
Loosely Time-Triggered Architectures based on
Communication-by-Sampling∗

Albert Benveniste
IRISA/INRIA

Campus de Beaulieu
35042 Rennes cedex, France

benveniste@irisa.fr

Paul Caspi
VERIMAG/CNRS

2 avenue de Vignate
38610 Gières, France

paul.caspi@imag.fr

Marco Di Natale
ReTiS Lab.

Scuola Superiore S. Anna,
Pisa, Italy

marco@sssup.it
Claudio Pinello

Cadence Berkeley Labs
1995 University Ave, Suite 460

Berkeley, CA 94704, USA
pinello@cadence.com

Alberto Sangiovanni
Vincentelli

EECS Dept., U.C. Berkeley
Berkeley, CA, USA

alberto@eecs.berkeley.edu

Stavros Tripakis
Cadence Berkeley Labs

1995 University Ave, Suite 460
Berkeley, CA 94704, USA

tripakis@cadence.com

ABSTRACT
We address the problem of mapping a set of processes which
communicate synchronously on a distributed platform. The
Time Triggered Architecture (TTA) proposed by Kopetz for
the communication mechanism of a distributed platform of-
fers a direct mapping that would preserve the semantics of
the specification. However, its exact implementation may,
at times, be problematic as it requires the distributed plat-
form to have the clocks of its components perfectly syn-
chronized. We propose as implementation architecture a
relaxation of TTA called Loosely Time-Triggered Architec-
ture (LTTA), in which computing units perform writes into
and reads from the communication medium independent-
ly, triggered by local, quasi-periodic but non synchronized,
clocks. LTTA offers some of the advantages of TTA with
lower hardware cost and greater flexibility. So far LTTA
was studied for single directional two-users communications
over an LTT bus. General topology was not studied. In
this paper we propose a design flow that ensures semantics
preservation for an LTT communication network with ar-
bitrary topology. Key elements are two new protocols for
clock regeneration and predictive traffic shaping. Our ap-
proach relies on a mathematical Model of Communication
(MoC) that we describe in detail.

∗This research was supported in part by the European Com-
mission under the projects IST-2001-34820 ARTIST and
IST-004527 ARTIST2 Networks of Excellence on Embed-
ded Systems Design, by the NSF under the project ITR
(CCR-0225610), and by the GSRC.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’07, September 30–October 3, 2007, Salzburg, Austria.
Copyright 2007 ACM 978-1-59593-825-1/07/0009 ...$5.00.

Categories and Subject Descriptors
D.4.7.e [Real-time systems]: Embedded systems; F.1.1
[Theory of computation]: Computation by abstract de-
vices—Models of Computation; C.0.e [Computer systems
organization]: General—System architectures, integration,
and modeling

General Terms
Design, Theory

Keywords
Real-time systems, distributed control, time-triggered, loose-
ly time-triggered, MoCC

1. INTRODUCTION
In automotive and avionics applications, the propagation

of information from one end to the other of a functional
chain is typically implemented by a set of periodically ac-
tivated tasks and messages. The execution platform is a
distributed architecture consisting of several ECUs (Elec-
tronic Control Units) connected by buses or an interconnec-
tion network. Some of the communications between tasks
must guarantee no loss of data. We refer to this constraint
as data (or stream) semantics preservation. Furthermore,
real-time constraints may be defined on the computation
and communication latencies.

In this paper we address the problem of mapping the func-
tional requirements onto an implementation platform so that
stream semantics preservation constraints are satisfied, tim-
ing constraints are met, and appropriate cost functions can
be optimized. To this end,we start from

• a set of (possibly interacting) functions. Each func-
tion obeys the following model: it proceeds by a (pos-
sibly nonterminating) sequence of successive logical re-
actions composed of a finite set of actions; in addition,
timing constraints such as periodicity and/or deadlines
can be attached to each action.

• an implementation platform consisting of interconnect-
ed ECUs, protocols for accessing the interconnection

231

network and middleware for each ECU. The platform
is characterized by its performance in terms of timing,
capacity, power and cost.

Then, we perform mapping of the functions onto the imple-
mentation architecture so that the constraints are verified
and cost functions defined on the implementation architec-
ture can be minimized.

The mapping problem is complex since the limitation of
the implementation platform may make stream semantics p-
reservation difficult to achieve. Often, when the implemen-
tation platform is event-based, guaranteeing that the logical
and timing constraints are satisfied is an unsolved problem
or requires a large overhead. A possible solution to this
problem is to select the implementation architecture so that
some of the constraints are satisfied by construction and the
analysis can be carried out using formal methods.

The Time Triggered Architecture (TTA) proposed by Kopet-
z in [9] consists in implementing, on a distributed hardware,
the real-time periodic synchronous model. However, this
approach carries cost and timing penalties that may not be
acceptable for some applications. Hence, there has been
growing interest in less constrained architectures such as
the Loosely Time-Triggered Architecture (LTTA) used in
the aerospace industry and studied in [3, 15, 10, 11, 2, 1].
LTTA is characterized by the following features:

• access to the communication medium occurs quasi-
periodically, using the different local clocks; while not
synchronized, these clocks are bound to deviate from
each other with limited drift and jitter. We call such
clocks quasi-periodic.

• writings and readings are performed independently at
all nodes connected to the medium in synchrony with
the above mentioned local clocks;

• the communication medium behaves like a shared mem-
ory, i.e., values are sustained and are periodically re-
freshed, based on a local clock owned by the medium;
how multi-user access to the communication medium
is performed, is left unspecified.

