
Simulation of the Effects of Timing Jitter in Track-and-Hold
and Sample-and-Hold Circuits

V. Vasudevan
Department of Electrical Engineering
Indian Institute of Technology-Madras

Chennai-600036, India
Email: vinita@iitm.ac.in

ABSTRACT
In this paper, we analyze the effect of jitter in track and hold
circuits. The output spectrum is obtained in terms of the
system function of the track and hold. It is a fairly general
model in which the effect of input as well as clock jitter can
be included. The clock can have an arbitrary duty cycle, so
that the circuit could also approximate a sample and hold.
Using this model, it is possible to simulate the effects of jitter
in a track and hold using a standard circuit simulator. Three
cases are analyzed - long term jitter, correlated jitter with
exponential autocorrelation and white noise jitter. These
results are verified using Monte Carlo simulations.

Categories and Subject Descriptors: B.7.2 Design Aids:
Simulation

General Terms:Design

Keywords: Jitter, Sampling circuits

1. INTRODUCTION
One of the limiting factors in the performance of analog to

digital (A/D) converters is the jitter in the sampling clock.
It is possible that the clock has both amplitude noise as well
as phase jitter ( or equivalently timing errors). However, it
is well established that phase errors in the clock result in a
larger deterioration in performance.

The presence of timing errors in the clock means that
we effectively have a time-distorted signal, giving rise to
errors in the sampled voltage and hence a reduced SNR at
the output of the A/D converter. The methods that have
been proposed to predict the performance of the converter
in the presence of jitter essentially study the properties of
the following random process:

g(t) = f(t + x(t)) (1)

where x(t) is the random process characterizing the timing
jitter. One possibility is to assume that the jitter is much
smaller than the mean time period of the clock. The above
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equation can then be linearized. This converts the timing
error to an additive voltage error, which gives rise to an
increased noise floor. This approach has been used in [1,
2]. The linear approximation fails to give reasonable results
when the jitter is large. This is especially true when the
clock has long term jitter [3, 4]. Nonlinear discrete time
models for jitter analysis have been proposed in [5, 6, 7].
In these models, timing errors are converted to errors in
the value of the impulse sampled signal. The resultant sam-
ples are assumed to be perfectly periodic and a conventional
discrete time analysis is done to obtain the power spectral
density. In [6, 7], the focus is on long term jitter. In [5], the
effects of correlated jitter is also analyzed

A typical Nyquist rate A/D converter contains a track
and hold circuit followed by conversion of the held value to
a digital signal. In order to evaluate the A/D converter, we
need to know the performance limits of the track and hold
circuit. None of the above models can adequately describe
the spectrum at the output of a track and hold circuit. Lin-
earized models are not an option if there is long term jitter
and the discrete-time models are not a correct representa-
tion of the output spectrum of the track and hold circuit. In
this paper, we derive an expression for the output spectrum
of the track and hold circuit with jitter, in terms of its sys-
tem function. It is a fairly general model in which the effect
of input as well as clock jitter can be included. The clock
can have an arbitrary duty cycle, so that the circuit could
also approximate a sample and hold. Using this model, it is
possible to simulate the effects of jitter in a track and hold
using a standard circuit simulator. We compare the spec-
trum at the output of the track and hold with the spectrum
obtained by doing a discrete time analysis of the held value.
Three cases are analyzed - long term jitter, correlated jit-
ter with exponential autocorrelation and white noise jitter.
These results are verified using Monte Carlo simulations.

