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ABSTRACT
As NAND flash memory becomes increasingly popular

as data storage for embedded systems, many file systems
and database management systems are being built on it.
They require an efficient index structure to locate a par-
ticular item quickly from a huge amount of directory en-
tries or database records. This paper proposes µ-Tree, a
new ordered index structure tailored to the characteristics
of NAND flash memory. µ-Tree is a balanced tree similar to
B+-Tree. In µ-Tree, however, all the nodes along the path
from the root to the leaf are put together into a single flash
memory page in order to minimize the number of flash write
operations when a leaf node is updated. Our experimental
evaluation shows that µ-Tree outperforms B+-Tree by up to
28% for traces extracted from real workloads. With a small
in-memory cache of 8 Kbytes, µ-Tree improves the overall
performance by up to 90% compared to B+-Tree with the
same cache size.
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H.3.1 [Content Analysis and Indexing]: Indexing meth-

ods; D.4.3 [File Systems Management]: Directory struc-
tures

General Terms
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1. INTRODUCTION
Flash memory is being widely adopted as a storage medium

for many portable embedded devices such as PMPs (portable
media players), PDAs (personal digital assistants), digital
cameras and camcorders, and cellular phones. This is mainly
due to the inherent advantageous features of flash memory:
non-volatility, small and lightweight form factor, low-power
consumption, and solid state reliability.

Flash memory comes in two flavors. The NOR type is
usually used for storing codes since it can be directly ad-
dressable by processors. On the other hand, the NAND type
is accessed on a page basis (typically 512 bytes ∼ 4 Kbytes)
and provides higher cell densities. The NAND type is pri-
marily used for removable flash cards, USB thumb drives,
and internal data storage in portable devices.

As the NAND flash technology development continues to
double density growth on an average of every 12 months [23],
the capacity of a single NAND chip is getting larger at an
increasingly lower cost. The declining cost of NAND flash
memory has made it a viable and economically attractive
alternative to hard disk drives especially in portable em-
bedded systems. As a result, many flash-aware file systems
and embedded database management systems (DBMSs) are
currently being built on NAND flash memory [2, 7, 9, 13,
24].

Any file system or DBMS requires an efficient index struc-
ture to locate a particular item quickly from a huge amount
of directory entries or database records. For small scale
systems, the index information can be kept in main mem-
ory. For example, JFFS2 keeps the whole index structures
in memory that are necessary to find the latest file data on
flash memory [24]. Apparently, this approach is not scal-
able to a larger number of files since memory is a precious
resource whose capacity should be minimized in embedded
systems. Hence, the index information is usually retained
on storage in an organized way.

For decades, many different kinds of index structures have
been developed for disk-based storage. Among them, B+-
Tree is one of the most popular index structures for file sys-
tems and DBMSs [3]. B+-Tree is a balanced search tree for
sorted data that allows for efficient retrieval, insertion, and
deletion of records, each of which is identified by a key. B+-
Tree makes use of block-oriented storage efficiently by keep-
ing related records on the same block. Update and search
operations affect only a few storage blocks, thus minimizing
the number of storage accesses.

Although B+-Tree has been successful as an index struc-
ture for disk-based file systems and DBMSs, it poses a se-
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rious problem for NAND flash-based storage. The problem
is due to the unique characteristics of NAND flash memory
that does not support in-place update. A page is a unit of
read and write operations in NAND flash memory which is
usually a multiple of hard disk sector size. Once a page
is written, it should be erased before the subsequent write
operation is performed on the same page. Since the erase
operation is performed in a unit of much larger block and
the operation has much longer latency than read or write
operations, it is unacceptable to erase the whole erase block
whenever a portion of the block is updated.

The naive implementation of B+-Tree on NAND flash
memory is to use each page as a node for storing keys and
records. In B+-Tree, only keys and pointers to children in
the next level are stored in interior nodes and all records are
stored at the lowest level of the tree. If an update occurs on
a record in the leaf node, the modified leaf node needs to be
written at a new empty page due to the erase-before-write
characteristics of NAND flash memory. Since the physical
location of the node has been changed, the pointer in the
parent node also needs to be modified, which requires an-
other flash write operation. This situation continues until all
the nodes from the leaf to the root are written into NAND
flash memory. Consequently, the naive implementation gen-
erates as many write operations as the height of B+-Tree
whenever a single record is updated.

