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ABSTRACT 
On-chip supply networks are playing an increasingly important 

role for modern nanometer-scale designs. However, the ever 
growing sizes of power grids make the analysis problem extremely 
difficult thereby introducing severe challenges in design and 
optimization. The inherent analysis complexity calls for 
innovations in simulation techniques that must provide appropriate 
accuracy, efficiency as well as the tradeoff thereof to aid design 
verification and optimization. In this paper, we first present a 
sampling-based sensitivity analysis by employing the notation of 
importance sampling in a Monte Carlo based circuit simulation 
framework. This technique allows the extraction of multi-
parameter sensitivities for the node voltages of interest in the same 
Monte Carlo runs that are used for computing the nominal voltage 
values. For more efficient nonstructured whole-grid solution 
approaches, we further introduce a new direct solution method by 
embedding symbolic relaxation steps in a hierarchical fashion. As 
a direct method, the proposed hierarchical symbolic relaxation is 
suitable to both dc and transient analyses. Circuit examples are 
included to demonstrate the efficacy of the proposed techniques. 

Categories and Subject Descriptors: B.7.2 

General Terms: algorithms, performance, design 

Keywords: Power grids, sensitivity and hierarchical analysis. 

1. INTRODUCTION 
In recent years, the technology trend has put substantial pressure 

on on-chip power delivery network design. The proper design of 
the power grid is critical for minimizing the supply induced noise 
and meeting reliability constraints. With the continuous shrinkage 
of the supply voltage level and the increasing power consumption, 
it is expected that ensuring the integrity of the power distribution 
network is becoming even more challenging for future designs 
[15]. 

At present, the designers are routinely dealing with multi-
million node power distribution networks. The sheer size of these 
distribution networks brings significant challenges in the 
verification and optimization tasks. In the past several years, power 
distribution networks have been an active topic of research. Both 
the power grid analysis [1-5, 7-8] and optimization issues [10, 12-
15] are being addressed by the EDA community. In terms of 
analysis, given the fact that the conventional direct solution 
methods do not scale with the problem size, it does not only make 
sense, but also becomes imperative to develop specific simulation 
techniques that can offer a good tradeoff between accuracy and 
efficiency. The latest developments pursue this goal through a 

variety of approaches, for instance, multi-grid like approaches [1-
2, 4], hierarchical method [3], Monte Carlo approach [5, 7] and 
design specific methodology [8].   

Primarily motivated by the techniques pioneered in [1, 2, 3, 5], 
we present two new techniques along the same line of addressing 
the analysis scalability.  In the first technique, we extend the 
principle of random walks in [5] to an efficient sensitivity analysis 
methodology. By deploying one particular type of importance 
sampling technique, namely ratio estimate [16], we develop a 
sampling based sensitivity analysis technique suitable for 
computing sensitivities with respect to multiple design or process 
parameters for a few circuit nodes of interest. With a small 
additional cost, the sensitivity information can be extracted in the 
same Monte Carlo runs used for estimating nominal voltage 
values, thereby offering useful aides for design fine tuning or 
process variation analysis.   

To derive a more effective solution method for the entire grid, 
which can be efficient for both dc and transient analysis, we 
present a new direct hierarchical method. Our focus is on 
unstructured grids for which hierarchical information of the design 
is not available to simplify the analysis. To this end, we start by 
describing random walks technique more formally via finite 
Markov chains [17]. More importantly, we show a revealing 
correspondence between the solution of finite Markov chains with 
absorbing states and the standard deterministic relaxation methods. 
Under the context of hierarchical methods for nonstructured grids, 
we show that the seemingly most efficient hierarchical Monte 
Carlo method is in fact in the form of a deterministic relaxation 
method, which is what we propose as hierarchical symbolic 
relaxation. To understand the observed effectiveness of the 
proposed hierarchical method despite its simple form, we interpret 
its interesting properties under the context of multigrid methods 
and contrast it against the multigrid-like reduction techniques 
introduced in [1, 2, 4]. The usage of proposed techniques is 
demonstrated on several power grid analysis problems.  