The LTTA mechanisms can be either implemented in cus-
tomized hardware, or built on top of existing distributed
execution infrastructures — for example, CAN based net-
works as shown in [6].

The LTTA mechanism has not been fully characterized
nor a complete design flow with potential design space ex-
ploration has been offered. In [18, 20, 19, 2] protocols for
time-sensitive and LTT architectures were proposed to com-
pensate for a change in latencies, from specification to imple-
mentation. In [3], sufficient conditions were given to ensure
preservation of stream semantics. However, the results of
[3] are specific to single-user case and provide no basis for
a systematic extension to multi-user, multi-bus, communi-
cation. Recent work [6] extends the work of [3] by showing
how cascade LTT communication can be implemented on
top of a CAN based architecture.

In this paper, we propose a comprehensive design flow
that maps functional requirements onto an LTTA with ar-
bitrary topology that can be implemented in a variety of
ways including a set of LTT buses. The design flow is guar-
anteed to produce a semantic preserving implementation if
appropriate assumptions are satisfied.

The paper is organized as follows: we first present a math-
ematical toolkit in Section 2 that details the model of com-
putation used throughout the paper. Communication by
Sampling is studied in detail in Section 3. Following this
study, we propose a Platform Based Design approach [17]
to map a set of functional requirements on LTTA poten-
tially implemented with an LTT network (LTTN) offering
CbS communication links. In particular, in Section 4 we
present the LTTN and two protocols that guarantee seman-
tics preservation on the mapping of the requirements onto
the network. Additional results regarding the deployment of
LTTN over LTT busses, multiple access, and fault tolerance,
are found in [16].

2. MATHEMATICAL TOOLKIT
In this section we develop the toolkit we shall use through-

out this study.

2.1 An algebra of flows, daters, and counters
A mathematical model for CbS must handle flows, defined

as successive dated occurrences of valued events. We first
present the corresponding material, by building upon the
pioneering work [4]. Symbol � denotes the positive integers:
� = 1, 2, 3, Formally, flows are infinite sequences e =
(en)n∈�of valued and dated events.

The value of event en is denoted by νe
n. Unless ambiguity

can result from such an overloading, we shall simply write
en instead of νe

n. We call stream of e the sequence of values
(νe

n)n≥0, where, by default, νe
0 = �, where symbol “�”means

undefined. A clock is a flow with values in the singleton set
{tick}.

The dater of e is a sequence te such that te
n ∈ �+ is the

date of en; denote by T e the set of all dates of events of
flow e. When the considered flow is a clock κ, by abuse of
notation we also denote by κ its set of dates, instead of T κ .
Accordingly,

we shall write κ ⊆ κ′ to mean T κ ⊆ T κ′
. (1)

The counter of e is a non decreasing function �+ �→ � de-
fined by

ce
t =def Card{ n | te

n ≤ t } (2)

and we define the strict counter of e by

ce−
t =def lim

s↗t
ce
s = Card{ n | te

n < t } (3)

The dater and the counter of a flow carry the same in-
formation. The counter can be obtained from the dater as
shown above. Alternatively, the dater can be obtained from
the counter as follows.

te
n = min{t | ce

t = n} (4)

To be able to refer to “the date of the nth event”, or “the
index of the last event before t”, or “the last value before
t”, etc, we will need in the sequel to compose the above
operators. The following generic notation will be used for
this purpose: the composition te ◦ ce is defined by

(te ◦ ce)t =def te
ce

t

Formally, te ◦ ce is the composition of the two functions
t �→ ce

t and n �→ te
n. To simplify the notations,

we shall write te ◦ ce
t instead of (te ◦ ce)t.

232

Thus, te ◦ ce
t delivers, for flow e, the date of the event whose

index is the last before or including t.
It will be at times needed to reason about delayed flows.

Flows can be delayed, both logically (by passing them through
a k-step shift register) and physically (by delaying the date
of event occurrences). Delaying flow e logically by an amoun-
t of k is modeled by considering that date te

n of the nth oc-
currence of e is in fact the date of the (n− k)th event of the
delayed flow e′; that is, e′ is characterized by the delayed

dater te′ = te ◦ (Id + k), where Id is the identity function
and the context allows to determine whether it operates on

times or on indices. Thus, te′
n = te

n+k.
Similarly, delaying flow e physically by t means that the

new flow e′ is characterized by the dater te′
n = te

n + t. This
can be modeled by considering that the number ce

s of occur-
rences of e before time s is in fact the number of events of e′

at time s + t; that is, e′ can be characterized by the delayed

counter ce′ = ce ◦ (Id − t).
So far we discussed only daters and counters. The follow-

ing macros are useful when considering values.

Interpolating flows. It will be useful to interpolate values
between the occurrences of successive events. This is simply
achieved by overloading the “value” operator νe

n:

∀t ∈ �+ : νe
t =def νe ◦ ce

t

The following current operator1 is a variant of the former
one. It sustains the last value seen in the strict past:

∀t ∈ �+ : νe−
t =def νe ◦ ce−

t

For t = te
n, we get νe−

t = νe
n−1 and νe

t = νe
n, whereas, for

t
∈ T e, νe−
t = νe

t holds. When no confusion can result, we
shall again use the

simplified notations et and e−t , instead of νe
t and νe−

t .