In this paper, we propose µ-Tree (mu-Tree or minimally
updated-Tree), a new ordered index structure tailored to
the characteristics of NAND flash memory. µ-Tree is a bal-
anced search tree similar to B+-Tree. In µ-Tree, however,
all the nodes along the path from the root to the leaf are
put together into a single NAND flash memory page in or-
der to minimize the number of flash write operations when
a record is updated, inserted, or deleted. Our experimental
evaluation shows that µ-Tree outperforms B+-Tree by up to
28% for traces extracted from real workloads. With a small
in-memory cache of 8 Kbytes, µ-Tree improves the overall
performance by up to 90% compared to B+-Tree with the
same cache size.

The rest of the paper is organized as follows. Section 2
discusses the characteristics of NAND flash memory and
the problem of the existing index structure. Section 3 de-
scribes the proposed index structure. The behavior of µ-
Tree is mathematically analyzed in Section 4. Section 5
presents several implementation issues of µ-Tree on NAND
flash memory. We present the performance of µ-Tree in Sec-
tion 6 and compare µ-Tree to other approaches in Section 7.
Finally, we conclude in Section 8.

2. BACKGROUND AND MOTIVATION

2.1 NAND Flash Memory Characteristics
A NAND flash memory chip is composed of a fixed number

of blocks1, where each block has a number of pages. Each
page in turn consists of main data area and spare area. A
page is a unit of read and write operations, while a block is
a unit of erase operations. The spare area in each page is
often used to store error correction code (ECC) and other
management information.

1The block should not be confused with the unit of I/O used
in the kernel. Unless otherwise stated explicitly, this paper
uses the term block to denote the unit of erase operation.

Table 1: The characteristics of SLC [21] and
MLC [20] NAND flash memory

SLC NAND

(large block)
MLC NAND

page size (2K+64)B (4K+128)B
block size (128+4)KB (512+16)KB

# pages / block 64 128
NOP 4 1

read latency 77.8µs (2KB) 165.6µs (4KB)
write latency 252.8µs (2KB) 905.8µs (4KB)
erase latency 1500µs (128KB) 1500µs (512KB)

As the NAND flash memory technology advances, differ-
ent types of NAND flash memory have been introduced.
The first small block SLC (Single-Level Cell) NAND has an
organization that a block consists of 32 pages and the size
of a page is (512 + 16) bytes including 16 bytes of spare
data. The next generation of NAND flash memory called
the large block SLC NAND provides higher capacity. In the
large block SLC NAND, the number of pages in a block is
doubled and the page size is increased by 4 times compared
to the small block SLC NAND. The small block SLC NAND
is being phased out of the market in favor of the large block
NAND.

The recently introduced MLC (Multi-Level Cell) NAND
uses an architecture that goes beyond traditional binary
logic. Rather than simply being on or off, each transis-
tor in MLC NAND is able to enter one of four states al-
lowing them to encode data to achieve a storage density
of two bits per memory cell, which effectively doubles the
capacity of NAND flash memory [16]. In MLC NAND, a
page can store 4096 bytes of main data with 128 bytes of
spare data. The number of pages in a block is also increased
to 128 pages. The current trend for NAND manufacturers
is to shift a large percentage of their production to MLC
NAND in response to market demands on cost-effective and
high-performance NAND flash memory. Table 1 compares
the characteristics of the representative large block SLC and
MLC NAND chips [20, 21].

NAND flash memory has a restriction that a page should
be erased before the new data can be written in the same
location. The erase operation can only be performed on a
block basis, whose size is larger than a page by 64 or 128
times. In the large block SLC NAND, writing into smaller
portions in a page is possible by making use of partial page
programming. The NOP in Table 1 refers to the maximum
number of partial programming that is allowed for a single
page. Note that the NOP in MLC NAND is reduced to
one which means that MLC NAND does not support partial
page programming. In addition, we can observe from Table 1
that the write operation requires a relatively long latency
compared to the read operation. The ratio between write
latency to read latency is about 3.3:1 in the large block SLC
NAND, and it is increased to 5.5:1 in MLC NAND. Since
the write operation sometimes needs to accompany the erase
operation, the operational latency becomes even longer.