2. SAMPLING BASED SENSITIVITY 
ANALYSIS 

In [4], a power grid, which is modelled as a RC network is 
translated to a random walk. Due to the correspondence between 
the electric network (grid) and the random walk, the electronic 
network solution can be equivalently solved in random walk in 
terms of the expectation of a gain function.  Formally, a random 
walk can be described as a finite Markov chain. There exists a one-
to-one correspondence between the nodes in the electrical network 
and the states in the Markov chain. As shown in Fig. 1(b), the 
corresponding Markov chain for the circuit in Fig. 1(a) is shown.   
Throughout this paper, we will use the terminologies for the 
electrical network and the Markov chain interchangeablely. The 
gain function has its boundary conditions defined on the states 
corresponding to Vdd nodes in the grid, which have a known gain 
function value of Vdd. These states are absorbing states in the 
chain.  
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For a dc analysis problem, consider node 1 in Fig. 1(a). The 
transition probabilities from node 1 to its neighbours in the chain 
are determined by circuit element values [5] 
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The current source I1 is translated to a amount of cost incurred at 
node 1, whose value is given by )/( 32111 GGGIC ++−= . The walker 
wanders about in the network and picks the next state to visit 
randomly based on the transition probabilities. If he reaches an 
absorbing state, the walk terminates and he is paid by an amount of 
Vdd. Otherwise, if he passes by some other states he may pay for a 
cost.  It can be shown that the voltage at any node i in the electrical 
network is equal to the expected gain the walker will receive if he 
starts from the corresponding node in the random walk. Thus, the 
node voltage can be estimated by running N walks from node i as 
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where kD  is the gain of the kth walk.  
 
 
 
 
 
 

 
              (a)             (b) 

Fig. 1. (a) An equivalent Markov chain model of a RC power 
grid, and (b) one circuit node in the grid.  

In addition to the nominal voltage value at a node, we may also 
want to compute the voltage’s sensitivities w.r.t circuit parameters, 
e.g., in order to aid the gradient based design optimization [14] or 
process variation analysis. One question arises naturally is that 
wether  or not we can still the random walk in an efficient way to 
collect the sensitivity information as we compute the nominal 
voltages. It shall be noted that the classical adjoint sensitivity 
analysis [11] depends the complete linear system solution of the 
system matrix that is what we try to avoid computing.  
 

 
  
 
 
 
 

       (a)        (b) 
Fig. 2 (a) Two RC networks with the same topology,  

and (b) one node along the walk 
 

Consider two RC networks with an identical topology but differ 
in circuit element parameters, as shown in Fig. 2 (a). Let us 
consider one arbitrary walk in circuit A. The edge transition 
probabilities along the walk are

kkmkk ppp ,,, 21 L . Thus, the 

probability of walking down this complete path is given by 
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the weighted sum of gains over all possible walks  
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Similarly for circuit B, we have  
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The above expression suggests that we may reuse the random 
walks in circuit A to compute the same voltage in circuit B, but 
with a proper scaling of the gain obtained for each walk. 
Fortunately enough, the above observation has a theoretical 
soundness that is rooted in the concept of importance sampling 
from the statistical analysis [16]. Importance sampling has been 
applied to speed up the convergence of Monte Carlo simulation 
and collect statistics efficiently for multiple distributions.  In this 
paper, we use one particular form of importance sampling, namely 
ratio estimate.  Applying the ratio estimate to (4) based upon a set 
of N samples (random walks) taken in circuit A, we estimate the 
node voltage of node i in the circuit B as 
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where '
kD  is the gain (defined in circuit B) for the kth walk, which 

is actually sampled in circuit A, and Wk is a correction factor for 
the kth walk to compensate for the bias introduced by taking 
samples from circuit A. In (5), dividing the weighted sum by the 
summation of Wk’s is to ensure that the final weights of these N 
samples sum up to unity.  

