
Verification of Device Drivers and Intelligent Controllers:
A Case Study

David Monniaux
CNRS

Laboratoire d’informatique de l’École normale supérieure
45, rue d’Ulm

75230 Paris cedex 5, France
David.Monniaux@ens.fr

ABSTRACT
The soundness of device drivers generally cannot be verified
in isolation, but has to take into account the reactions of
the hardware devices. In critical embedded systems, inter-
faces often were simple “volatile” variables, and the interface
specification typically a list of bounds on these variables.
Some newer systems use “intelligent” controllers that han-
dle dynamic worklists in shared memory and perform direct
memory accesses, all asynchronously from the main proces-
sor. Thus, it is impossible to truly verify the device driver
without taking the intelligent device into account, because
incorrect programming of the device can lead to dire conse-
quences, such as memory zones being erased.

We have successfully verified a device driver extracted
from a critical industrial system, asynchronously combined
with a model for a USB OHCI controller. This paper studies
this case, as well as introduces a model and analysis tech-
niques for this asynchronous composition.

Categories and Subject Descriptors
D.2.4 [Software engineering]: Software/Program Veri-
fication—Correctness proofs, Formal methods, Validation;
D.4.5 [Operating systems]: Reliability—Verification; F.3.1
[Logics and meanings of programs]: Specifying and Ver-
ifying and Reasoning about Programs—Invariants, Mechan-
ical verification, Specification techniques

General Terms
Verification, Reliability

Keywords
Device driver, verification, USB, OHCI, asynchronous, di-
rect memory access, linked lists, parallelism

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’07, September 30–October 3, 2007, Salzburg, Austria.
Copyright 2007 ACM 978-1-59593-825-1/07/0009 ...$5.00.

1. INTRODUCTION
Safety-critical systems consist of some application pro-

gram (control/command, surveillance...) and some system
code. Norms (such as DO-178B [12] for avionics) establish
a hierarchy of levels of safety requirements, depending on
the severity of the consequences of a failure of the system.
Systems at the highest levels typically do not include a full
operating system, but rather a limited basic input/output
subsystem.

In the past, we have successfully verified the absence of
runtime errors in several classes of safety-critical programs
[7, 3, 2]. These programs interfaced to the outside world
through memory-mapped input/output registers. Even if
external co-processors were used, such as for efficient dig-
ital signal processing (DSP), they sent and received data
through a shared memory bank. No synchronization was
needed; the only hypothesis was that reads and writes of the
data words passed through such interfaces were atomic.1

Such systems could be verified with as simple an input/out-
put specification as: reads from integer registers can yield
any value in the corresponding integer type; reads from
floating-point DSP fields can yield any value in a certain
user-specified interval (because the DSP cannot output val-
ues outside this interval). It is also possible to ask the ana-
lyzer to verify that outputs are within certain bounds.

There is now growing pressure, even in safety-critical in-
dustries, to move from proprietary or specialized busses to
off-the-shelf components used in personal computers (such
as the Universal Serial Bus, USB) or derived from them
(such as the AFDX bus, derived from Ethernet). These
busses were originally not designed for safety-critical sys-
tems. Both the protocols and the host controllers (interface
circuits) used are orders of magnitude more complex than
the simple ones previously used:

• They implement features such as hot-plugging, plug-
and-play, dynamic reconfiguration etc. that are un-
needed in most safety-critical systems, which have a
static design. Even if those features are unneeded and
unused, they result in complex initialization and pro-

1Atomicity is essential even for such a simple setup. If a
32-bit word is written to shared memory in such a way that
the write is split into two 16-bit writes, there is a chance
that the reader will see inconsistent data. For instance, if
a value goes from 0 to -1 (0xFFFFFFFF in hexadecimal,
2-complement), there may be a brief instant during which
the value may be 0xFFFF0000 or 0x0000FFFF. The same
applies if the read is non-atomic.

30

gramming techniques.2 It is in general impossible to
alter the controller design to get rid of such undesirable
functionality.

• They have higher bandwidth and thus implement effi-
cient transfer techniques: direct memory access (DMA)
and worklists. Thus, each host controller essentially
behaves like an asynchronous process modifying the
memory of the main system.

