t) = max
i

{ψi(t− 1)aij}bj(Ot), (1)

The maximum likelihood Pm(O|M) is then given by: ψN (n) =
maxi{ψi(n)aiN}. As repeated multiplications of small values
lead to underflow, log probabilities are used.

This formulation casts the problem as a dynamic program-
ming problem where we want to find the path with the maxi-
mum likelihood. The spoken utterances modeled by HMMs
are sub-word constructions called phonemes, while words are
chains of phonemes. The word models are then aggregated us-
ing a language model.

2.1 Design Decisions
Taking into account the system requirements, the following

design decisions were made.
• Use regular grammars language models and unified
recognition network: Although preferred for large vocabular-
ies, n-gram language models imply an exponential search space.
Hence, we use regular grammar based language models. This
simplifies the search and improves accuracy. Given a regular
grammar description of the language, we construct a network
of words similar to a finite state automaton. Words are then
expanded into chains of phonemes, and each phoneme in its
turn is expanded into an HMM. Finally, we obtain a large uni-
fied HMM, the recognition network. We then perform Viterbi
computation on this recognition network to determine the most
likely path through the network. Figure 2.1 shows an example
word network and its expansion.
• Use token-passing algorithm for probability compu-
tation: Although the Viterbi algorithm computes the proba-
bility of the most likely path through the recognition network
of states, it does not actually retain the path itself. However,
unlike isolated word recognition where the sequence of sub-word
states is uninteresting, we need the actual matching words. The
token-passing algorithm [25] makes the sequence of words ex-
plicit. With token passing, computations for each iteration are
very similar at every state, and can be performed in parallel.

open

close

two

three

one

window

ow p ax n

Figure 2: Example Recognition Network. The word
”open” is a chain of the component phonemes: ”ow”,
”p”, ”ax” and ”n”. Each of the phoneme is expanded
into a chain of HMM states. The language for the net-
work is: (((open|close)window(one|two|three))|)∗.

3. HARDWARE DECODER ARCHITECTURE
3.1 Design Decisions
• Parallel design: The computations in the recognition net-
work are symmetric and inherently parallelizable, with few data
dependencies. By using parallelism, we can greatly reduce the
clock frequency required for real-time recognition, and apply
voltage scaling [1] to reduce power. We therefore choose to em-
ploy a set of very simple processing elements (PEs) operating
in parallel. We also ensure that the PE design is simple enough
for the size of the chip to remain small.
• Use on-chip embedded FLASH and SRAM memo-
ries: Recent technological improvements enable the integration
of several manufacturing processes on the same chip. System-
on-chip solutions show orders of magnitude improvement over
traditional designs in terms of both cost and power [6], be-
cause the packaging cost of individual components is avoided,
the wires are shorter and operating voltages are lower. Since
little data sharing happens between processing elements, per-
processor local on-chip memory is desirable. This also reduces
the power consumption and memory access latencies.

The HMM model parameters used for observation probability
calculations are tied to a particular language and are modified
very rarely (only for a new language or new models) although
they can be large in size. Thus low-power FLASH memories
with high densities can be used.

However most of the recognition network state is dynamic and
changes during the course of an UI application. Since the size
of memory required for dynamic state is smaller, fast SRAMs
are the best choice.
• Use of scaled fixed-point arithmetic: We use a software
implementation of the speech decoder to compare the recogni-
tion accuracy of performing floating-point computation versus
scaled fixed-point computation. We performed tests to deter-
mine the data width and scaling required for each arithmetic
operation (section 6.4).
• Single-cycle datapath and use of gated clocks: Since our
design runs at low frequencies (5MHz), we can afford to have
long critical paths and gated clocks. Thus we choose a single-
cycle architecture for each PE, and we employ gated clocks to
reduce power dissipation.

3.2 Architecture Description
Figure 3 illustrates our parallel architecture, featuring a set of

simple processing elements (PEs) connected through a commu-
nication bus. The PEs have their own local FLASH and SRAM
memories. Flash blocks are used to store phoneme acoustic
parameters, while SRAMs store dynamic data. These acoustic
parameters are initially loaded by the device microcontroller via
the bus. Every PE can access the local memories of any other
PE using the bus. Thus, we construct a very simple NUMA
(non-uniform memory access) shared-memory multiprocessor.