Regarding dates, the operator last provides at any time the
last occurrence time of the flow:

let =def te ◦ ce
t (5)

Combining flows. The operator when filters the occur-
rence of flow e according to some predicate b provided syn-
chronously with e (i.e., T b = T e):

e when b = �e, where

T �e =
�
te
n | n ∈ � and νb

n = true
�

∀t ∈ T �e : ν�et = νe
t

(6)

The operator at delivers, at each occurrence of some flow κ,
the current value of flow e:

e at κ = �e, where

T �e = T κ

∀n ∈ � : ν�en = νe ◦ ce ◦ tκ
n

(7)

2.2 Semantics preservation
Consider two flows e1 and e2. We say that flow e2 stream

preserves flow e1 if the following holds:

∀n ∈ � : νe1
n = νe2

n . (8)

1 The names “current” and “when” (used later in this text)
are taken from similar operators found in the Lustre lan-
guage [5].

Stream preservation between computing units guarantees
that the considered distributed architecture is GALS (Glob-
ally Asynchronous, Locally Synchronous), so that techniques
from [13, 14, 7] can be used to ensure correct-by-construction
deployment of synchronous (or polychronous) specifications.

The so defined stream preservation does not account for
timing issues. Strict preservation of timing is too strong and
irrelevant for LTTA. Instead, we shall complement stream
preservation with bounds on the relative periods and jitters,
for the considered flows, in each case.

3. COMMUNICATION BY SAMPLING
Communication by Sampling (CbS) is the only basic build-

ing block of our LTT Architecture. CbS involves pairs of the
form {writer, reader}. It is formalized using a composition
operator � between flows. First we discuss this operator
informally and the define it formally and provide some of
its properties. Denote by w and r the flows of writings and
readings. Then,

w � r

is the flow collecting the successive deliveries, by the reader,
of the successive writes. That is:

• if w performs a writing that is overwritten by a sub-
sequent writing before being read by r, then no corre-
sponding event for flow w � r is produced;

• if r performs a reading that follows a previous reading
without having a writing occurring between the two,
then no corresponding event for flow w�r is produced;

• if w performs a writing that is followed by a corre-
sponding reading of r prior to a next writing, then an
event for flow w � r is issued at the time of that read-
ing; equivalently, if r performs a reading that follows
a corresponding writing of w, then an event for flow
w � r is issued at the time of this reading.

Operator w � r is illustrated on Figure 1. Note that, despite
the notation, w � r depends on the flow w of writings, but it
depends on r only through its clock κr. So, we have

w � r = w � κr, (9)

which enlightens the causal dependency, from the pair (w, κr),
to the output stream νr.

We shall now formalize this description. To define w � r,
we need to define two things: its “timing aspect”, that is, its
dater; and its “value aspect”, that is, its sequence of values.

Timing aspect. The dater of flow w � r is characterized by
its counter:

cw�r
t

= Card
�

tr
k

��� �tr
k ≤ t

� ∧ �
cw−
tr
k

− cw−
tr
k−1

≥ 1
��

(10)

= Card
�

tw
k

��� �tw
k ≤ t

� ∧ �
cr
min(t,tw

k+1) − cr
tw
k
≥ 1

��
(11)

Formula (10) consists in counting the number of reads that
are preceded by at least one write. Dual formula (11) con-
sists in counting the number of writes that are followed by at
least one read before being overwritten. These two formulas
are illustrated in Figure 1.

233

writes w

reads r

writes w

reads r

w � r

Figure 1: Illustrating: w � r–bottom; formula (10)–
middle; and formula (11)–top. The origin of each
arrow points: for formula (10), to a read event (in
blue) satisfying the associated predicate, and, for
formula (11), to a write event satisfying the asso-
ciated predicate. The end of each arrow points to
the event that realizes satisfaction of the associated
predicate.

Notice that the dater tw�r
n can be derived from the counter

of w � r as shown in Equation (4).

Value aspect. Regarding values, the nth value read by the
reader is the currently written value at the time of the nth
read:

νw�r
n = w− ◦ tw�r

n (12)

This completes the definition of flow w � r.

3.1 Effective procedure for computing cw�r, and
properties

Using formulas (10) and (11), the following precise de-
scription of cw�r can be given, by switching between these
two formulas at appropriate times. To get such a formula,
key remarks are:

• Suppose that, for some t > 0, condition

cw−
tr
k

− cw−
tr
k−1

≥ 1 (13)

is satisfied for every tr
k ≤ t. Then, applying formula

(10) simply yields cw�r
t = cr

t . We say that such an
interval is of type read. The set of t’s satisfying (13) is
an interval of the form [0, t(10)), where t(10) ≥ 0.

• Alternatively, suppose that, for some t > 0, condition

cr
min(t,tw

k+1) − cr
tw
k
≥ 1 (14)

is satisfied for every tw
k ≤ t. Then, applying formu-

la (11) simply yields cw�r
t = cw

t . We say that such
an interval is of type write. The set of t’s satisfying
this property is an interval of the form [0, t(11)), where
t(11) ≥ 0.

When a read occurs, we know that no current write is pend-
ing, and thus we can regard this read event as if it was the
origin of times: t = 0.

Thus, we can repeat the above reasoning starting from
any read event. Read events of interest for doing this are
obviously those where one switches between the above two
cases. Intervals of type read and of type write alternate, and
the evaluation of cw�r

t is performed accordingly. This mech-
anism is illustrated on Figure 2. The switch from type write
to type read is discovered at events of w. However it must
be implemented at an event of r, whence the backtracking

writes

reads

read write read

Figure 2: Illustrating the evaluation of cw�r
t . The

switching times between the two modes are shown
in red.

shown by the backward pointing arrow in the figure. From
this analysis, a number of consequences can be drawn:

Property 1 (Communication by sampling).