In order to ensure that a safety-critical system does not en-
counter runtime errors (“crashes”, invalid operations, arith-
metic overflows, invalid array or pointer accesses, data cor-
ruption caused by the intelligent controllers...), it is thus
necessary to verify not only the application code, but also
the device drivers, and even the device drivers composed
asynchronously with the “intelligent” host controllers.

We thus have verified the driver code interfacing a critical
system with a USB OpenHCI [5] host controller. OpenHCI,
or OHCI, is a specification for how USB 1.1 host controllers
should be programmed3 There exist a variety of chips, or
IP blocks,4 implementing that specification. The specifica-
tion leaves significant leeway as to possible behaviors of the
implementation.

The driver was imposed to us as a C program. It is not an
academic example, and uses many features that often cause
problems for software analysis, such as pointer address com-
putations and deeply linked data structures. However, this
driver is simpler than drivers found in general purpose op-
erating systems, since these have to handle dynamic recon-
figurations (e.g. plugging in a mouse in the middle of op-
erations). Since the embedded system targeted has a static
layout (peripherals are plugged into known positions), data
structures are simply and statically allocated in arrays. Still,
since the USB controller uses linked lists for its worklists, the
analysis had to cope with dynamic data structures (that is,
data structures were pointers are dynamically updated).

The OHCI specification is informal, written in English,
and we thus had to developed a formal model for it. Because
we intended the industrial end-users to be able to under-
stand and modify the specification, we also wrote this model
in the C language as an asynchronous process. This pro-
gram, however, is not a software implementation of OHCI:
since what matters for verification is not to model precisely
the behaviors of the system, but only a super-set of these
behaviors, we left out many aspects such as timing delays
and bandwidth constraints. Our host controller simulator
often uses non-deterministic choices (for instance, at any
moment, the current transmission may be aborted and an
error reported), which would rule it out as a concrete simu-
lator.

The interface between the controller and the driver does
not operate according to the principles of shared memory

2The one controller feature that caused us significant prob-
lem for verifying the driver we considered, the done queue,
was actually unused by the driver, but there was no way to
turn it off in the controller. Thus, needless, complexity in
the controller can result in much harder analysis.
3There exists another specification for USB 1.1 controllers,
known as UHCI, and a specification called EHCI for USB 2.0
controllers. Linux users may check for the {e,o,u}hci_hcd
kernel modules, where hcd stands for host controller driver.
4IP blocks are off-the-shelf designs for parts of a custom
microchip.

programming that are usually advocated in the software en-
gineering literature. There are no mutual exclusion prim-
itives (e.g. semaphores, mutexes); there only exist coarse-
grained flags for blocking certain operations of the controller,
but the interface is designed so that these should be used
minimally. The correctness of the system relies on the very
weak hypothesis that 32-bit aligned read and writes to non-
cacheable shared memory are atomic and not reordered.

2. SINGLE-THREAD ANALYSIS
We have extended the Astrée static analyzer in order to

perform that analysis. Astrée was initially designed solely
for single-threaded code; however, in order to adapt it for
the form of parallelism exhibited by the systems considered
in this paper, we leveraged several of the techniques already
used for single-threaded code. We shall thus describe briefly
the single-threaded analysis, and refer the reader to the bib-
liography for details.

Astrée [7, 3, 2] is a static analyzer originally designed for
verifying safety properties of large-scale critical control/com-
mand programs as found in e.g. avionics. Such software
contains many floating-point computations and digital fil-
ters, but use of pointers was limited to passing by reference
and other similar simple uses. Pointer computations (that is,
computing on addresses as arithmetic objects) were initially
prohibited.

Astrée works as follows. It represents sets of memory
states using symbolic techniques (for instance, bounds on
numeric variables). A set of memory states (or, more gen-
erally, execution traces) S is abstracted by a symbolic value
S♯, as long as S ⊆ γ(S♯). The collecting semantics of a pro-
gram fragment P maps a set of memory states S to another
JSK(S). The analyzer will not attempt to compute this se-
mantics exactly (because of undecidability or very large state
space issues) but rather to map an abstraction S♯ of the in-
put environment to an abstraction JSK♯(S♯) of the output
environment.