Now it becomes clear that we can in fact use Monte Carlo runs 
performed in one particular network to conduct estimations on 
several other networks with the same topology. We now show how 
this nice property of importance sampling can be adopted in a 
proper fashion to facilitate an efficient sensitivity analysis for 
practical large circuit problems.  Going back to our previous 
circuit example in Fig 2 (a), but this time we treat circuit A as a 
parametric circuit under the influence of s 
parameters T

s ],,,[ 21 ρρρρ L
v = , which might be a set of 

process or design parameters. Now our goal is to reason about the 
first order parametric circuit variations based upon samples we 
take from the nominal circuit, where 0ρρ vv = . After taking N 
random walks on the nominal circuit, we apply the ratio estimate 
of (4) to estimate the node voltage of the parametric network as 
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where, )(ρvkD  is the gain of the kth walk defined in the 

parametric circuit, )(ρvkp and )( 0ρvkp are the probabilities of 
taking kth walk in the parametric and nominal circuits, 
respectively.  

Next we want to show that sensitivity computation simply 
amounts to propagate and process the first order expansion 
coefficients in ρv  for all the terms in (6) as the walker wanders 
about in the nominal network. To do so, we first need to consider 
the sensitivities of the circuit elements w.r.t. ρv  and propagate 
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them to all the terms we encounter in (6). As an example, consider 
the l-th node reached in the kth random walk as depicted in Fig. 2 
(b). Now we consider the next move the walker will take to reach 
the (l+1)-th node. Assume that the walker takes the edge 
corresponding to conductance Gkl1 in the next move. The 
probability for such an instance to happen is 
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where '
kltG is the sensitivity of  conductance kltG  connecting at the 

node. Finally, we have 
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In (8), we have expressed the first order expansion of )(ρvklp in 

ρv using the nominal probability, (scaled) additions and 
subtractions of circuit element (conductance) sensitivities. The first 
order expansion for the cost incurred at this point of random walk 
due to current Ikl can be similarly derived.  

Now assume that all the transition probabilities and costs can be 
expressed in a unifying first order expansion 
form ρρρρ vvvv ∆⋅+= Tvvv )(')()( 00 . To continue processing the 
first order expansions in (7), in addition to trivial additions or 
subtractions cast in the unifying standard first order form, we also 
need to consider multiplications and divisions, which can be 
processed easily.  For instance, the division of the two first order 
terms simply leads to  
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All that means is that we can efficiently collect the sensitivities 
of node voltages of interest with respect to multiple parameters 
along the same set of random walks we take to compute the 
nominal voltages. The additional costs at each step incurred for 
sensitivity computation are only due to a few simple scalar 
additions, subtractions, multiplications and divisions. That is, we 
are able to compute the nominal voltage values as well as multiple 
parametric sensitivities at a computational cost just somewhat 
higher than that of the nominal voltage computation. 

3. HIERARCHICAL METHDOLOGY 
For the solution of a complete unstructured grid where design 

hierarchy is difficult to obtain, applying Monte Carlo methods can 
become inefficient. For these cases, there are two orthogonal 
reasons that limit the efficiency of Monte Carlo methods. Firstly, 
for a large grid where there exist a few Vdd connections (bond-
wired chips), the probability for a walk to terminate at an 
absorbing state within a few steps is very small. This situation will 
lead to time consuming long walks.  In [7], the authors have 
proposed a very interesting idea to alleviate this problem by 

adopting hierarchical random walks. However, the second problem 
still exists that is more inherent to the nature of Monte Carlo 
methods, i.e., the number of samples needed for an estimate with a 
high confidence level may remain high even for a small problem.  
For instance, solving a three-node circuit problem using random 
walks may still require hundreds or thousands of samples to ensure 
a guaranteed accuracy while solving it using any deterministic 
method is completely trivial.  

We seek a different and more efficient deterministic hierarchical 
method for solving the entire grid. In addition, the approach falls 
into the class of direction solution methods such that it can be 
employed efficiently for transient analysis, where significant 
runtime saving is made possible by reusing the initial matrix 
factorization for the subsequent time steps.  