In order to minimize communication and to simplify synchro-
nization, we use one of the PEs as a coordinator. Each regular
processing element executes its chunk of work and goes to sleep.
The coordinator reads data from the local memories of other
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PEs, aggregates it, writes the results to the local memories of
the PEs that need it, and wakes up the PEs, which resume
computation.

3.3 Processing Elements
Figure 4 shows the hardware structure of a PE.

Datapath Design: The datapath is in the RISC-style, with a
24-bit wide data path and 16 24-bit general-purpose registers.
The memory is word-addressable with 16-bit words, and consists
of a FLASH memory block (up to 64KB) and a smaller SRAM
block (up to 16KB).

The design has several functional units: an ALU, a logarithm
and an exponentiation unit. The functional units share a com-
mon result bus, and we implement a very simple result bus reser-
vation mechanism using a result shift register, since instructions
have fixed latencies. This allows the functional units to operate
in parallel; instruction issue stalls during a bus conflict.

The multiplication operation is implemented using an array
multiplier. The log/exp functional units use a method that
computes one high-radix digit of the result at a time [11].

Local memory operations take two cycles to complete, but
several memory accesses can be pipelined. The inter-PE com-
munication and synchronization operations are supported by re-
mote load/store instructions, which execute the operations over
the bus, on the local memory of a specified PE.
Instructions: The instruction set has 25 16-bit instructions:
arithmetic and logic operations, memory-access instructions (lo-
cal and remote loads and stores) and control instructions.
Memory Operations: Although the choice of a wider data-
path (24 bits) than the memory word (16 bits) might seem odd,
we do this to minimize the memory size and bandwidth re-
quired, while ensuring reasonable precision for the scaled fixed-
point arithmetic operations. This implies that two memory op-
erations might be needed for some loads and stores, but such
operations are infrequent.
Power: As the processor runs at very low frequencies for lower
power consumption, we can afford long critical paths. Con-
sequently, most of the instructions are single-cycle, except for
memory access (local and remote), log and exp operations. Low
frequencies also allow the use of gated clocks, which enable the
PEs to go into SLEEP mode when idle.

3.4 Inter-Processor Communication Over the Bus
PEs are connected through a dedicated communication bus.

It is a semi-synchronous bus with 24 data/address multiplexed
lines. Transactions take a variable number of cycles, and an
acknowledgment is required to signal transaction completion.
The bus is multi-master and uses daisy-chain arbitration.

Memories are not dual-ported; simultaneous local and over-
the bus accesses to the same memory block are handled by ar-

bitration, giving local operations priority, which enables fixed-
latency local operations. In order to avoid starvation of remote
accesses, the local processor is prevented from issuing new mem-
ory accesses until the remote operation completes.

4. WORKLOAD SCHEDULING
The parallel architecture is flexible to support various possible

workload division among PEs. An efficient workload scheduling
implies optimizing for locality and balanced execution time.

The decoder’s computation is iterative, and each iteration
processes a new observation vector from the speech front-end.
In every iteration, each state in the recognition network executes
two steps: 1) it computes the observation probability for the
current observation and 2) it examines all the incoming tokens
and selects the best one (maximum likelihood).

After valuating several computation scheduling schemes, we
present the chosen alternatives.

4.1 Proposed Scheduling Scheme
Observation probability computation: The observation
probability computation involves evaluating Gaussian mixtures
for each state of the recognition network. However, we observe
that all the words in the network use the same pool of phonemes.
Thus, in the first phase of scheduling, we divide the pool of
phonemes equally among the PEs. For each observation, every
PE computes probabilities for its own share of phonemes. The
results are then collected at the coordinator and distributed to
all the PEs in the second phase. As a result, the total amount
of computation is proportional to the number of phonemes used
rather than the size of the whole recognition network. Since the
set of phonemes is fixed for a language, this workload scheduling
must be performed only at language load time.