The analysis must not “forget” some reachable states, thus
the soundness condition

JP K ◦ γ(S♯) ⊆ γ ◦ JP K♯(S♯). (1)

This inclusion relation reads as follows: if one starts in a
state abstracted by S♯ (a symbolic representation of a set
of initial states) and executes the program P , then, for all
possible states s′ reachable at the end of the execution of
P , s′ should be abstracted by JP K♯(S♯), the result of the
symbolic (or “abstract”) execution of P over S♯. We say
that a state s is abstracted by S♯, noted s ∈ γ(S♯), if the
symbolic set of states denoted by S♯ contains s. For instance,
if S♯ includes an interval constraint x ∈ [a, b], then any s

abstracted S♯ must verify s(x) ∈ [a, b], where s(x) is the
value of variable x in state s.

The analyzer also flags for any“abstractly reachable”state
that results in a runtime error or other violation of user-
specified assertions; warnings are then issued. Since the
analysis is not exact, false alarms — warnings about prob-
lems that cannot happen in reality — may be issued. These
are inevitable, since it is impossible for any analysis method
to be both sound (warn about all possible problems) and
complete (no false alarms), barring hypothesis such as a fi-
nite state space (and not a large one, because of complexity
reasons).

31

Most of the complexity inside the Astrée analyzer con-
cerns the analysis of floating-point computations, which is
outside the scope of this paper The tool was later extended
to be able to analyze programs doing pointer arithmetic.
Pointers are modeled as base+offset, where the base is a tag
for a variable in the source code, and the offset is counted
from the start of the memory block containing the variable.
This is important, since many of the structures used by the
driver and controller are in a single very large compound
variable mapped in a non-cacheable memory space.

Offsets are analyzed using non relational abstract domains:
intervals [m, M] and congruences a + bZ; the former model
the bounds of the pointer and the second the stride (if a
pointer addresses 16-byte structures, the stride will be 16).
A special domain representing finite sets of integers is used
to abstract irregular access patterns (accesses that do not
have a well-defined stride). Offsets may also be constrained
using relational domains, e.g. octagons [9].

For better analysis of controllers, we added a domain that
keeps track, for each integer variable, which bits of this vari-
able can be 0 or 1; this is because hardware features are often
turned on and off by single bits inside command or status
words and the analysis has to take these into account.

The analyzer implements dynamic trace partitioning [8]:
instead of analyzing a code fragment for all possible input
states, it splits the input states according to some predicates
(the number of iterations in a loop, the value of a variable, or
an arbitrary test) and analyzes the code fragment separately
in each context. Consider the following program:

if (condition) {

a;

} else {

b;

}

c;

Partitioning traces on the first step means that the con-
tinuation c of the test will be analyzed separately in each
context, as though the program were:

if (condition) {

a;

c;

} else {

b;

c;

}

Partitioning is useful in many circumstances where a com-
plex, often specialized, relational domain would be useful.
Earlier work on Astrée described examples where analysis
of floating-point computations is much simpler if one e.g.
partitions one test, such as the sign of a variable. [8][sec. 1]
A common occurrence is when one has a pointer, or an ar-
ray index, that may point to a variety of locations that each
verify a local invariant: that is, there exists for all values
of i a certain relationship between, say, x[i] and y[i], but
this relationship is not true if one takes x[i] and y[j] for
i 6= j. If we do not partition, then our numeric abstract do-
main must reflect this relationship. By partitioning accord-
ing to the value of i, we can use a much simpler numeric
domain. [8, sec. 4.2] This partitioning feature was important
for the analysis of parts of the driver that perform updates
to parts of data structures that have strong relationships,

e.g. pointers defining the beginning and the end of the same
data block: if p points to a structure with two fields begin

and end, then it is better to perform the analysis for all pos-
sible points-to values of p and keep relationships between
p->x and p->y.

One of the most delicate issues in program analysis, and in
Astrée, is automatically inferring loop invariants. Consider
the following loop:

while (condition) {

code;

}

Leaving aside techniques such as loop unrolling and parti-
tioning, this loop is analyzed by computing an approxima-
tion of the set of reachable states at the beginning of the
loop, at point A:

A:

if (! condition) goto B:

code;

goto A;

B:

The exact set is the least fixpoint of X 7→ X0∪JcodeK(X \
JconditionK). In order to compute an over-approximation
of this set, Astrée uses widenings. [6, sec. 4.3]. It chooses
an ascending sequence of abstract sets and test if these are
invariants, using the analysis as feedback (and stops once an
invariant is obtained).