1. If cw�r
t = cw

t holds, then w � r stream preserves w,
meaning that νw�r = νw.

2. If writes are more frequent than reads (formally, type
read always holds), then, for every t ∈ T r, cw�r

t = cr
t

holds, i.e., no read is superfluous.

3. If reads are more frequent than writes (formally, type
write always holds), then, for every t ∈ T r, cw�r

t = cw
t

holds. Thus, in this case, w � r stream preserves w.

Statement 1 expresses that the preservation of counters guar-
antees stream preservation. Statements 2 and 3 describe
the behaviour of communication by sampling in case of s-
low/fast and fast/slow modes for the pair {writer, reader}.
These properties are immediate. Additional properties are
found in [16].

3.2 Taking latencies into account
So far we have ignored delay in the operator � : we have

assumed that what is written is immediately available for
reading. Clearly, this is rarely the case in practice, where
various types of latencies are introduced between a writ-
er and a reader, including program and operating system
execution, communication, etc. To account for latencies,
we consider the physically-delayed flow w′, related to w by

∀n : νw′
n = νw

n and

tw′
k = tw

k + δk, (15)

where δk is a (possibly variable) positive latency. Since la-
tencies δk vary, it is possible that the order of events is re-
verted in w′: for instance, if δk − δk+1 > tw

k+1 − tw
k , then we

have tw′
k = tw

k + δk > tw
k+1 + δk+1 = tw′

k+1. We wish to forbid
this, therefore we make the following assumption.

Assumption 1. Latencies δk do not revert data:

∀k ∈ � : tw′
k+1 ≥ tw′

k (16)

Using (16), (15) can be rewritten as ∀t ∈ �+ : cw′
t+δcw

t
= cw

t ,

also written as

cw′ ◦ (Id + δcw) = cw (17)

We denote by δ the flow of latencies δk, k ∈ �, and by

δ [w] (18)

the flow w′ related to w via (15) or (17). Whenever need-
ed, all the results we provide in the sequel can be adapted
to handle latencies, by replacing a considered flow e by its
delayed version δ [e].

234

3.3 Buffered Communication by Sampling
Up to now, we have considered basic CbS, where the com-

munication medium behaves like a shared memory. It is of
interest to extend this mechanism with bounded buffers, as
follows. We assume that the reader is equipped with a buffer
of size M . The buffering mechanism, illustrated in Figure 3,
is as follows:

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

original reading writing

Figure 3: Buffered Communication by Sampling.
Places in the buffer are indexed, from left to right,
by 1, 2, 3, 4. Four scenarios are shown in the figure
(from top to bottom). Each scenario illustrates how
the original buffer is transformed by a read or a
write operation (the write operation is applied to
the original buffer and not to the buffer resulting
after the read). Grey boxes indicate places filled
with data; white boxes are empty; and paved white
boxes indicate that the data is removed except when
this would make the buffer empty. Arrows indicate
the move of data. When writing, a paved box is
regarded as empty, as depicted in the first row.

• When the buffer is full, an additional writing puts the
fresh data in place 1 of the buffer, and shifts by 1 place
all data previously sitting in the buffer. This causes
the loss of the oldest data, sitting in place M .

• Readings from the buffer get the oldest data from it,
i.e., the data sitting at place Nw,r

t , where Nw,r
t is the

buffer level at instant t.

• When the buffer level is > 1, then readings consume
the data. Alternatively, when the buffer level equals
1, then readings do not consume the data.

• The buffer is initially non-empty.

This mechanism is non blocking, for both writings and read-
ings, and reduces to basic CbS when M = 1. Note the first
row in Figure 3, which illustrates that the data is not con-
sumed when buffer level is 1. This mechanism is denoted
by

w �M r (19)

It is formalized next. For x and y two flows, set

cx
s,t = cx

t − cx
s

Nx,y
s,t = (cx

s,t − cy
s,t) − min

u∈[s,t]
(cx

s,u − cy
s,u) (20)

Nw,r
t =def Nw,r

0,t yields the buffer level between writer w
and reader r at instant t; (20) generalizes the two-counter

mechanism (30) to the case where the initial instant is s
instead of 0. This mechanism is analysed in Section 5.1.

Let w and r be the input and output flows of w �M r, re-
spectively. The clocks of w and r are the writer’s and read-
er’s clocks, respectively. In the following equations, vector
flow w[0, . . . , M − 1] is a buffer of size M , whose compo-
nents are denoted by w[k] for k = 0, . . . , M − 1. For every
m = 0, . . . , M − 1 and s ∈ �+ , set

t+[m, s] = min
�
t ∈ T w | t > s and m + Nw,r

s,t ≥ M − 1
�

t−[m, s] = min
�
t ∈ T r | t > s and m + Nw,r

s,t ≤ 0
�

t[m, s] = min(t+[m, s] , t−[m, s]) (21)

p[m, s] = if t[m, s] = t−[m, s] then 0 else M − 1

where, by convention, the minimum of the empty set is +∞.
Instant t+[m, s] is the first instant where the cumulated ex-
cess of writings over readings starting from level m at time
s, reaches M − 1. Symmetrically, t−[m, s] is the first in-
stant where the cumulated excess of writings over readings
starting from level m at time s, reaches 0. Finally, if the
buffer level is m at time s, t[m,s] is the first instant where
the buffer reaches one of the two boundaries 0 or M − 1,
and p[m, s] gives the buffer level reached at that time. De-
fine inductively the following sequence of instants and buffer
levels:

t0 = 0 , m0 = 0
tn+1 = t[mn, tn] , mn+1 = p[mn, tn]