We illustrate the construction of our hierarchical methodology 
in Fig. 3. Starting from the original network, which is at the 
bottom of our solution hierarchy, we select a certain percentage of 
nodes as high-level nodes which we keep at the next hierarchical 
level. We refer to other nodes as internal nodes. Since we do not 
assume the availability of any design hierarchical information, the 
high-level nodes are selected without knowing any circuit 
boundaries. Once high-level nodes are selected, we build a 
reduced network relating only these nodes by symbolically solving 
internal nodes in terms of high-level nodes and the right hand side, 
and finally eliminate all the internal nodes in the reduced network. 
The last operation is achieved by writing the KCL equation at each 
individual high-level node and substituting in the symbolic 
expressions of its neighbouring internal nodes. In this process, we 
also generate new right hand side to the reduced network which is 
a linear mapping of the original right hand. We keep these 
mappings for later use. This process repeats until we reach to a 
point where the matrix problem size is small enough to be 
factorized either iteratively or directly. To solve each of these 
problems symbolically, we adopt symbolic Guass-Jacobi or Seidel 
iterations hierarchically as a solution engine. 
 

 
 
 

 

 
 

Fig 3. Hierarchical methodology 
After the factorization phase, to solve the actual matrix solution 

for a given right hand side, we first map the right hand at the 
bottom level bottom-up to the top level by using the mapping 
functions already built in the factorization phase for each of these 
levels. We substitute the mapped right hand side into the factorized 
reduced matrix and obtain the numerical solution at the topmost 
level. Finally, we repeatedly propagate the solution of high-level 
nodes downwards and obtain the solution at the hierarchy one-
level down.  This process repeats till we reach back to the bottom 
of hierarchy where the complete system solution is obtained.   

4. SYMBOLIC FACTORIZATION 
To obtain an understanding of the proposed technique, we first 

revisit the Markov chain interpretation of power grid analysis 
problem, and then offer an interpretation of our proposed 
hierarchical symbolic relaxation approach using Markov chain. 
Finally, we interpret the approach under the context of multigrid.    

4.1 Markov chain interpretation 
Let us consider to use the random walk based hierarchical 

method such as what is outlined in [7] for unstructured grids, 
where design hierarchical information is not available. Recall that 
in the standard random walk algorithm, an unknown node is 
selected at a time, followed by a sequence of random walks. We 
illustrate this sequence of operations in Fig. 4(a).  One drawback 
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of this approach is that it precludes any work sharing between 
separate walks even though they might visit the same nodes along 
the way.  It now becomes very natural to think of the possibility of 
simultaneously starting multiple walks, possibly originated from 
multiple starting nodes such that the maximum amount of work 
sharing can be allowed. This motivates us to shift from the depth-
first like “serial” walks of 4(a) to the breadth-first like “parallel” 
walks of Fig. 4(b).  
 
 
 
 
 

   
   
 (a)             (b) 

Fig. 4. “Serial” walks vs. “parallel” walks.        
To explore this possibility, we employ the formal description of 

finite Markov chains with absorbing states [17] for the hierarchical 
analysis context under which high-level nodes are also absorbing 
states 
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where f is a function defined on the states of the chain which we 
want to solve (corresponding to node voltages for our power grid), 
P is the transition or fundamental matrix whose entries define the 
transition probabilities of a pair of states and c is the cost incurred 
at each state. Notice that the entries in the above equation can be 
determined in a way as illustrated in Fig. 1. In (10), f is 

partitioned as follows. Bf  corresponds to the absorbing states 
whose function values are known (corresponding to Vdd nodes or 
high-level nodes for our case), and If  corresponds to all internal 
nodes. We refer the readers to [17] for a more detailed treatment of 
finite Markov chains. Notice that (10) is slightly different from the 
standard form since we have also included expense function c to 
take into account the current sources attached at internal nodes [5]. 
The objective here is to solve for If  given Bf . From (10), we 
have  
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Keeping only first k terms in the summation of (11) leads to 
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Now (12) can be very intuitively understood by thinking of 
starting parallel “walks” from every internal node simultaneously. 
Here, these walks are different from the random walks. They are 
sequences of state transitions with known probabilities. Thus, they 
are dispatched in a deterministic way without relying on taking 
statistical samples to discover the known probabilities.  Now 
assume that we only allow these parallel walks to go on for a depth 
less than k. Then some of them will terminate at an absorbing state 
some will not.  The first term at the right hand side of (12) 
represents those walks terminated within k-1 steps and the second 
term represents the amount of cost accumulated by all the walks in 
the first k-1 steps. Those walks which cannot terminate are 