The output of the analyzer is a list of program locations
and possible runtime errors. Errors that are detected are:

• out-of-bounds array access;

• null pointer and incorrect pointer dereferencing;

• invalid pointer arithmetic;

• arithmetic overflow, division by zero, etc.

3. MODELING AND ANALYSIS OF
PARALLELISM

We describe the behavior of the controller as the disjunc-
tion of many atomic actions, such as: writing a 32-bit word
to shared memory, loading a new pointer from shared mem-
ory, etc. Each of these actions is active only if certain guard
conditions are met, such as: a bit in a control register is set,
or two pointers are different.

These actions represent a coarse over-approximation of
what the controller can actually do. In an actual controller,
there exist a variety of sequentiality constraints: some ac-
tion is possible only after another has taken place, as well as
timing constraints: because of bandwidth limitations, trans-
fers cannot happen instantly. However, a fine-grained model
of the controller would be difficult to write, difficult to de-
compose into atomic actions, and would unduly complicate
the analysis. Furthermore, it seems very reasonable that
the correctness of a driver does not depend on fine timing
constraints on an external device.

We group all atomic actions of the controller in a sin-
gle atomic action a, which is essentially the nondetermin-
istic choice between all possible actions constrained by the
guards.

Let pi be the atomic steps of execution of the main pro-
gram . A trace of execution of the program composed with

32

the controller is a sequence of steps p1a
∗p2a

∗p3a
∗; any num-

ber of a steps can be performed between each atomic step
of the main program. We could analyze the program in this
model, however this would be very expensive.

As with many other parallel program analysis techniques,
we implement a form of partial order reduction. Program
steps and controller steps do not interfere unless the program
touches the shared memory. As a consequence, we only con-
sider traces of the form p1p2a

∗p3a
∗ where each a∗ precedes

a step pi such that pi reads or writes shared memory. The
shared memory zones are known from the documentation of
the driver and can be specified in the configuration file of the
analyzer. It is possible to check the correctness of these indi-
cations by checking that the controller never reads or writes
outside of its own private variables and the indicated zones;
however, this feature is not implemented in our prototype.

Astrée analyzes the main program (application code and
USB driver) as though it were single-threaded, thus con-
sidering “p” steps. However, before any memory access, it
checks whether it concerns shared memory. If so, the ana-
lyzer does the equivalent of analyzing the following loop:
while(random_choice) { a }

through an approximate fixpoint computation, before ana-
lyzing p.

4. THE USB CONTROLLER AND DRIVER
Now that we have described the analysis, we shall now

describe the system to be analyzed, consisting of a controller
and a driver.

4.1 OHCI Controller
We shall here summarize the most salient points of the

OHCI host controller specification. Each host controller
communicates with the main processor through several chan-
nels [5, §3.3.2]:

• a memory-mapped register bank

• a shared-memory area known as HCCA

• linked lists of endpoint descriptors (ED) and transfer
descriptors (TD), occasionally building trees (in some
sense),

• various zones for direct-to-memory (DMA) transfers,
containing the data read or written to USB devices.

The main difficulty, with respect to program analysis, are
the singly-linked lists of ED and TD. These lists are con-
currently updated by the driver and the host controller.
An endpoint is some kind of functions attached to devices
(for instance, a USB sound card will have an endpoint for
transmitting sound samples, another for mixer data, etc.).
Endpoints can be of four types (control, bulk, interrupt,
isochronous). Each endpoint is described by an ED, and to
each ED is attached a TD list as in Fig. 1.

In general, there is no need to alter the endpoint lists
unless a device is added or removed. In embedded systems
of the kind considered here, there is no “hotplugging” and in
fact the position on the busses of all devices is known at the
design stage, thus the endpoint list can safely be initialized
once and for all.