(22)

If tn = +∞, then the subsequent terms of the sequence are
also infinite. Then, for every t ∈ �+ , the buffer level at time
t is equal to:

tn ≤ t ≤ tn+1 ⇒ Nx,y
t = mn + Nw,r

tn,t (23)

And, finally, the buffer contents and output of the mecha-
nism are given by:

w[0]t = wt

∀k = 1, . . . , Nw,r
t ⇒ w[k]t = w[k − 1]−t

rt = w[Nw,r
t]t

(24)

Equations (21)–(24) formalize buffered communication w �M r.
Observe that these equations are easily implemented in an
on-line form. When

t1 = +∞ (25)

holds, i.e., the buffer never gets full, Equations (21)–(24)
simplify as follows:

Nw,r
t = Nw,r

0,t

w[0]t = wt

∀k = 1, . . . , Nw,r
t ⇒ w[k]t = w[k − 1]−t

rt = w[Nw,r
t]t

(26)

Buffered CbS can be used to analyse the preservation of
stream semantics by a LTT bus as follows. Consider a triple
{writer w, bus b, reader r} communicating by sampling, in
this order. The overall model of this communication medium
is described by

(w � b) � r (27)

Not surprisingly, due to (9), (w � b)�r
= w�(b � r) in gener-
al. Suppose that, in communication model (27), bus b imple-
ments M -buffered CbS communication, whence the overall

235

communication, from writer to bus to reader, is modelled as
follows, see (19): (w �M b)�r. Then, sufficient conditions for
stream preservation are the following [16]:

Property 2 (LTT bus with buffer). Assume that the
writing, bus and reading times satisfy the following equation-
s, where δb, Δb, etc. are positive finite constants:

∀n : δw ≤ tw
n+M − tw

n

∀p : δb ≤ tb
p+M − tb

p ≤ Δb

∀m : tr
m+M − tr

m ≤ Δr
(28)

If

δw ≥ Δb and

	
δw

Δb

≥ Δr

δb
(29)

where �x� denotes the largest integer ≤ x, then (w �M b) � r
stream preserves w.

4. THE LTT COMMUNICATION NETWORK
(LTTN)

In this section, we consider mapping over a LTT Network,
that is an ideal communication network in which every com-
munication occurs according to the exact (unbuffered) CbS
scheme modeled in Section 3. The case of mapping over a
network of LTT busses is discussed in [16].

Formally, we consider a network involving computing u-
nits Ci, i ∈ I , where set I of sites is finite. Each site Ci is
equipped with a quasi-periodic clock κi. Clocks κi are loose-
ly, not strictly, synchronized (this is formalized later). The
network is modeled as a directed graph G having Ci, i ∈ I
as set of vertices. Having a branch Ci → Cj in G means
that Ci acts as a writer wi and Cj acts as a reader rj in a
point to point CbS communication. Bi-directional and ring
communications are allowed, thus G can have loops.

Communication Ci → Cj is by sampling, with the follow-
ing characteristics (a) – (d), where κ ↓ 2 denotes clock κ,
down sampled by a factor of 2, i.e.,

∀n ≥ 0 : tκ↓2
n = tκ

2n

(a) Loose synchronization: for evey pair (i, j) of sites such
that Ci → Cj is a branch of G, pair (κi ↓2, κj) satisfies
the assumption of Property 1.3, i.e., clock κj is more
frequent than downsampled clock κi ↓2.

(b) Writes wi are tentatively triggered by clock κi ↓2. Ef-
fective writes occur at a clock κw

i , downsampled from
κi ↓ 2 by traffic shaping [12], see below for a detailed
description. A key feature of our traffic shaping policy
is that it only depends on the effective writer’s clocks
for the different sites, not on the messages transferred.

(c) Reads rj are triggered by clock κj . To cope with up-
sampling, from writer’s clock κw

i to reader’s clock κj ,
each message written by wi comes equipped with an
additional one-bit stamp that alternates between val-
ues 0 and 1. Alternations in the messages read by
rj , from 0 to 1 and from 1 to 0, indicate a fresh val-
ue. Other occurrences of wi are repetitions. Together
with the loose synchronization property (a), this one-
bit stamp is in charge of maintaining data semantics,
in the Kahn process network sense (see later).

(d) Only fresh data are used in performing writes wj at
rate κw

j ⊆ κj ↓2. This operation is called “clock regen-
eration” and is studied next.

Communication by sampling, from writer wi to reader rj , is
illustrated on Figure 4.

clock κj

rj

wi

clock κi

Figure 4: Illustrating communication in LTT net-
work. Ticks of clock κ ↓2 are indicated by large ticks
of clock κ. Red bars indicate fresh data. Directed
arrows indicate copying values.

We now have to link the LTTN to the underlying LTTA
and to optimize the use of LTTA resources. In LTTA, be-
ing loosely synchronized, the physical clocks may suffer from
relative drift and jitter. If not compensated for, clock drifts
cause buffer overflows, thus resulting in loss of data and lack
of semantical preservation. Thus, a set of protocols will be
developed to ensure that the set of distributed logical clock-
s built on top of the loosely synchronized physical clocks
exhibit no relative drift, but only bounded jitter.