discarded, which represent the truncation error of (12).  Restricting 
the depth of walks to k-1 (k is small) is in fact very reasonable for 
our hierarchical power grid analysis when there are many high-
level nodes at each hierarchical level. This is because that the 
nearby internal nodes are not likely to be influenced significantly 
by far way high-level nodes.  Obviously, for any reasonable power 
grid we know that the voltage of any node should not be 
dramatically different from its neighboring nodes.  To reduce the 
truncation error of (12), it is better to treat those non-terminating 
walks as if they were ended at their nearest absorbing states at the 
last stop. This leads to a more accurate approximation 
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In (13), appf  is the vector of absorbing states used to force the 

lingering walks to stop at the nearest absorbing states.   

4.2 Symbolic relaxation 
Interestingly enough, (13) can be used for solving the system 

but in a way where no matrix is explicitly formed. We can show 
that (13) is equivalent to the following symbolic Guass-Jacobi 
iteration relaxation that is what we are proposing to use as a multi-
level engine: 
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3 end while; 
 
The above algorithm can be easily derived if we rewrite (11) in 

the standard GJ iteration form and consider appf  as the initial 

guess. For IN internal nodes, the above symbolic GJ takes 
)( IkNO operations to complete. According to the interpretation of 

(13) in the prior section, the above deterministic procedure is 
expected to be much more efficient than standard random walks 
since: a) as we propagate parallel walks from all these internal 
nodes to their neighbors we have weighted them according to the 
exact probabilities as opposed to using a large number of randomly 
generated samples to discover these weights in a statistical manner; 
b) any amount of work common to any two walks is fully reused as 
we sequentially relax all the internal nodes in the GJ iterations. 
This implies that for this particular case, the most efficient way of 
solving the problem statistically is actually in the form of 
deterministic relaxation methods. 

This result might not be entirely surprising since the 
deterministic linear system solutions are often applied to analyze 
probabilistic Markov chains. We should also notice that the 
important differences between the above approach and the typical 
way of applying relaxation methods.  Under the hierarchical 
solution framework, the above procedure is symbolic, i.e., 
symbolic solutions in terms of high-level nodes and right hand side 
are solved for internal nodes. Additionally, we have set the 
symbolic initial conditions for all internal nodes according to their 
nearest high-level nodes neighbors appf .  

In our implementation, we have used both symbolic GS and GJ 
iterations. As a short note, with proper handling, we can guarantee 
the positive definiteness property of the matrix problem across all 
hierarchical levels. Thus, there is a theoretical soundness in 
applying Gauss-Jacobi or Seidel iterations. Same as in a traditional 
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relaxation method, a good initial condition will speedup the 
convergence for the symbolic relaxation method. This is achieved 
by setting the (symbolic) initial value of each internal node by its 
nearest high-level node neighbor. To better handle nonuniform 
grids, at any hierarchical level, we adopt a shortest path based 
heuristic to assign each internal node to its “nearest” high-level 
neighbor, where the distance is measured in terms of “electrical 
connectivity” instead of geometric distance. This strategy tries to 
setup the initial values for internal nodes according to their most 
strongly connected high-level node. Our experiments have proven 
the effectiveness of the approach.  

4.3 Connection to multigrid 
The efficiency of classical multigrid methods is built upon a 

proper understanding of the properties of relaxation methods such 
as Guass Jacobi and Guass Seidel. That is, they are quite efficient 
in removing spatial high-frequency solution errors while being 
ineffective for damping long-range low-frequency errors.  To 
overcome this difficulty, in multigrid high-frequency errors are 
removed at fine grids while low-frequency errors are damped more 
effectively at coarser grids. A proper interaction between fine and 
coarse grids offers the ultimate efficiency of method, which is 
provided by performing relaxation steps in between different grids.  