2. ANALYSIS OF THE TRACK AND HOLD
WITH JITTER

2.1 System Function Representation
Consider a track and hold that has clock jitter. Assume

that the input to the system is a jitter-free tone at ωo. Let
the timing jitter of the clock be characterized by the random
process x(t). This implies that the output of the system
should also exhibit some degree of timing uncertainty. In the
case of driven systems (as opposed to free running systems
such as a open loop oscillator), there is at most a constant

25.2

397



phase delay between the input and the output. Therefore,
the timing uncertainty of the clock will get directly reflected
at the output. However, the zero-crossings of the input will
not get affected by the clock jitter. Therefore, the output of
the track and hold can be written as:

y(t;ωo) = ejωotH(jωo, t + x(t))

= ejωot
∞X

n=−∞
Hn(ωo)e

jnωs(t+x(t)) (2)

where H(jωo, t) is the system function of the track and hold
and Hn(ωo) are the harmonics of the system function at ωo.
The autocorrelation of the output signal, Ry(t, t − τ ; ωo) =
E{y(t; ωo)y(t − τ ;ωo)}, can be written as:

Ry(t, t − τ ;ωo) =
X

n

X
m

Hn(ωo)Hm(ωo)
∗ej(ωo+nωs)τ

× E{ejωs(nx(t)−mx(t−τ))}ej(n−m)ωst

(3)

If x(t) is a wide sense stationary process with Gaussian
statistics, Ry(t, t − τ ;ωo) can be written as:

Ry(t, t − τ ;ωo) =
X

n

X
m

Hn(ωo)Hm(ωo)
∗ej(n−m)ωst

× ej(ωo+nωs)τe−ω2
s(n2+m2)

σ2
x
2 eω2

snmRx(τ)

(4)

Ry(t, t−τ ;ωo) is clearly cyclostationary in spite of the jitter.
The stationary part of the autocorrelation can be written as:

Rys(τ ; ωo) = ejωoτ
∞X

n=−∞
|Hn(ωo)|2ejnωsτe−n2ω2

s(σ2
x−Rx(τ))

= ejωoτ
∞X

n=−∞
|Hn(ωo)|2ejnωsτe−n2ω2

sσ2
x

×
∞X

k=0

(ω2
sn2Rx(τ ))k

k!

(5)

If we have an exponentially decaying autocorrelation (Rx(τ ) =

σ2
xe−a|τ |), Rys(τ ;ωo) can be written as:

Rys(τ ; ωo) = ejωoτ
∞X

n=−∞
|Hn(ωo)|2ejnωsτe−n2ω2

sσ2
x

×
∞X

k=0

(ω2
sn2σ2

x)ke−ka|τ |

k!

(6)

The power spectral density at the output can thus be written
as:

Sys(Ω; ωo) =

∞X
n=−∞

|Hn(ωo)|2e−n2ω2
sσ2

xδ(Ω − ωo − nωs)

+
∞X

n=−∞

∞X
k=1

|Hn(ωo)|2e−n2ω2
sσ2

x(ω2
sn2σ2

x)k

k!

× 2ka

(ka)2 + (Ω − ωo − nωs)2

(7)

The output power spectral density continues to be delta
functions at various harmonics with reduced power in all

harmonics other than the zeroth harmonic (which corre-
sponds to ωo). In addition, the correlation in the jitter re-
sults in an infinite series of Lorentzians about all harmonics,
other than n = 0. This increases the noise floor. It is also
interesting to note that the signal power at ωo depends very
slightly on the jitter. At ωo, the contribution of the second
term is negligible. It is also clear that the noise level will
reach a maximum for some value of the correlation frequency
‘a’. For values of ‘a’ much smaller than the clock frequency,
the noise floor will be low, since the Lorentzian function can
be approximately written as

L ≈ ka

(Ω − ωo − nωs)2

For very large values of ’a’, once again the noise floor is low
since the Lorentzian function can now be approximated to
1/ka. It reaches a maximum when a = (Ω − ωo − nωs)/k.
Since typically only the first few harmonics are significant,
the noise levels are close to the maximum when the value of
‘a’ is a little higher than the clock frequency. This behaviour
is, of course, a consequence of the model used. Since the
jitter power is bounded (=σ2

x), the noise floor will have to
eventually drop as the effective bandwidth becomes large.