The acoustic model parameters required for observation prob-
ability computation are loaded in the local FLASH of each PE
through the communication bus. Since new language models are
loaded quite infrequently, the latency for loading the FLASH is
tolerable, and the number of writes to FLASH is small.
Token Probability Scheduling: In the second step of an
iteration, each state of the recognition network collects tokens
from all the incoming edges and selects the one with maximum
likelihood. Thus it is desirable to assign adjacent states to the
same PE, as inter-state communication is faster through local
memory. Therefore, the token computation for all of the states
belonging to the same word are assigned to the same PE. Tokens
exchanges between states belonging to different words is always
done through the coordinator.

Words are assigned to PEs every time a different application
is loaded, since applications have relatively smalls vocabularies.
In practice, this assignment implies writing the SRAM of every
PE. The delay imposed by this operation is acceptable, since
it is done only at application load time. However, grammar
structure (links between words in the network) and informa-
tion about the active set of words changes with the current UI
context. These changes are low-delay operations since the in-
formation in stored in the SRAMs.

To summarize, the scheduling is performed as follows: 1) For
observation probability computations, phonemes are assigned
to PEs at language load time. 2) For computing token prob-
abilities, whole words are assigned to PEs at application load
time. 3) Word interconnections and information about active
word sets are changed for every new UI context.

5. IMPLEMENTATION
In order to evaluate our proposed hardware decoder design

and the various tradeoffs, we first developed a software version
of the decoder that implements the exact same algorithms as the
proposed design. This software decoder is based on the Hidden
Markov Model Toolkit (HTK) [20]. It has a modular architec-
ture such that different functions can be performed either in
software or in a hardware design simulator.

We implement the decoder in the Verilog hardware descrip-
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tion language, and perform RTL simulations in Modelsim [14]
to verify that the results match the software implementation.
FPGA Implementation: To validate the correctness of our
design, we deploy it on a FPGA array board, composed of 20
Xilinx Virtex-E XCV2000E FPGA chips. Loading the memory
contents at synthesis time, we confirm that results are identical
with our software implementation and Modelsim simulations.
ASIC Implementation: To estimate our design’s area and en-
ergy savings, we synthesize our design in an 0.18 micron CMOS
process at a core voltage of 1.08V using the Synopsys Design
Compiler. Because of the difficulty in accessing technology li-
braries for embedded FLASH and SRAM memory blocks, we
take the following approach: we eliminate the memory blocks
from our design and treat them as external components. We
then measure the area and energy consumption of the resulting
chip; we separately estimate power dissipation and area for the
memory blocks, and finally add the numbers, also taking into
consideration the overhead incurred by placement and routing
of the circuit.

6. EVALUATION
6.1 Experimental Setup

We consider a UI application that recognizes numbers in En-
glish. The database for this application is a set of 6000 speech
utterances in English. We use the American English lexicon
consisting of 28 phonemes. The word network had 30 different
words (spelling out numbers and digits). The phoneme model
is based on linear HMMs with 3 emitting states. We perform
the training using the tools provided by HTK.

After considering the tradeoffs presented in section 6.4, we
choose to implement a version of our decoder consisting of 8 pro-
cessing elements, capable of performing real-time speech recog-
nition using 8 Gaussian mixtures for observation probability
computation. In order to support a vocabulary of up to 40
words we require 8 FLASH modules of 10KB each, as well as 8
SRAM modules of 2KB each.

6.2 Area Estimation
We separately estimate the area of the logic part of the de-

coder and the memory modules. Synthesizing the logic part of
decoder for 8 processing elements in 0.18µm technology, we ob-
tain an area of approximately 1.216mm2. Table 1 presents the
breakdown of this area.

Component % area

ALU 35.9%
Register files 38.9%
Shift Units 10.14%
Tagger Unit 3.27%
Control Unit 0.51%

Table 1: Decoder Logic

Component Size Area
(KB) (mm2)

FLASH 80 0.93
SRAM 16 0.42

Decoder Logic - 1.216
Total (8 PEs) - 2.566

Table 2: Area Breakdown

We then estimate FLASH and SRAM memory area. FLASH den-
sities have increased drastically, varying from 1MB/mm2 for the
slower NAND FLASH memories, to 128KB/mm2 for random-
access NOR FLASH memories [13]. We use the more conser-
vative estimate, obtaining an area of 0.625 mm2 for all eight
blocks. Since blocks are small, we add 50% overhead for addi-
tional addressing and decoding logic, obtaining a total area of
0.93 mm2.