When applying multigrid like techniques to solve the power grid 
problems, a modification from the classical multigrid approach was 
introduced to better serve the specific need of circuit analysis [1, 2, 
4]. That is, relaxation steps are removed to make the overall 
approach a direct solution method, which would be very beneficial 
for transient analysis. Neglecting the relaxation steps is based on 
the assumption that for well designed power grids the solution 
errors are smooth. In a sense, these approaches are reduction 
methods in which strongly connected nodes are continuously 
removed or collapsed to reduce the problem size. However, as 
more and more nodes are removed or collapsed, long-range low 
frequency supply variation starts to emerge as high-frequency 
variation such that any further reduction of the grid will artificially 
filter out the true supply level variation leading to inaccurate 
results. This situation is illustrated in Fig. 5 (a). In our 
experiments, we have observed that the grid reduction method of 
[4] performs fairly well in terms of both accuracy and runtime for 
most of cases, but for grids with more varying current loads, it 
tends to produce larger errors. Removing smoothing steps can also 
limit the extent to which a grid can be reduced. The reduction must 
be stopped before it starts to smooth out the true high-frequency 
supply voltage variations. For a large grid, this implies that a direct 
solver is forced to be applied to a relatively large reduced network 
at the bottom of hierarchy.  
 

 
 
 
 

 

 
 

 

    (a)          (b) 
Fig. 5. (a) Grid reduction, and (b) symbolic relaxation. 

The hierarchical symbolic relaxation approach is more like a 
problem-specific, controllable, approximate multi-level matrix 
factorization method.  Symbolic relaxations are only employed to 
achieve the goal of building such a direct method. Although Gauss 
Jacobi or Seidel is known to be inefficient in removing low 
frequency solution errors, however, it is not an issue under our 
hierarchical approach. Notice that different from the standard 
multigrid method where relaxations steps are applied numerically 
to damp high frequency error for a given input excitation, in our 
approach relaxations are applied symbolically in order to solve all 
internal nodes in terms of exact symbolic values of high-level 
nodes and right hand side. Since during the iteration these symbols 

are not committed to any numerical values, they are exact and do 
not contain any low-frequency errors. As shown in Fig 5 (b), any 
error in the symbolic initial guess of internal nodes would in fact 
appear to be of high frequency, thus can be removed quickly by a 
few relaxation steps. This explains why our symbolic Gauss Jacobi 
and Seidel iterations can work very well. But there is a price to 
pay. Symbolic relaxations operations need to be implemented 
based on row operations of sparse matrix data structures and are 
more expensive to apply than their numerical counterpart.  

As a side note, avoiding the iterative nature of classical 
multigrid method to suit our circuit specific analysis need (e.g. 
transient analysis) also implies that the resulting direct method will 
not operate on the basic mechanism on which the classical 
multigrid methods reply.  Therefore, it makes sense to directly 
consider more generally about constructing controllable, 
approximate, direct matrix factorization method which might also 
be hierarchical. In a sense, this objective is pursued in our 
approach by leveraging on problem-specific knowledge, e.g., 
exploring positive definiteness of the problem property (using 
GS/GJ to derive controllable approximate matrix factorization).  

5. RESULTS 
The proposed techniques were implemented in a prototyped 

circuit simulator SCE (scalable circuit emulator). All our 
experiments were executed on a Pentium 4 PC with 2GB memory 
running Linux operating system.   

5.1 Sensitivity analysis 
For the grids shown in Table 1, we apply the importance 

sampling based random walks to estimate the nominal node 
voltage of one output node and its sensitivities to several 
parameters. For the first three grids, we compute sensitivities with 
respect to 20 parameters while for the last two grids 10 sensitivities 
are considered. The 2nd column of the table indicates the runtime 
of the direct sensitivity analysis (direct LU factorization), the 3d 
column shows the runtime for computing the nominal node voltage 
without estimating sensitivities using random walks, the fourth 
column is the importance sampling based sensitivities analysis and 
the last two columns are relative errors for the estimations of the 
nominal node voltages and sensitivities. The last two grids are too 
large to apply the direct method. Compared to the direct sensitivity 
analysis, by avoiding the full matrix factorization, the proposed 
sensitivity analysis offers very accurate sensitivity estimates while 
incurring very low runtimes. It can be also seen that processing 
additional multi-parameter sensitivity information while 
performing random walks does not increase the runtime 
significantly. This means that by spending somewhat more time, 
both the nominal node voltage and its sensitivities can be obtained. 