In the presence of long term jitter, the output autocor-
relation is asymptotically stationary [3] and can be written
as:

Ry(τ ; ωo) = ejωoτ
∞X

n=−∞
|Hn(ωo)|2ejnωsτe−

1
2 ω2

sn2c|τ |
(8)

where c = σ2
xfs and σx is the period jitter in the clock. The

power spectral density is thus:

Sy(Ω; ωo) =

∞X
n=−∞

|Hn(ωo)|2 ω2
sn2c

1
4
ω4

sn4c2 + (Ω − ωo − nωs)2

+ |Ho(ωo)|2δ(Ω − ωo)

(9)

This implies that the output spectrum is a delta function
at the signal frequency. It is a Lorentzian function at all
the harmonics. Even in the presence of long term jitter, the
signal power is only marginally affected by the clock jitter.

If the jitter x(t) is a white noise process Rx(τ ) = 0 for a
non-zero value of τ . As a result, we have:

Rys(τ ;ωo) = ejωoτ
∞X

n=−∞
|Hn(ωo)|2ejnωsτe−n2ω2

sσ2
x , τ �= 0

=
∞X

n=−∞
|Hn(ωo)|2, τ = 0 (10)

Clearly, there is a discontinuity at τ = 0. It is not possible
to find an expression for the spectral density. This is be-
cause continuous-time white noise is basically an unphysical
process. However, it is possible to find the power spectral
density, if we consider a sampled signal and use discrete time
analysis [5, 6]. This is discussed in section 3.

Any periodic input signal can be expanded as a Fourier
series. The same analysis can be used for each of the har-
monics. Sy(Ω) will then be a superposition of the power
spectral density obtained for each of the harmonics. Also,
it can be easily seen that the any input jitter can be taken
into account by adding appropriate terms to the input tone.
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It is interesting to note that in all cases, the signal power
(output spectrum at ωo) is relatively unaffected by the jitter.
This is the consequence of our initial observation that the
clock jitter does not affect the zero-crossings of the input.
This is a useful result which can be used to distinguish be-
tween input jitter and clock jitter in experiments with track
and hold circuit. In section 5 we verify this using Monte
Carlo simulations, but some additional insight can be ob-
tained by looking at jitter in a track and held signal. This
is done in the following section.

2.2 Track and Hold - signal representation
Assuming that the duty cycle of the clock is nominally

0.5, the track and held signal corresponding to f(t) = ejωot

can be written as:

g(t) =
X

n

ejωot`u(t−nTs−Ts/2−xn/2)−u(t−nTs−xn)
´

+
X

n

ejωo(nTs+Ts/2)`u(t − (n + 1)Ts − xn+1)

− u(t − nTs − Ts/2 − xn/2)
´

(11)

In the above equation, xn, xn/2 and xn+1 are the are samples

of the random process x(t) at nTs, nTs + Ts
2

and (n + 1)Ts.
u(t) is the unit step function. After a rather involved, but
straightforward analysis, the stationary power spectral den-
sity can be written as:

Sg(f) = Sg1(f) + Sg2(f) (12)

where

Sg1(f) =
X
n,m

ej(ω−ωo)TaE

(
(Ts/2 + V )ej(ω−ωo)Y

×
“ sin((ω − ωo)(Ts/2 + V )/2)

((ω − ωo)(Ts/2 + V )/2)

”2

)
(13)

and

Sg2(f) =
X
n,m

ej(ω−ωo)Ta

× E

(
(Ts/2 + V )ej(ω−ωo)Y

“ sin(ω(Ts/2 + V )/2)

(ω(Ts/2 + V )/2)

”2
)

(14)

In the above equations,

Ta = (n − m)Ts

Y = xn − xm

V = xm − xm/2

In the presence of long term jitter, the value of Y could
become quite large. However, V is representative of the
period jitter and its standard deviation is of the order of σx.
For practical jitter values, this is usually a fraction of the
clock period. Now, V is Gaussian with E{V } = 0 and its
variance is independent of the running index m. Therefore
at ω = ωo, the spectral density can be written as:

Sg(f) =

 
1

2
+

1

2
E

(„
sin(ωo(Ts/2 + V )/2)

(ωo(Ts/2 + V )/2)

«2
)!