Similarly, we assess the total area of the SRAM blocks to be
0.42 mm2. We again rely on conservative figures by assuming
a density of 300Kbit/mm2, although current technologies can
achieve more than 735Kbit/mm2.

Thus, as shown in Figure 2, the total area of our decoder is
estimated at 2.566 mm2. This implies that it could be manufac-
tured at low cost and could easily be integrated as an additional
module in a system-on-chip device.

6.3 Energy Savings
We estimate the power dissipation of our custom hardware

decoder design, and we compare it to the alternate method of
performing speech recognition on a software version of the de-
coder running on a general purpose processor, namely a low-
power ARM running at 206MHz.

The recognition accuracy for both the cases is almost identi-
cal as we use the same decoding algorithms, with insignificant
differences related to the fixed-point computation precision.

In order to compare energy efficiency, we evaluate the total
energy consumption in recognizing the same speech utterance
(1.2s long), using different numbers of Gaussian mixtures, for
which recognition yields different levels of accuracy. Since en-
ergy consumption improvements often come at the cost of per-
formance, we confirm that it is not the case by computing the
energy-delay product as well.
Power Estimate for Proposed Decoder: Using Synopsys
synthesis tools and Modelsim simulations, we determine the av-
erage power dissipation for the logic part of the decoder to be
5.125mW in the 0.18 µm process at 1.08V. This power can
be broken up into a leakage power of 0.108mW and dynamic
power of 5.017mW, excluding the power consumed in the mem-
ory blocks.

For estimating the power dissipation in the FLASH memories
and SRAM we use published parameters for off-chip 0.18 micron
FLASH [3] and SRAM [15] memory cells. Running Modelsim
simulations, we compute the memory bandwidth for different
types of blocks. Table 3 presents the parameters, the memory
bandwidth and the total power for the different types of the
memories. The total dissipation of the decoder is 19.70mW.

Param Volt Read Write Access BW Power
Cur Cur Time (Macc/s) (mW)

Inst 1.8V 4mA NA 70ns, 40.8 11.75
FLASH (40ns)
Data 1.8V 4mA NA 70ns, 1.6 0.81

FLASH (40ns)
SRAM 1.8V 20mA 20mA 70ns 0.8 2.016
Power NA NA NA NA 43.2 14.57

Table 3: Power consumption in memory

Power Estimate for 0.18 µm ARM: We estimate the power
consumed by a low-power ARM processor of the same process
(0.18µm) but running optimized HTK speech decoding soft-
ware. We choose the processor and the clock rate such that it
yields the same recognition throughput as our hardware decoder
running at 5MHz.

Although instruction wise power estimates are available for
the Intel SA-1100 processor (0.35 µm at 1.65-2.0V) in Joule-
Track [2], it is difficult to get accurate estimates for the newer
0.18µm Intel processors (PXA 26x/27x series).

To overcome this problem, we scale the power estimates of
the SA-1100 processor to 0.18µm technology using two differ-
ent methods. Although this scaling methodology will not give
us very accurate power estimates, we believe that this is a rea-
sonable approximation given that our aim is to show more than
an order of magnitude improvement.

We use SimpleScalar [24] to get instruction profiles and cycle
counts for the program running on the ARM processor. We use
the instruction profile and the per instruction power estimates
from JouleTrack to get to the total energy for the speech utter-
ance considered. The instruction counts and CPI estimates from
SimpleScalar are used to estimate the energy-delay product.

Method 1: Use the typical power estimates provided by Intel
for the SA-1100 [9] at 1.75V and the PXA 26x series [8] at
1.0V. The ratio of the typical power estimates at 200 MHz is
400mW/178mW = 2.24. We use this as the scaling factor.