Each TD describes a chunk of data yet to be sent or re-
ceived by the controller. The TD lists are are modified when-
ever the driver wishes to send or receive USB data. Because

TD TD TD

TailP

ED

HeadP

TD

Figure 1: Each TD points to the head and tail ele-

ments of its transmission list. The last element is a

“dummy”.

transmission requests are a frequent event, the OHCI inter-
face allows adding new requests to the end of the TD lists
with no mutual exclusion mechanism, except the assumption
that a 32-bit write is atomic. Each ED has a pointer to the
head and tail of the associated TD list (Fig. 1). The last el-
ement of the list is a “dummy” element, the controller never
attempts transferring it. In order to add a new request to
the transmission list, one has to fill the required information
in the “dummy” tail TD, allocate a new“dummy”TD, make
the tail TD point to it, then advance the tail pointer to the
new “dummy” element through an atomic write.

The controller processes TDs in sequence. For each TD,
it transfers the corresponding data from or to main memory
using direct memory access (DMA), asynchronously from
the main processor. Each TD contains start and end address
for a DMA data buffer. The controller signals successful
or unsuccessful completion by positioning appropriate flags
inside the TD. The controller transfers completed TDs to
a “done queue”, another singly-linked list: the “next” field
of the newly completed TD will point to the last element
moved to the done queue (obtained through the done queue
pointer), and the done queue pointer will then point to the
newly completed TD.

There exists two types of TD: generic TDs (16-byte long)
and isochronous TDs (32-byte long). Isochronous TDs are
used for isochronous endpoints, while generic TDs are used
for the four other types.

4.2 Main Program
The main program is of the following form:

driver_initialization();

device_initializations();

application_initialization();

while (TRUE) {

wait_for_clock();

application();

driver(); /* processing of TD lists */

}

After the driver and the USB controller are initialized, the
driver initializes the various devices through various types
of control messages, and checks whether they correctly re-
spond. Then, the system enters a synchronous loop.

At each clock tick, the driver monitors its various TD lists,
possibly detects errors, and initializes new TDs. Because
this is a sensitive embedded system, no dynamic memory
allocation is used; the various lists are allocated in arrays,
and pointer arithmetic is used to address the elements.

33

The only interaction of the application with USB is to read
and write elements in the data buffers. Since the layout of
the system is fixed, it knows exactly which endpoint sends
which data and can directly find the right buffer. These
buffers are sent to the devices or received from them using
DMA. There are no function calls from the application to
the driver (and neither in the reverse direction); we thus
have been able to ignore the application when analyzing the
driver.

5. SPECIFICATION AND ANALYSIS
We wrote a 400-line simulation of a OHCI controller. This

simulation is essentially a series of non-deterministic choices
between the various atomic actions that can be performed.
For the sake of simplicity of design, and also of simplicity
of communication with industrial partners, this simulation
is also written in C, but makes liberal use of nondetermin-
istic choice primitives. It would thus not be usable as a
concrete simulator of a controller, but is suitable for anal-
ysis. The whole of the controller actions is summarized in
a single procedure. Because there are three controllers in
the system, there are three calls to that procedure, passing
different register areas as parameter.

The simulation works as follows: if the controller is busy
transferring a data block, then it can choose between trans-
ferring the next 32-bit word in the data block, signaling an
error, or moving to the next data block (and thus the next
TD). If the TD is finished, then it can move to the next
ED. Note that error signaling is possible at any moment
(it is always possible that the controller signals a hardware
malfunction, for instance some wire could have been cut or
unplugged), thus it would be impossible to prove the correct
transmission of data using this simulation.

The main program is given as C source code, approxi-
mately 3000 line long. The relationship between the driver
and the controller is specified in a configuration file: shared
memory zones are listed, with the name of the simulation
procedure. The analysis concerns both the initialization
phases and the regular runtime.

The main goal of the analysis is to prove that neither
the driver nor the controller will transfer data incorrectly
(pointers outside allowed memory ranges etc.). Such incor-
rect transfers could lead to the driver and application crash-
ing. The analysis, however, does not verify that transfers
are properly programmed: this would involve modeling the
devices, the USB protocol and issues such as bandwidth,
which is beyond the capabilities of our analysis tool.

The main limitation to that approach is the difficulty of
specifying the controller as a set of atomic actions. The
specification of the controller given to us is an English-
language technical manual. As with other informal spec-
ifications, there are delicate issues, such as the instant at
which certain memory accesses take place, that can be mis-
understood. Thus, it is not obvious that the formal specifi-
cation (as a nondeterministic program) encompasses all the
behaviors permitted by the English specification (not count-
ing whether or not the actual hardware implementation of
the controller fits the English specification!).