There are two major approaches to use NAND flash mem-
ory as a storage device in embedded systems. One is to em-
ploy a software layer called FTL (Flash Translation Layer)
between applications and NAND flash memory [1]. The
advantage of this approach is that legacy file systems or
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Figure 1: An example of B+-Tree of order 2

DBMSs designed for disks can be used without any mod-
ification since FTL emulates the functionality of a normal
block device. However, FTL may experience degraded per-
formance if the workload does not show the access pattern
for which FTL is optimized. Most FTL algorithms are based
on the principle of locality in storage access patterns [10,
11], but the updates to the B+-Tree-like index structure re-
veal relatively more random access pattern requiring many
small flash write operations. In addition, garbage collection,
which is the process that reclaims invalid pages by erasing
appropriate blocks, may not be efficient because only the
limited information is available at block level.

The second approach is to directly manage NAND flash
memory without an intermediate layer, as can be seen in
flash-aware file systems such as JFFS [24] and YAFFS [2].
These file systems are largely based on the log-structured file
system (LFS) [18] which is suitable for NAND flash memory
due to the out-of-place update scheme.

2.2 B+-Tree
B+-Tree is a well-known data structure for managing a

large amount of data efficiently [6]. B+-Tree keeps data
sorted and allows amortized logarithmic-time retrievals, in-
sertions, and deletions. Currently, B+-Tree is used by major
DBMSs and file systems [12, 14, 15, 17].

The structure of B+-Tree is similar to that of binary search
tree. While each node in a binary search tree has only one
key and two pointers, a node in B+-Tree contains up to d key
values, K1, K2, · · · , Kd, and d+1 pointers, P1, P2, · · · , Pd+1.
The key values in a node are kept in sorted order. Thus, if
i < j, then Ki < Kj . The maximum number of keys that
can be stored in a node, d, is called the order of B+-Tree.
Figure 1 illustrates an example B+-Tree of order 2.

There are two types of nodes in B+-Tree: leaf nodes and
non-leaf nodes. A leaf node can store from d/2 to d keys and
the associated pointers. For i = 1, 2, · · · , d, each pointer Pi

points to the record corresponding to the key Ki. Pd+1 is
usually used for chaining the leaf nodes in key order to fa-
cilitate range searches. In the case of non-leaf nodes, called
index nodes, the structure is essentially the same but point-
ers point to other B+-Tree nodes.

B+-Tree tries to keep its nodes balanced whenever any
insertion or deletion occurs. Unbalanced trees such as the
binary search tree may have a long path because they can
be skewed by a certain insertion sequence. However, B+-
Tree guarantees the logarithmically bounded depth for all
leaf nodes.

To find a record with a key K in B+-Tree, several nodes
in a path from the root to the leaf are visited. At each node,
the retrieval process searches for the smallest key Ki greater
than K, and loads the node designated by the corresponding
pointer Pi. If there is no such key, it follows the last pointer
Pm, where m is the number of pointers in the node. When
it reaches the leaf node, it checks whether the node contains

the key Ki that is equal to K. If the node has such Ki, it
returns the record pointed to by Pi. Otherwise, the retrieval
process fails.

To insert a key K, the insertion process first finds the
proper leaf node by using the above retrieval procedure.
Then, it inserts the key K into the leaf node. If the leaf
node is already full, however, a split occurs. In general, to
handle d + 1 keys, the first �(d + 1)/2� keys are put into
the existing node and the remaining keys into a new node.
After the split, the lowest key of the new node is inserted to
its parent node as a separator.

In most cases the parent node is not full, and the insertion
process ends. If the parent node is full too, the split occurs
again recursively up to the root node. When the recursive
split process finally reaches to the root node, B+-Tree in-
creases its height. This results in a new root node which
has only one key and two pointers.

The deletion process for a key K proceeds similarly. After
finding the proper leaf node, the key is removed from the leaf
node. However, in order to keep the property that each node
must have at least d/2 keys, balancing techniques such as
redistribution or concatenation may occur [6]. As a result of
concatenation, a node can be removed from B+-Tree, and a
chain of concatenation may decrease the height of B+-Tree
by one in the worst case.