5. PROTOCOLS TO ADAPT LTTA TO
LTTN SEMANTICS

The two protocols introduced here (Clock Regeneration
and Predictive Traffic Shaping) use a simple two-counter
mechanism that we introduce first.

5.1 A generic two-counter monitoring
protocol

All the protocols needed for LTTA will rely on a unique
mechanism that we describe now. Consider two flows x and
y, together with one of the following two hypotheses:

H1: there exists a real number D > 0 such that, for every
k > 0 , ty

k − ty
k−1 < D < tx

k − tx
k−1 holds.

H2: there exists an integer M > 0 such that, for every k >
M , cy ◦ tx

k − cy ◦ tx
k−M ≥ M holds.

Hypothesis H1 expresses that the (possibly time varying)
period of flow y possesses an upper bound that is also a
lower bound for the period of flow x. Hypothesis H2 ex-
presses that, if flow x puts tokens in a buffer for (possibly
immediate) consumption by flow y, then this buffer will n-
ever overflow provided that it has size at least M . Define
the following quantity, for t ∈ �+ :

Nx,y
t =def (cx

t − cy
t) − min

s∈[0,t]
(cx

s − cy
s)

= cx
st,t − cy

st,t

(30)

where

cx
s,t =def cx

t − cx
s

236

and st is the last instant where the minimum over s ∈ [0, t]
is reached in (30) — st exists since counters are right con-
tinuous. Then, under H1 we have ∀t ∈ �+ , Nx,y

t ≤ 1 and,
under H2 we have ∀t ∈ �+ , Nx,y

t ≤ M . So, monitoring the
violation of either hypothesis is performed by maintaining
counter Nx,y and comparing it with the appropriate thresh-
old. However, formula (30) defining Nx,y is not suitable for
on-line evaluation. We shall thus reformulate (30) in an on-
line form. First, note that, although it is integer valued,
Nx,y is not a counter associated to some flow in the sense
of Section 2.1. We must regard it as a flow itself. Seen
as a flow, Nx,y has set T Nx,y

of dates of occurences, and
sequence of values νNx,y

n , for n = 1, 2, . . . , which we shall
denote by Nx,y

n , with the abuse of notation proposed in the
beginning of Section 2.1. This being said, note that

T Nx,y

= T x ∪ T y. (31)

Then, let z be the flow with values in the set {−1, 0, +1},
such that T z = T x ∪ T y, and whose value at a given oc-
curence is +1 if x occurred alone, −1 if y occurred alone,
and 0 if both x and y occurred simultaneously. Formally:

νz ∈ {−1, 0, +1} (32)

T z = T x ∪ T y

∀t ∈ T z : νz
t =

��

+1 if x occurred alone at t
−1 if y occurred alone at t

0 if otherwise

Then, the following recursive formula for evaluating the suc-
cessive values Nx,y

1 , Nx,y
2 , . . . of flow Nx,y holds: Nx,y

0 = 0,
and, for every n > 0:

Nx,y
n = max

�
Nx,y

n−1 + zn , 0
�

(33)

This mechanism (31–33) for monitoring the violation of an
hypothesis of the form H1 or H2 will be used in several
contexts to develop our LTT architecture.

5.2 Clock Regeneration
The preservation of stream semantics is formalized by con-

dition (8). To guarantee (8), statement 3 of Property 1 es-
sentially requires that the writer shall be slower than the
reader—what “slower” means is quantified precisely in the
referred statement. Compensating for the ever decreasing
sampling period in cascade communications is performed by
a clock regeneration protocol, implemented on each com-
puting unit C, see Figure 5. This protocol performs con-

r when βr

r

w

clock κ

Figure 5: Illustrating clock regeneration Protocol 1.
See Figure 4 for graphical conventions.

sistent downsampling of the input data read at rate κ, for
re-emission at a rate (possibly downsampled from) κ ↓ 2.
The function performed by this protocol is to discard repli-
cates, while properly emitting fresh data with no loss. This
protocol is formalized next.

Protocol 1 (Clock Regeneration protocol). C pos-
sesses a quasi-periodic clock κ and hosts a reader r and a
writer w. Reader r and writer w are driven by κ and κw, re-
spectively. Clock κw is some clock downsampled from κ ↓2,
i.e., κw ⊆ κ ↓2, see (1), resulting from the traffic shaping
policy described later. Read flow r has value of the following
type

∀n ≥ 0 : rn ∈ D × {0, 1}
meaning that, for every n, the nth value of flow r is marked
by a bit, denoted by βr

n.
Then, site C prepares flow w for its output by selecting the

fresh reads and discarding repetitions, i.e., w is the output
of 2-buffered CbS communication �r �2 κw, where

�r = r when [βr
= βr ◦ (Id − 1)]

Buffered CbS communication is defined in Section 3.3 and
operator “ when ” is defined in Section 2.1. The relevant
information transmitted by our LTT network is captured by
the set of reads “r when βr” and writes “w”, attached to
each site C. Protocol 1 is illustrated on Figure 6, obtained
by “merging” Figures 4 and 5.

rj

rj when βrj

wj

clock κj

wi

clock κi

Figure 6: Combining Ci → Cj communication with
Clock Regeneration Protocol at Cj.

So far Figure 6 shows the favorable case, where stream
semantics is preserved without the need for a 2-buffer. How-
ever, Figure 7 shows that problems can occur if a 1-buffer

clock κj

wi

clock κi

rj

rj when βrj

wj

Figure 7: Combining Ci → Cj communication with
Clock Regeneration Protocol at Cj. A situation
where buffering is needed, compare with Figure 6.
The problem is that two ticks of κi ↓2 occur between
the first two ticks of κj ↓2.