We had to slightly alter the driver and host controller
specification so as to adapt them to what Astrée can han-
dle. The driver occasionally used goto’s in order to signal er-
rors, in a way that Astrée does not analyze precisely due to
limitations in the partitioning heuristics; we slightly rewrote

the code (better partitioning could achieve the same results).
In addition, Astrée, though it can handle some untyped
manipulations in programs (such as: taking a pointer, stor-
ing it into an integer, then taking the integer as a pointer),
could not cope with the practice of the OHCI specification
of putting information is the two low-order bits of pointers
supposed to be aligned on 4-byte boundaries. We removed
that information and the associated bit-masking operations.
Finally, we removed some“padding”in some data structures,
which caused Astrée to introduce a great number of useless
variables. We feel that neither of these changes substantially
altered the substance of the verification performed, and are
just the results of minor limitations of Astrée.

The main difficulty in the analysis of the system is the
“done queue”. In simple embedded contexts, such as the
one we studied, there will be typically one static pool of
TD elements per ED, and thus, a priori, all TD lists should
be separate, leading to a simple, non-relational, separation
invariant: each ED points into the corresponding TD pool,
and each element in a TD pool may point only into the same
TD pool. However, the OHCI controller, after completing
the transmission of a TD, moves the TD to a global “done
queue”, breaking this separation: the “next” pointer of the
TD no longer points to the next TD in the processing list,
but to the last element inserted into the“done queue”, which
may be from a different ED. There still is a separation prop-
erty, but it is a complex, dynamic, one: at any moment,
the set of elements reachable from the list head associated
with an ED is in a single TD pool, but elements from that
TD pool may also be in the done queue. An element at the
same memory location will move from one queue to another.
Ironically, the “done queue” is never used by the driver that
we were shown.

The driver submitted to us could however be proved cor-
rect (that is, proved that it cannot exhibit runtime errors)
even in the presence of the done queue. The analysis was in-
capable of inferring complex dynamic separation properties,
thus, due to the building of the“done queue”, it confused 16-
bit generic TDs and 32-bits isochronous TDs: after a while,
all TD pointers used by the driver were deemed capable of
pointing to most other used TD pointers. It did not matter
because all TD data structures had been padded to the same
alignment by the driver’s designers; thus, even if the anal-
ysis took into account some spurious behaviors (processing
of 16-bit TDs as though they were 32-bit), these did not
introduce false alarms.

Analysis is completed in 10 hours on a 2 GHz PC, using a
few hundred megabytes of memory (in comparison, disabling
the“done queue”results in an analysis time of 6 minutes). In
either case, there are no alarms, meaning no possible runtime
errors, and no false alarms. The absence of true alarms
is not surprising: even though the controller implements
some sophisticated data structures (dynamically rearranged
linked lists), the driver has a conservative, simple design, and
has been well tested before. We expect that more complex
developments, with more transfer modes, will need more
advanced pointer analyses.

6. RELATED WORKS AND CONCLUSION
We have shown that it is possible to prove the absence

of runtime errors in simple (yet real) drivers that interact
with active, “intelligent” devices, even with shared pointer
variables. To our knowledge, all earlier works had focused

34

either on toy systems, either ignored the controller. As a
consequence, some bugs due to active controllers may have
stayed unnoticed.

The importance of checking device drivers in addition to
higher level code has been recognized by practitioners from
industry. According to Microsoft, in 2003, 85% of recently
failures in Windows XP came from the drivers [13]; it is
also reported that for certain kinds of errors (lock/unlock),
Linux device drivers contain as much as seven times the rate
of errors as the main kernel code [4].

There exist two different approaches towards the issue of
bugs in device drivers. The one that we considered is pro-
gram verification: the analysis tool outputs sound results;
that is, assuming sound modeling of the hardware, if the
analysis tool lists no possible runtime errors, none can hap-
pen at runtime. However, soundness often comes at a steep
price: the analysis may be too costly, or it may refuse to run
on some programs. As a consequence, bug-finding methods
have been proposed: the goal is not to prove the absence
of errors in the system, but to efficiently find some of the
existing bugs.