Method 2: We determine the power dissipation for the 0.18µm
technology by using well-accepted CMOS scaling techniques.
We first use the data given in [2] to break down the power
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Figure 5: Energy and Energy-delay product compari-
son: 0.18µm ARM and our decoder.

consumption of an instruction into dynamic and static (leakage)
components. We then use the model proposed in [10] where the
total power of a circuit can be expressed as Ptot = Pdyn +
Pstat = CLV

2

ccf + VccNtranskdesignIleak. We then use figures
from [10] and the publicly available ITRS roadmaps [17] to scale
the dynamic and static power of each instruction to 0.18µm.
Conclusion: The results of the comparisons are presented in
Figure 5. Our design has an energy improvement factor ranging
from 10 to 12.75 over the software solution on the 206MHz, for
various accuracies. This is true for both total energy consump-
tion and energy-delay products.

Moreover, our power improvement estimates are pessimistic
and might be much larger in practice, because: 1) We include
the power consumed in memory accesses for our design, but we
neglect it for the ARM processor; 2) When estimating power for
our on-chip memories, we use estimates for off-chip memories,
as data for on-chip memories is not readily available. This is
significant: close to 70% of the power consumption in our design
is in memory accesses.

6.4 Tradeoffs
This section explores various tradeoffs concerning accuracy,

computational workload and memory size. We use the software
version of our decoder (section 5) to examine the tradeoffs.
• Fixed-point arithmetic: We use scaled fixed-point arith-
metic for our calculations. We obtained the optimum data width
required for both storage and data path by conducting an ex-
tensive search over various data width sizes and scales. We find
that using fixed-point arithmetic with 24 bits for arithmetic cal-
culations and only 16 bits for parameter storage has negligible
impact on the accuracy, compared to the use of 32 bit floating
point operations.
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• Scalability: For the rest of the graphs, we plot data for two
kinds of workload scheduling, mentioned in section 4: the op-
timized scheduling presented in section 4, and a naive schedul-
ing, which simply allocates words to PEs, sometimes resulting
in redundant computation, since multiple PEs compute the ob-
servation probability for the same states.

Figure 7 shows how, as the number of processors increases,
the optimized workload scheduler efficiently splits load among
processors. However, we notice that it doesn’t make sense to
scale to more than 8 processing elements, a reasonable number
in terms of area requirements.

 0

 5

 10

 15

 20

 25

 30

 0  1  2  3  4  5  6  7  8  9

C
om

pu
ta

tio
n 

in
 M

cy
cl

es

Number of procs

Naive division
Opt division

Figure 7: Computation
time vs. no of processors

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0  64  128  192

W
or

d 
in

ac
cu

ra
cy

(%
)

Memory size required(KB)

MFCC
MFCC_D

MFCC_0_D
MFCC_0_D_A

Figure 8: Accuracy for
coding algorithms

• Memory and workload vs. recognition accuracy: As
we increase the number of mixtures for Gaussian computation,
recognition accuracy increases, but so does workload and re-
quired memory. Figure 6 assumes a design with 8 PEs, and
shows the required memory size and the workload per proces-
sor. After a point, corresponding to 3 Mcycles/second, there
are diminishing gains in accuracy. Consequently, we choose an
operating frequency of 5MHz (5 Mcycles/second).
• Coding techniques: Figure 8 shows the recognition ac-
curacy obtained with various speech coding algorithms. We
perform coding using HTK’s spectral analyzer module, and we
use algorithms based on Mel Frequency Cepstral Coefficients
(MFCCs), which are widely used in speech recognition. Various
techniques differ in the inclusion of energy measures and first or
second order regression coefficients in the set of encoded param-
eters. Consequently, the coding technique choice directly deter-
mines the on-chip memory required to store HMM parameters.
Given a memory storage budget, we determine the technique
yielding the best word accuracy. We see that the MFCC 0 D
technique that has 13 basic MFCC coefficients along with 13
delta coefficients yields the best accuracy with reasonable area.