237

only is used, despite our technique of downsampling, when
clock κj is slower than clock κi. In this figure, the buffer
gets filled at the second blue thin bar. It may never get
empty, and may eventually overflow later, thus violating the
preservation of stream semantics.

To overcome this problem, we use predictive traffic shaping
at the writer. The idea is that the writer would implement
some LTT based monitor detecting the risk of overwhelming
its corresponding reader—see below. When approaching a
risky situation, the writer would then anticipate and decide
to skip a clock cycle and delay its transmission to the next
cycle. This is formalized next.

5.3 Predictive traffic shaping
Predictive traffic shaping is implemented at site i in the

following way. Assume for a while the following regarding
network G:

Assumption 2. For each direct link Ci → Cj of G, the
reverse link Cj → Ci, also exists in G.

Using this reverse communication link, site i can observe
counters cκw

i and cκw
j , so it can compare them by maintain-

ing the counter

N ij
t =def N

κw
i ,κw

j

t (34)

If transmission exhibits zero latency, then, at any instant t,
N ij

t yields the level of the input buffer attached, at site j,
to the communication link Ci → Cj . Note that there is no
circular definition in doing this, since traffic shaping will be
performed in a predictive way, as we shall see. Maintaining
counter N ij on-line is performed by using the mechanism of
Section 5.1.

For example, the situation depicted in Figure 7 occurs at
the first instant t∗ where N ij

t ≥ 2 holds. More precisely, the
second blue thin bar would occur at that instant. Assume
a 2-buffer is available at site j, as indicated in the figure.
Then, the buffer gets full at instant t∗ for the first time.
If bounds exist for the relative drift and jitter between the
two clocks at sites i and j, then the buffer will not overflow
immediately, but some safe period exists, such that N ij

t ≤ 2
is guaranteed during this period. Now, two cases can occur:

• The buffer is emptied before the end of the safe period,
thus bringing the communication link back to its safe
mode, i.e., N ij

t ≤ 1.

• The end of the safe period is reached while the buffer is
still full. Then, writer wi decides to postpone sending
its data to site j.

Since traffic shaping delays emissions, effective writes at site
i are not according to nominal clock κi ↓ 2, but are indeed
possibly downsampled, with clock κw

i ⊆ κi ↓2, see (1). This
predictive traffic shaping policy is formalized next. Recall
the notation cκ

s,t = cκ
t − cκ

s , for s < t.

Assumption 3.

1. There exists K > 0 such that, ∀ s, t with s < t

max
�

1 , min
i

cκi
s,t

�
≥ K(t − s) (35)

Constant K is called a pessimistic rate for network G.

2. There exists a safe period τsafe ≥ 0 such that, for any
two s and t such that 0 ≤ t − s ≤ τsafe,

max
i,j

�
cκi
s,t − c

κj
s,t

� ≤ 2

Condition 1 expresses that the rates of all clocks are uni-
formly bounded from below—i.e., no clock can be “possibly
infinitely slow”.

Protocol 2 (Traffic shaping policy).

• As part of running link Ci → Cj, site i maintains counter
N ij defined in (34). Define the safe mode of link
Ci → Cj by the condition N ij

t ≤ 1. Say that site i
is in safe mode if all its outgoing links Ci → Cj for
each j
= i are safe.

• When safe mode is left at site i (i.e., N ij
t = 2 occurs

for some j
= i) a timer is started by site i, with timeout
value equal to τsafe. This timer is killed as soon as the
site returns to its safe mode.

• Alternatively, if timeout occurs, then site i delays its
next emission to all sites it communicates with, until
return to the safe mode occurs.

Note that chosing τsafe = 0 amounts to using no timer.

5.4 Semantics preserving properties

Theorem 1. Assumptions 2 and 3 are in force.

1. A sufficient condition ensuring stream preserving for
each communication over network G is that each link
Ci → Cj comes equipped with Protocols 1 and 2.

2. In this case, we have, for each site i, and every pair
(s, t) such that s < t:

max
�

1 , c
κw

i
s,t

�
≥ K

2
(t − s)

Comments: The first statement says that our architecture
is a Kahn process network [8]. The second statement says
that, although some slow down results from applying traffic
shaping, the overall network rate is at least K/2.

Proof of Theorem 1. See [16]. Applying repeatedly Theorem
1 shows that:

Corollary 1. LTT networks, when combined with nodes
implementing Protocols 1 and 2, preserve stream semantics.

5.5 Relaxing Assumption 2 on network
topology

So far we assumed that, for each direct link Ci → Cj of
G, the reverse link Cj → Ci, also exists in G. Assume now
the following:

Assumption 4. Network G is strongly connected.

Site i in general has no direct knowledge of clock κw
j so it

cannot compute counter N ij defined in (34). Let Ci → Cj

be a link of G, and Cj = Cj1 → . . . → CjM = Ci be a path
of shortest length, from site j back to site i. The idea is that
site i will use κw

jM−1 as an estimate of κw
j . We claim that

238

Theorem 2. The combination of Protocols 1 and 2 pre-
serves stream semantics, provided that a M-buffer is used
instead of a 2-buffer in Protocol 1.

Proof. See [16]. �

When G is not strongly connected, we apply Theorem 2
to each connected component. The different connected com-
ponents are partially ordered and form a cascade communi-
cation, for which it is enough to have clocks of decreasing
nominal periods, adjusted to ensure type write for commu-
nications between successive connected components.