For B+-Tree of order d with n records, the cost of retrieval,
insertion, or deletion operation is proportional to logd/2 n in
the worst case. Thus, as the node size increases, the opera-
tion cost will drop due to the increased branching factor d.
Actually, the optimal node size depends on the characteris-
tics of the underlying system and storage devices. In many
cases, B+-Tree uses the node size ranging from 4 Kbytes
to 16 Kbytes for modern hard disks considering the seek
penalty, the rotational delay, DMA granularity, the unit of
paging, and many other factors [8, 22].

2.3 Motivation
The designers of JFFS3, the next version of JFFS2, have

adopted B+-Tree for organizing directory entries and locat-
ing the positions of the latest file contents. However, because
of the absence of FTL, an update to a leaf node leads to a
chain of updates on index nodes up to the root node. They
call this method of updating tree “wandering tree”. Any
tree may be called wandering tree if an update in the tree
requires updating parent nodes up to the root due to the
lack of the ability to perform in-place updates [4].

Figure 2 depicts an update example on a wandering tree.
The tree is composed of six nodes, A – F . If an update
occurs on F , the modified node F ′ should be written into a
new page since flash memory does not support in-place up-
date. The node F ′, however, is not accessible from the root
node because C still points to the obsolete node F . Hence,
the node C also needs to be updated and C′ is written into
flash memory. For the same reason, the new root node A′,
which points to C′, is written.

To reduce the number of updates on index nodes, JFFS3
uses an in-memory data structure called the journal tree.
When something is changed in the JFFS3 file system, the
corresponding leaf node is written into flash memory, but the
indexing nodes are updated only in the journal tree. Peri-
odically, those delayed updates are committed, i.e, written
into flash memory in bulk. The journal tree allows to merge
many indexing node updates and lessen the amount of flash
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Figure 2: A wandering tree update example
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Figure 3: A µ-Tree update example

write operations [4]. However, the use of the journal tree
is not appropriate for small embedded systems with limited
memory size because it requires memory in proportion to
the number of updates delayed. Even worse, the larger is
the journal, the longer it may take to mount JFFS3 since the
journal tree should be built from the uncommitted leaf nodes
when JFFS3 is being mounted [4]. This paper proposes a
new novel index structure called µ-Tree, which requires only
a single flash write operation whenever any node in the tree
is updated.

3. µ-TREE

3.1 Overview of µ-Tree
µ-Tree is a balanced tree similar to B+-Tree and is de-

signed not only for SLC NAND but also for MLC NAND.
To solve the inefficiency in wandering trees, µ-Tree basically
stores all the updated nodes along the path from the root to
the leaf into a single flash memory page. Figure 3 illustrates
how µ-Tree reduces the number of flash write operations.
The number of nodes updated, F ′, C′, and A′, is the same
as in Figure 2. However, µ-Tree arranges the layout so that
those updated nodes fit into a single flash memory page.

We define the level of a node in µ-Tree as the length of
the path from leaves to the node plus one. The level of a
leaf node is always one. Also, the height of µ-Tree is defined
as the level of the root node. For example, the height of
µ-Tree shown in Figure 3 is three.

While the node size is fixed and same for all nodes in B+-
Tree, the size of each node in µ-Tree varies depending on the
level of the node and the height of µ-Tree. This is because
µ-Tree should be able to store all the nodes in a path from
the root to any leaf (A′, C′, and F ′ in Figure 3) into a single
page. Figure 4 depicts the change in the page layout when
the page size is 4096 bytes.

Let us denote the height of µ-Tree as H, and the set of
nodes in level L as NL. For µ-Tree such that H > 2, a leaf
node n ∈ N1 always occupies the half of the page. As the
level is increased, the node size is reduced by half as shown

Root

3

2

1

Root

2

1

Root

1

2 3 4

2048 bytes

1024 bytes

512 bytes

512 bytes

Root

1 Height

Figure 4: The change in the page layout according
to the height of µ-Tree

Algorithm 1 GetNodeFromPage

Input: page address P , level L
Output: node N
1: S ⇐ Q/2L , where Q is the size of a page
2: O ⇐ S
3: if L = H then
4: S ⇐ S ∗ 2
5: O ⇐ 0
6: end if
7: N ⇐ read at page P from offset O with size S

8: return N

in Figure 3. For an index node mL, such that mL ∈ NL, 1 <
L < H, the size of the node is reduced by half compared to
its children at the next level L − 1. Only the root node has
the same size as its children nodes. When µ-Tree consists of
a single level, i.e., H = 1, the entire flash page is used for the
root node. The complete procedure to find a node at level
L in a page P for µ-Tree with the height H is summarized
in Algorithm 1.