7. LANGUAGE INDEPENDENCE
We validate our language independence claims by testing our

recognizer on a simple dataset in a language other than En-
glish, namely Tamil, an official language of India. The test
dataset consists of 4600 speech samples collected from 30 Tamil
speakers; the grammar contains 31 words representing phrases
that can be used in a speech assisted form filling application.
The speech samples were collected by untrained volunteers from
three villages in Tamil Nadu, India. Figure 9 presents the ac-
curacies obtained by our recognizer using various numbers of
Gaussian mixtures. Although we used the English dataset for
estimating power and workload scaling, the Tamil recognition
was optimized for high accuracy, using single-word training sam-
ples and word-based recognition. The obtained accuracy, ex-
ceeding 97%, is high for speaker-independent recognition.
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Figure 9: Accuracy vs memory size for Tamil

8. A SPEECH RECOGNITION PLATFORM
In this section, we return to the overall architecture of the

speech recognition platform. Our system is built on top of
a physical infrastructure composed of a set of low-cost hand-
held devices, featuring speech-based UI, and one or more central
servers. Figure 10 presents the overall architecture.

The expensive and length training operation is performed on
shared servers. Since permanent network connectivity with the
servers cannot be assumed, the handheld devices must support
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the entire recognition chain of speech recording, spectral analy-
sis and decoding. The spectral analyzer front-end requires dig-
ital signal processing primitives such as fast Fourier transforms
that can be efficiently supported in custom hardware.

In the following we describe the high-level system:.
• A large set of speech samples in a given language is collected
and stored at the server. A central server performs speaker-
independent training of the language acoustic models.
• The devices periodically record speech samples and their tran-
scriptions. The samples are transferred to the server, where it
retrains the speech models for higher accuracy, possibly speaker
dependent. These new models are then loaded on the devices,
during the next device-server communication opportunity.

The UI communicates with the recognition engine through a
dedicated driver. The application supplies the recognizer with
context information, specifying the set of legal word combina-
tions in the given context, and the recognition engine responds
with the most probable set of words.

9. RELATED WORK
Hon’s survey [7] of hardware speech recognition machines

presents a multitude of approaches focused at increasing recog-
nition performance in large multiprocessor systems. Ravishankar
[16], presents a parallel threaded implementation of the fast
beam search algorithm.. Anantharaman and Bisiani [21] pro-
pose two custom architectures tailored to a speech recognition
beam search algorithm. In [19], an FPGA-based solution is
presented, where the recognition network is dynamically synthe-
sized on an FPGA. Unfortunately, these solutions do not satisfy
our tight power and cost constraints, and are not tailored for
UI-based recognition.

Recently, power-aware solutions have been explored. Thread-
level parallelism is used in [12], where a modified Intel XS-
cale is combined with custom speech processor having multiple
pipelines. This architecture increases recognition performance
and reduces power dissipation. In [4], the authors present a
low-power special hardware accelerator designed to speed up
Gaussian computations. This accelerator performs Gaussian
computations twice as fast as an Intel Pentium 4 2.4GHz pro-
cessor, while decreasing the power dissipation by two orders of
magnitude. However, the power consumed is still 1.8W or about
100x higher than our design. Both [12] and [4] target devices an
order of magnitude more costly and power-hungry than ours.

Solutions for extremely low cost and low power have been
proposed by a number of companies [5]. Sensory [18] devel-
oped a range of system-on-chip speech recognizers, relying on
an 8-bit general-purpose microcontroller. The design achieves
small power dissipation (under 40mW), and high accuracy. The
speech parameters are stored in off-chip memories. Unfortu-
nately, due to the limited processing capabilities and low mem-
ory bandwidth, the chips are limited in the grammar size of an
active set to less than 20 words for speaker independent recog-
nition, and recognition is not real-time.
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Figure 10: Speech Recognition System Architecture

10. CONCLUSION
We presented a design for a low-cost low-power real-time

speech decoder, which is part of a larger architecture for speech
recognition for developing regions. The evaluation of the de-
sign includes both real-time implementation of the design on an
FPGA array and synthesis of an ASIC for estimates of power
and size. We confirmed that the recognition accuracy matches
that of the software version. We found the power to be about
12 times lower than an optimized software solution on an ARM,
and the size to be about 2.56mm2 in a 0.18µm process. How-
ever in practice the improvement will be much higher with the
use of on-chip memory integration. We evaluated many of the
design tradeoffs, including the number processors, amount of
memory, and a variety of coding variations. Finally, we perform
recognition tests in two languages: English and Tamil. In the
future we plan to fabricate a variation of this design, and use it
for real applications with a variety of languages and dialects.
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