6. CONCLUSION
We presented a comprehensive design flow from function-

al requirements to implementation on a distributed system
consisting of multiple ECUs and interconnections that lever-
ages the concept of Loosely Time Triggered Architecture. To
do so, we introduced a formal model of computation to cap-
ture the communication mechanisms typical of LTTA and
an intermediate layer of abstraction called Loosely Time
Triggered Network. This layer of abstraction can then be
mapped onto a variety of implementation architectures. The
design process is guaranteed to preserve stream semantics if
appropriate assumptions hold. The implicit assumption we
have made in this paper is that the functional requirements
are related to discrete control functions that include protec-
tion (fault tolerance, voting), mode changes, and some event
triggered side functions.

Open problems are the efficient application of the LTTA
architecture to implement continuous and hybrid functions
such as low level safety critical feedback control loops, whose
underlying design is performed based on continuous time
models. Typical examples include flight control of aircrafts
or combustion control for engines.

7. REFERENCES
[1] M. Baleani, A. Ferrari, L. Mangeruca, and A. L.

Sangiovanni-Vincentelli. Efficient embedded software
design with synchronous models. In EMSOFT, pages
187–190, 2005.

[2] A. Benveniste, B. Caillaud, L. P. Carloni, P. Caspi, A. L.
Sangiovanni-Vincentelli, and S. Tripakis. Communication
by sampling in time-sensitive distributed systems. In
EMSOFT, pages 152–160, 2006.

[3] A. Benveniste, P. Caspi, P. L. Guernic, H. Marchand, J.-P.
Talpin, and S. Tripakis. A protocol for loosely
time-triggered architectures. In EMSOFT, pages 252–265,
2002.

[4] P. Caspi and N. Halbwachs. A functional model for
describing and reasoning about time behaviour of
computing systems. Acta Inf., 22(6):595–627, 1986.

[5] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice. Lustre: a
declarative language for programming synchronous
systems. In 14th ACM Symp. POPL, 1987.

[6] M. Di Natale, A. Benveniste, P. Caspi, C. Pinello,
A. Sangiovanni-Vincentelli, and S. Tripakis. An
implementation of the Loosely Time-Triggered Architecture
on the Controller Area Network: feasibility conditions and
system design. Technical report, 2007. submitted.

[7] A. Girault. A survey of automatic distribution method for
synchronous programs. In F. Maraninchi, M. Pouzet, and
V. Roy, editors, International Workshop on Synchronous
Languages, Applications and Programs, SLAP’05, ENTCS,
Edinburgh, UK, Apr. 2005. Elsevier Science.

[8] G. Kahn. The semantics of a simple language for parallel
programming. In Information Processing 74, Proceedings
of IFIP Congress 74, Stockholm, Sweden, 1974.
North-Holland.

[9] H. Kopetz. Real-Time Systems. Kluwer Academic
Publishers, 1997.

[10] C. Kossentini. Implantation robuste de
contrôles-commandes hybrides répartis: application aux
commandes de vol Airbus. PhD thesis, Institut National
Polytechnique de Grenoble (INPG), 2006.

[11] C. Kossentini and P. Caspi. Approximation, sampling and
voting in hybrid computing systems. In HSCC, pages
363–376, 2006.

[12] J.-Y. Le Boudec and P. Thiran. Network Calculus. Lecture
Notes in Computer Science (LNCS). Springer Verlag, 2001.

[13] D. Potop-Butucaru, B. Caillaud, and A. Benveniste.
Concurrency in synchronous systems. Formal Methods in
System Design, 28(2):111–130, 2006.

[14] P. Potop-Butucaru and B. Caillaud.
Correct-by-construction asynchronous implementation of
modular synchronous specifications. Fundamenta
Informaticae, 2006.

[15] J. Romberg and A. B. 0002. Loose synchronization of
event-triggered networks for distribution of synchronous
programs. In EMSOFT, pages 193–202, 2004.

[16] Same Authors. Full paper. IRISA Research Report Nr 1854.
http://www.irisa.fr/distribcom/benveniste/pub/PI1854.pdf ,
June 2007.

[17] A. Sangiovanni-Vincentelli. Quo Vadis SLD? Reasoning
about trends and challenges of System Level Design.
Proceedings of the IEEE, 95(3):467–506, 2007.

[18] N. Scaife and P. Caspi. Integrating model-based design and
preemptive scheduling in mixed time- and event-triggered
systems. In ECRTS, pages 119–126, 2004.

[19] C. Sofronis, S. Tripakis, and P. Caspi. A memory-optimal
buffering protocol for preservation of synchronous
semantics under preemptive scheduling. In EMSOFT,
pages 21–33, 2006.

[20] S. Tripakis, C. Sofronis, N. Scaife, and P. Caspi.
Semantics-preserving and memory-efficient implementation
of inter-task communication on static-priority or edf
schedulers. In EMSOFT, pages 353–360, 2005.

239

http://www.irisa.fr/distribcom/benveniste/pub/PI1854.pdf

	Introduction
	Mathematical toolkit
	An algebra of flows, daters, and counters
	Semantics preservation

	Communication by Sampling
	Effective procedure for computing cwr, and properties
	Taking latencies into account
	Buffered Communication by Sampling

	The LTT communication Network (LTTN)
	Protocols to adapt LTTA to LTTN semantics
	A generic two-counter monitoring protocol
	Clock Regeneration
	Predictive traffic shaping
	Semantics preserving properties
	Relaxing Assumption 2 on network topology

	Conclusion
	References