The page layout used in µ-Tree gives two benefits. First,
when the height of µ-Tree grows or shrinks, we can reuse
all the existing nodes (other than the root) since the lay-
out ensures the same node size at each level except for the
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Algorithm 2 Retrieval

Input: key K (search predicate)
Output: page address O (which points to the record corre-

sponding to K)
1: C ⇐ GetNodeFromPage(root page address, H)
2: L ⇐ H
3: while C.type �= LEAF do
4: Ki ⇐ smallest search-key greater than K
5: L ⇐ L − 1
6: if Ki exists then
7: C ⇐ GetNodeFromPage(Pi, L)
8: else
9: C ⇐ GetNodeFromPage(Pm, L), where m is the num-

ber of pointers in C
10: end if
11: end while
12: if Ki exists in C, such that Ki = K then
13: return Pi

14: else
15: return NULL

16: end if

root node. If we divide a page evenly among all the levels,
it will cause considerable write operations when the height
changes because the existing nodes does not fit on the new
layout anymore. Second, the layout scheme in µ-Tree de-
votes at least half of the page to leaf nodes. The size of a
leaf node has great influence on the space utilization. More
specifically, the larger leaf node size lessens the space over-
head. This will be analyzed in more detail in Section 4.3.

Basically, there is no significant difference between B+-
Tree and µ-Tree except that the size of node in µ-Tree is
determined by its level and the height of the tree. In the
following subsections, we describe the distinction between
two trees when they handle tree operations such as retrieval,
insertion, and deletion.

3.2 Retrieval in µ-Tree
The retrieval process of µ-Tree is essentially the same as

that of B+-Tree, because the logical structures of two trees
are identical. However, while a page is fully occupied by a
node in B+-Tree, a page under µ-Tree may have many nodes
at different levels. GetNodeFromPage() is used iteratively
during the retrieval process to locate the correct node. Al-
gorithm 2 outlines pseudocode for retrieving the record that
corresponds to a key K.

3.3 Insertion in µ-Tree
Algorithm 3 shows pseudocode of the insertion process

for a key K and the address of the corresponding record
P . The Insertion() procedure first allocates a new page N
to rewrite all the nodes which will be updated. Then, it
calls InsertEntry() (Algorithm 4) to insert the entry (K,
P ) into the page N . After finishing the call, it checks the
return value. The return value of FULL means that the
root node becomes full as a result of the current insertion,
and the height of µ-Tree is increased by one.

Similar to B+-Tree, the InsertEntry() procedure recur-
sively visits several nodes from the root to the leaf. Nor-
mally, it inserts the given entry (K, P ) into the leaf node
and rewrites all the nodes from the leaf to the root. If the
leaf node is already full, however, a new page N ′ is allocated
and a node split occurs. The original node C is divided into
Cl and Cr, and they are stored into the page N and N ′,
respectively. The new entry is inserted either into Cl or

Algorithm 3 Insertion

Input: key K, page address P (which points to the record cor-
responding to K)

1: allocate a new page N
2: (R, K′, P ′) ⇐ InsertEntry(K, P, N, root page address, H)
3: if R = FULL then
4: allocate a new page N ′
5: C ⇐ GetNodeFromPage(N , H)
6: H ⇐ H + 1
7: (Cl, Cr) = Split(C)
8: C′ ⇐ GetNodeFromPage(N , H)
9: insert (Cl.K1, N) and (Cr.K1, N ′) into C′

10: write node Cl on page N
11: write node Cr on page N ′
12: write node C′ on page N ′

13: end if
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Figure 5: An example of height increase in µ-Tree

into Cr depending on the value of K. Finally, the entry
(Cr.K1, N

′) is inserted to their parent node. If the parent
node becomes full due to this entry, the split process occurs
again.