δ(f − fo)

(15)

It is clear that even in the presence of long term jitter, the
output power spectral density of the track and hold at the
input frequency is a delta function. The signal power at this
frequency depends very mildly on the jitter. Even if σx is
0.5Ts (which is highly unlikely), the signal power changes
by about 2.5%. For 1% clock jitter, the change in the sig-
nal power is 0.03%. This essentially means that the output
signal power at ωo is virtually independent of the jitter.
Note that output power spectral density at ωo due to the
“tracked” part of the signal is unaffected by jitter. This is
because irrespective of the clock jitter, the zero crossings of
the input signal are preserved in the track and hold. As
expected, the “held” part of the signal is slightly affected by
jitter.

3. COMPARISON WITH THE SPECTRUM
OF SAMPLED SIGNALS

In an A/D converter, the “held” value is converted to a
digital number and the output spectrum is obtained by find-
ing the discrete Fourier transform (DFT) of these samples.
In order to study the effect of clock jitter on this spectrum,
we can find the Fourier transform of the discrete time auto-
correlation of these “held” values. This of course, excludes
the effect of quantization. This analysis is similar to that
done in [6], but we also include the effect of correlated jitter.
The assumption here is that the signal is not significantly
attenuated by the track and hold, which is a reasonable as-
sumption. It will be seen that this spectrum differs in many
respects from the output spectrum of the track and hold.

Assume that we have N samples of the periodic signal
f(t) = ejωot. Since there is jitter in the sampling, there is an
error in the value of each sample. However, when finding the
spectral density, we assume that the samples are perfectly
periodic i.e. there is no timing error. Thus the timing error
in the sampling clock is converted to a voltage error in the
input signal and then analyzed. This is essentially what
we do, when we find the DFT of the output of an A/D
converter. If there is jitter in the sampling, the nth sample,
gn, can be written as:

gn = ejωo(nTs+xn) (16)

xn is the random process representing the timing jitter and
Ts is the time period of the sampling clock. The discrete
time auto-correlation can thus be written as:

E{gng∗
m} = ejωo(n−m)Ts E{ejωo(xn−xm)} (17)

If x(t) is a Gaussian white noise process, xn and xm are
uncorrelated for all n,m. Using the expression for the char-
acteristic function of the Gaussian processes, we get

Rg(n − m) = ejωo(n−m)Ts e−ω2
oσ2

x , n �= m

= 1, n = m (18)

Clearly, g is a wide sense stationary random process. The
power spectral density of g(n) can be written as:

Sg(f) = e−ω2
oσ2

xδ(f − fo) +
(1 − e−ω2

oσ2
x)

fs
(19)

If there is long term jitter, then x(t) is a Weiner process.
In this case, the autocorrelation can be written as:

Rg(n − m) = Rg(k) = ejωokTse−|k|ω2
oσ2

x
2 (20)
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The corresponding power spectral density is given by:

Sg(f) =
1

fs

1 − A2

1 + A2 − 2A cos( 2π(fo−f)
fo

)
(21)

where

A = e−
ω2

oσ2
x

2 (22)

The power in a frequency bin ∆f around fn can be written
as:

P (fn) =
1

π

»
tan−1

j
1 + A

1 − A
tan

„
π(fo − fn + 0.5∆f)

fs

«ff–

− 1

π

»
tan−1

j
1 + A

1 − A
tan

„
π(fo − fn − 0.5∆f)

fs

«ff–
(23)

As expected, at fn = fo the signal power tends to 1 as
A tends to 1, that is, if there is no jitter. As the jitter
becomes larger, the signal power decreases and noise level
increases. Unlike the case of white noise jitter, the spectrum
is approximately a Lorentzian - for frequencies close to the
signal frequencies, the power decreases as 1/(f − fo)

2. This
is different from the spectrum at the output of the track and
hold, which is a delta function at the signal frequency.