Bug-finding methods typically exclude parts of the sys-
tem (other threads, intelligent devices...) that are difficult
to analyze; even with single-threaded code, these techniques
might be unsound. The point is to obtain, in practice, lists of
warnings that, for the most part, are “true”warnings, corre-
sponding to problems that can really happen, as opposed to
problems that cannot happen but are warned against as the
result of the imprecision of the analysis. This list, however,
needs not be exhaustive; that is, it is acceptable that some
true errors may be ignored, if trying to find them all would
come at the expense of listing many “false” warnings. Such
techniques target non-critical code such as the operating sys-
tem and the applications typically used on personal comput-
ers, where some infrequent crashes and other dysfunctions
are accepted. Bug-finding tools should thus concentrate on
the“low-hanging fruit”first. Bug-finding methods have been
proposed for device drivers:

• The Slam group at Microsoft develops tools based on
model-checking of boolean abstractions. [1] Initially,
the boolean abstraction contains only the control-flow
of the driver and boolean variables, and then it can
be refined using additional predicates. The tool veri-
fies that the device drivers interact correctly with the
application programming interface (API) of the oper-
ating system; that is, issues like never freeing the same
buffer twice, or locking and unlocking the same lock in
alternation (but not locking it twice in a row). It does
not model “intelligent” external devices — it does not
model concurrency with shared memory at all —, it
models integers as Z “ideal integers” and not a fixed-
width bit vectors and can miss errors due to overflow,
and does not check memory safety at all — in fact
it assumes that the code contains no “wild pointers”.
Thus, not only is their tool unsound, but also it ignores
the issue that we model in this paper, that is, the in-
teraction between a device driver and an asynchronous
device. This tool is, however, capable of scaling up to
real-life system, and is now used commercially as the
Static Driver Verifier.

• Some less formalized, more ad-hoc techniques have
been applied with great success for finding bugs in

Linux and OpenBSD kernel code [4]. Techniques used
may be statistical, may attempt detecting “inconsis-
tent” usage, etc. The goal of such heuristics is not
to provide programmers with some insurance that the
program functions well, but to quickly and automati-
cally point to probable bugs in the code.

Because the verification of C programs, with all the se-
mantic oddities and pointer arithmetic, is difficult, some
have advocated replacing C with a“safe subset”(e.g. MISRA
C [10]) or some type-safe language related to it (e.g. CCured
[11]). Both of these approaches are likely to be defeated
by the way that hardware controllers are designed. These
approaches essentially advocate getting rid of “unsafe” con-
structs, either in a heuristic way (industrial “safe subset”
guidelines) or in a more formal way, founded in program
semantics. The foremost unsafe constructs are the juggling
of pointers, with unsafe conversions to and from arithmetic
types, pointer arithmetic, etc.; however, these are largely
imposed by the hardware design.

The object of this paper is a verification technique. The
goal is to prove the absence of errors in critical code, and
finding bugs is only a secondary objective. Critical code
tends to be simpler than desktop or server operating sys-
tems, and to be operated in a more constrained environ-
ment. For instance, the layout of the system is generally
fully known at the design stage and thus no dynamic “hot-
plug” facility is needed. One of the bugs listed in a Win-
dows driver [1, §6] occurs if a connector is unplugged at the
same time that the operating system performs a close re-
quest; this example is emblematic of race conditions that
may be difficult to reproduce and occur in rarely exercised
code paths. Such complexities are avoided if there is sim-
ply no code for dynamic reconfiguration, no dynamic data
structures, etc. Critical code is written according to strin-
gent guidelines [12]; also, because there are fewer cases to
test, the code will probably have been thoroughly tested;
therefore there is little hope of finding many bugs if the
analysis tool is applied at the end of the development pro-
cess (but a bug-finding tool may come handy to speed up
testing and development). Thus, the goal of the verification
tool is to find the very last bugs, and to prove the absence
of bugs.

Future work in that area should include:

• Better efficiency. The use of partitioning, which is very
costly, should be limited. Even though some partial
order reduction is already used, we think the number
of interleavings considered is still too large.