Table 1. Comparison on sensitivity analyses 
# 

Nodes 
Direct 
Sens.  

Nom.  
R.W.  

Imp.  
Samp.  

Nom. * 
Error 

Sens. * 
Error  

40K 87s <1s 1 0.4% 3.53% 

90K 381s 5s 16 0.1% 9.72% 

250K 43m 6s 18 0.0% 4.23% 

1.1M N/A 8s 16 --- --- 

1.44M N/A 14s 19 --- --- 

* Normalized with the largest IR drop in the grid. 

5.2 DC analysis results 
In Table 2, we compare the proposed hierarchical symbolic 

relaxation approach with our implementation of the grid reduction 
approach RAMG in [4]. For the first two smaller designs, we use 
direct solve as the comparison reference while the other two grids 
are too large to apply the direct solve. Notice that in this example, 
the relative errors in the last two columns are obtained by 
normalizing the absolute voltage errors with respect to the largest 
IR drop in the grid.  In Fig. 6, we compare the error distributions 
among all the nodes for these two methods. For both cases, the 
proposed technique appears to be more accurate. In term of 
runtime, the two methods are comparable for smaller grids. 
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However, for larger examples, our method actually outperforms. 
This is because that the method can generate very small reduced 
system at the topmost level without incurring too much error.  

5.3 Transient analysis results 
We applied our transient analysis on four grids as shown in 

Table 3. For each of these cases, we perform two matrix 
factorizations – one for DC solution and the other for transient 
analysis, followed by 40 steps of transient simulation using a fixed 
time step. For the first two grids in the table, the direct solve is 
applicable. We randomly choose the time-domain waveforms of 60 
circuit nodes and list the corresponding average and max relative 
errors in the table.  In Fig. 7, we also compare the time domain 
waveforms computed by the proposed technique against those of 
the direct solve. As can be seen, our results are fairly accurate. For 
the two largest grids to which a direct solve becomes too difficult 
to apply, the proposed technique is still able to complete the 
simulation in a reasonable amount of time.  
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Fig. 6.  Node voltage error distributions (a) RAMG (0.25M), 
(b) SCE(0.25M), (c) RAMG(0.42M) and (d) SCE(0.42M). 

Table 2. Comparison on DC analysis 

RAMG [4] SCE 
# of 

Nodes 
Max IR 

Drop 
Direct CPU  

Time Ave.  
Error 

CPU 
Time 

Ave. 
Error 

CPU 
Time 

0.25M 73mv 71m 16.8% 19s 2.16% 13s 

0.42M 51mv 14h * 22.3% 82s 4.83% 32s 

1.1M --- --- --- 390s --- 56s 

1.44M --- --- --- 450s --- 79s 

* Executed on a somewhat overloaded Sun Ultra Sparc workstation.  
6. CONCLUSION 

We have presented two techniques for fast power grid 
simulation. Firstly, we have exploited importance sampling to 
derive an efficient sampling based sensitivity analysis. The 
presented analysis retains the nice property of the Monte Carlo 
method such that the required sensitivities are obtained without 
solving the entire system. Furthermore, a symbolic relaxation 

based hierarchical method is presented for efficiently computing 
both the DC and transient responses for the entire grid. 
Experiments have confirmed the efficacy of both techniques.  

Table 3. Comparison on transient analysis  
SCE 

# of 
Nodes 

Direct  
Solve CPU 

Time 
Total 
CPU 
Time 

CPU 
Time 
/Step 

Ave 
Error 

Max 
Error 

0.25M 210m 1m30s 0.7s 0.10% 0.55% 

0.42M 599m 2m4s   1.8s 0.16% 0.57% 

1.1M --- 3m19s 2.3s --- --- 

1.44M --- 4m37s 2.4s --- --- 
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Fig. 7. Transient simulation of the 0.25M node grid. 
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