The case of correlated jitter with exponential autocorre-
lation is now considered. We assume that the discrete time
autocorrelation is a sampled version of the continuous auto-
correlation, i.e.

Rxd(k) = σ2
xe−a|k|Ts (24)

Assuming x(t) has Gaussian statistics, we can write:

Rg(k) = ejωokTse−ω2
oσ2

x

∞X
l=0

(ω2
oσ2

x)l

l!
e−la|k|Ts (25)

The corresponding power spectral density is given by:

Sg(f) =
e−ω2

oσ2
x

fs

∞X
l=0

(ω2
oσ2

x)l

l!

1 − B2

1 + B2 − 2B cos( 2π(fo−f)
fo

)

(26)
where

B = e−laTs

The power in a frequency bin ∆f about fn can be written
as:

P (fn) =
e−ω2

oσ2
x

π

∞X
l=0

(ω2
oσ2

x)l

l!"
tan−1

j
1 + B

1 − B
tan

„
π(fo − fn + 0.5∆f)

fs

«ff
−

tan−1

j
1 + B

1 − B
tan

„
π(fo − fn − 0.5∆f)

fs

«ff#
(27)

It can easily be seen that if a is large, i.e. the samples are
relatively uncorrelated, the value of B tends to zero for l �= 0.
In this case, Sg(f) tends towards white noise limit given by
equation (19). If a is small, i.e. the samples are highly cor-
related, the value of B tends to one and consequently P (fn)
at fn = fo tends to one. P (fn) is relatively small for all
other frequencies and decreases with an increase in correla-
tion. This behaviour is quite different from the continuous
time case, where the noise level reaches a maximum for some
value of a and then begins to decrease as a increases.

4. COMPUTATION
The track and hold circuit is modeled using a switch and

capacitor. In order verify the theory, the results obtained
using the analytical expressions were compared with Monte
Carlo simulations. The following procedure was adopted
for the simulations. The differential equation representing
the track and hold circuit is integrated for a fixed number
of clock cycles after steady state is attained. The integra-
tion was done using the trapezoidal rule along with time
step control based on the local truncation error. Jitter was
simulated as follows. In the case of long term jitter, xi is
effectively given by

xi =

iX
j=1

yj (28)

where yj are samples of a zero mean Gaussian random pro-
cess and are uncorrelated with each other. These samples
can easily be obtained using a standard normal random
number generator. In the case of exponentially correlated
jitter, samples of xi were obtained using the method de-
scribed in [8].

A fixed length of the steady state waveform is stored in a
table. In order to find the output power spectrum, we need
to first find the DFT of this waveform. To do this, the steady
state waveform is re-sampled at regular intervals. Linear
interpolation was found to be sufficient for this purpose.
The power spectrum, P (fn), of v(t) at the frequency bin
centered at fn is then given by [9]

P (fn) =
|V (fn)|2

N2
(29)

In the above equation, N is the total number of points used
in the DFT analysis and V (fn) is the nth point of the DFT
of v(t). This is assuming a rectangular window is used. If
any other window is used, an appropriate scale factor has
to be included [9]. The average of the power spectrum of
2-5 samples of the steady state waveform was used for the
comparisons.

In order to compute the power spectrum using equations (7)
and (9), we require the harmonics of the system function.
To get these harmonics, we require the steady state output
waveform over one clock cycle, which can be obtained by
solving for the track and hold circuit using a perfectly pe-
riodic clock. Once the harmonics are computed, the power
spectrum is obtained by integrating equations (7),(9) over
a frequency range ∆f centered at fn. This power spectrum
can then be directly compared with the results of Monte
Carlo simulations.

5. RESULTS
We have compared the results obtained using the ana-

lytical expressions against Monte Carlo simulations. For
these comparisons, it was assumed that the clock frequency
is 1MHz and the signal frequency is 100kHz. The capac-
itance value used was 1pF and the ON resistance of the
switch is assumed to be 10kΩ. In all cases, a rectangular
window was used. Windowing effects are clearly visible in
most of the plots, especially in and around “delta functions”.