• Efficient relational pointer abstract domains (e.g. for
analyzing dynamic linked lists) should also be devel-
oped. These domains should be compatible with real-
life low-level programming language, e.g. allow pointer
arithmetic. We expect that future work for analyz-
ing such kind of mixed systems (driver and intelligent
controller) should include some better pointer shape
analysis techniques than the ones that we used.

From a software engineering point of view, we propose
methodological changes in the development of checking of
system software used in safety-critical system. In our expe-
rience, it is never the case, except for very simple programs,
that analysis succeeds the first time. The specification may
be incorrect, the analyzer may be imprecise; there may be

35

abstract domains to add, or simply some abstract transfer
functions that can be made more precise. When the analyzer
issues warnings, one has to find their origin. Of course, it
is better in that circumstance if the analyzer supplies back-
ward analysis results (Astrée does not yet do so). However,
in practice, one also has to have an intuition of what the pro-
gram is doing, and the kind of invariants that it relies on,
so as to be able to check whether the analysis results fit ex-
pected behaviors and to refine the analysis if necessary. This
suggests that analysis should be performed in collaboration
with the designers of the embedded system, who presumably
know well what should happen, at the time when the sys-
tem is designed. This contrasts with the usual testing and
bug-finding approaches, where generally the testers are kept
separate from the developers so that they can have a fresh
mind and even attempt things that “should be working”.
However, in the case of program analysis, this separation
is counter-productive; the verification team will essentially
have to reverse-engineer the program before attempting to
refine analysis.

7. REFERENCES
[1] Thomas Ball, Ella Bounimova, Byron Cook, Vladimir

Levin, Jakob Lichtenberg, Con McGarvey, Bohus
Ondrusek, Sriram K. Rajamani, and Abdullah
Ustuner. Thorough static analysis of device drivers. In
EuroSys. ACM, 2006.

[2] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L.
Mauborgne, A. Miné, D. Monniaux, and X. Rival.
Design and implementation of a special-purpose static
program analyzer for safety-critical real-time
embedded software. In The Essence of Computation:
Complexity, Analysis, Transformation, number 2566 in
LNCS, pages 85–108. Springer-Verlag, 2002.

[3] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L.
Mauborgne, A. Miné, D. Monniaux, and X. Rival. A
static analyzer for large safety-critical software. In
PLDI, pages 196–207. ACM, 2003.

[4] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth
Hallem, and Dawson Engler. An empirical study of
operating systems errors. In SOSP, pages 73–88.
ACM, 2001.

[5] Compaq, Microsoft, National Semiconductor.
OpenHCI Interface Specification for USB, 1.0a edition,
2006.

[6] Patrick Cousot and Radhia Cousot. Abstract
interpretation and application to logic programs. J.
Logic Prog., 2-3(13):103–179, 1992.

[7] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux, and
Xavier Rival. The ASTRÉE analyzer. In ESOP,
number 3444 in Lecture Notes in Computer Science,
pages 21–30, 2005.

[8] L. Mauborgne and X. Rival. Trace partitioning in
abstract interpretation based static analyzers. In
ESOP, number 3444 in LNCS. Springer-Verlag, 2005.

[9] A. Miné. A few graph-based relational numerical
abstract domains. In M.V. Hermenegildo and G.
Puebla, editors, SAS, Lecture Notes in Computer
Science 2477, pages 117–132. Springer-Verlag,
September 2002.

[10] MISRA: The Motor Industry Software Reliability
Association. MISRA-C:2004 Guidelines for the use of
the C language in critical systems, October 2004.

[11] George C. Necula, Scott McPeak, and Westley
Weimer. Ccured: type-safe retrofitting of legacy code.
In POPL ’02: Proceedings of the 29th ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 128–139. ACM Press,
2002.

[12] RTCA / EUROCAE. DO-178B / ED-12B: Software
Considerations in Airborne Systems and Equipment
Certification, 1992.

[13] Michael M. Swift, Brian N. Bershad, and Henry M.
Levy. Improving the reliability of commodity operating
systems. In SOSP, pages 207–222. ACM, 2003.

36

	Introduction
	Single-Thread Analysis
	Modeling and Analysis ofParallelism
	The USB Controller and Driver
	OHCI Controller
	Main Program

	Specification and Analysis
	Related Works and Conclusion
	References