Figures 1(a) and (b) show a comparison of the results ob-
tained for long term jitter. The period jitter was assumed
to be 1% and 10% of the clock period in the two cases
respectively. It is clearly seen that the harmonics due to

400



the clock have a Lorentzian structure. Whereas, at the fre-
quency corresponding to the input frequency, the spectrum
is a delta function as predicted by the theory. Moreover,
the output signal power at this frequency is relatively unaf-
fected by the jitter levels. As expected however, the power
at the clock harmonics reduces with increasing jitter. This
is unlike the spectrum of the held values, where it is dis-
tinctly a Lorentzian function at the input frequency and the
signal power reduces with increasing jitter as shown in Fig-
ure 2. Figure 3 shows a comparison of the spectrum of
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Figure 1: Spectrum at the output of the track and
hold for 1% and 10% clock jitter. The dotted line is
the average of two Monte Carlo simulations and cir-
cles represent values computed using the analytical
expressions.

the “held” values with the results of the discrete time anal-
ysis. As expected, the spectrum now becomes a Lorentzian
function, since the zero-crossing information of the input is
no longer accurate. The analytical results are seen to match
well with the Monte Carlo simulations. Figure 4 shows the
effect of long term input jitter. It is assumed that the clock
is perfectly periodic. As expected, at the signal frequency a
Lorentzian spectrum is obtained, whereas the harmonics due
to the clock are relatively unaffected by the jitter. There-
fore, at the output of the track and hold, it is possible to
distinguish between input and clock jitter.

Figures 5(a) and 5(b) show the spectrum at the output
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Figure 2: Comparison of the power spectrum of an
impulse sampled signal including long term jitter
with Monte Carlo simulations. The jitter levels are
considered are .1%, 1% and 10%.

of the track and hold if the clock jitter is correlated. The
correlation time is 10−3s and 10−7s in the two cases. The
jitter level is assumed to be 1% of the clock period. The
noise level is clearly lower for longer correlation times. The
crosses in 5(b) are the result of Monte Carlo simulation for
uncorrelated samples. This noise level is seen to be about
the same as that for correlation times of 10−7s. If the cor-
relation time is decreased further, the noise level obtained
using Monte Carlo simulations will not change. However, as
explained previously, the noise level using the analytical ex-
pressions will start to drop. Since Monte Carlo simulations
are basically discrete time simulations, their behaviour mim-
ics the behaviour of spectrum obtained using discrete time
analysis.
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Figure 3: Comparison of the spectrum of the ”held”
values with spectrum obtained using discrete time
analysis. The clock jitter is 1%.

6. CONCLUSIONS
In this paper, we have proposed a technique for simulating

the effects of jitter in a track and hold circuit. We have
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Figure 4: Effect of long term input jitter. The dot-
ted line is the result of Monte Carlo simulations and
the circles represent values computed using the an-
alytical expressions
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Figure 5: The effect of having correlated clock jitter.
The correlation times are 10−3s and 10−7s respec-
tively. The dotted lines are the results of Monte
Carlo simulations. The crosses in (b) are due to
Monte Carlo simulations with uncorrelated samples.

derived an expression for the output spectrum of the track
and hold with jitter in terms of its system function. This
makes it possible to simulate the effects of jitter using a
standard circuit simulator. The model is quite general and
it is possible to include the effects of both input as well as
clock jitter. However, it does not take into account second
order effects such as the effect of timing errors in one state
variable on the others. This is usually not significant in a
track and hold circuit, but it may have to be accounted for if
the method is to be extended to a general switched capacitor
circuit.

The main conclusions from the jitter analysis of the track
and hold are the following. The output spectrum of the
track and hold at the signal frequency continues to be a delta
function in the presence of clock jitter. The signal power is
also relatively unaffected by jitter, even in the presence of
long term clock jitter. When the jitter is correlated, the
noise level drops with increasing correlation times. At the
output of the track and hold, it is possible to distinguish
between the effect of input jitter and clock jitter quite easily.
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