When the root node becomes full, the insertion process
increases the height as shown in line 4–12 of Algorithm 3.
Figure 5 illustrates an insertion example which causes the
height increase. The number in each node indicates the level
of the node, and (a/b) represents that the node currently
holds a entries out of the maximum b entries. An arrow
between two valid nodes means that one has a pointer to
the other node.

The initial state of µ-Tree is shown in Figure 5(a) where
the leaf node is full and the root node has room for only
one more entry. Now assume that an entry is inserted into
the leaf node. Calling InsertEntry() results in a split on
the leaf node and, as a result, an entry is added to the
root node. Figure 5(b) shows the intermediate state after
returning from InsertEntry(). Because the root is full, the
root is split into two lower-level nodes increasing the height
by one. Figure 5(c) presents the final state of µ-Tree after
the insertion operation completes.

Note that in lines 28–30 of Algorithm 4, two nodes Cl

and Cr, split from the node C, are swapped each other
when some entry in Cr has a pointer to a node in page
N . This is because µ-Tree maintains a property that only
the direct child node can be stored at the next lower level,
if any, within the same page. We call this property the
descendant-ancestor relationship, which makes it easier to
perform garbage collection (cf. Section 5.1).
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Algorithm 4 InsertEntry

Input: key K, page address P , N , B, level L
Output: return value R, key K′, page address P ′
1: C ⇐ GetNodeFromPage(B, L)
2: if C.type �= LEAF then
3: find C.Pi, such that C.Ki ≤ K < C.Ki+1

4: if C.Pi doesn’t exist then
5: i ⇐ m, where m is the number of pointers in C
6: end if
7: (R, K′, P ′) ⇐ InsertEntry(K, P, N, C.Pi, L − 1)
8: C.Pi ⇐ N
9: if R = SPLIT then

10: K ⇐ K′, P ⇐ P ′, N ⇐ P ′
11: else
12: write node C on page N
13: return R ⇐ NULL
14: end if
15: end if
16: if C has space for (K, P ) then
17: insert (K, P ) into C
18: write node C on page N
19: if C is full then
20: return R ⇐ FULL
21: else
22: return R ⇐ NULL
23: end if
24: else
25: allocate a new page N ′
26: (Cl, Cr) ⇐ Split(C)
27: insert (K, P ) into (Cr.K1 > K)? Cr : Cl

28: if Cl.type �= LEAF & ∃Cr.Pi = N then
29: swap Cl ⇔ Cr

30: end if
31: write node Cl on page N
32: write node Cr on page N ′
33: return R ⇐ SPLIT, K′ ⇐ Cr.K1, P ′ ⇐ N ′

34: end if

Algorithm 5 Deletion

Input: key K
1: allocate a new page N
2: R ⇐ DeleteEntry(K, N, root page address, H)
3: if R = ONE then
4: C ⇐ GetNodeFromPage(N , H)
5: C′ ⇐ GetNodeFromPage(C.P1, H)
6: H ⇐ H − 1
7: C ⇐ GetNodeFromPage(N , H)
8: C ⇐ C′
9: write node C′ on page N

10: end if

3.4 Deletion in µ-Tree
Algorithm 5 shows pseudocode of the deletion process.

The Deletion() procedure is very similar to Insertion() ex-
cept that the height of the tree may be decreased by one as
a result of the deletion.

The DeleteEntry() procedure works recursively to delete
an entry that matches the given key K. If the leaf node
becomes empty by the deletion, the entry in the parent node,
which points to the empty node, is also removed. Again, this
deletion process can be propagated towards the root node.
Due to space limitation, we omit the detailed algorithm for
DeleteEntry().

µ-Tree shrinks its height when the root node has only one
pointer, as shown in lines 4–9 of Algorithm 5. Figure 6 de-
picts a deletion example which causes the height to decrease.
Figure 6(a) shows the initial state of µ-Tree before the dele-
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Figure 6: An example of height decrease in µ-Tree

Table 2: Summary of notation

Symbols Definitions

hB , hµ the height of B+-Tree (hB) or µ-Tree (hµ)
l the level of a node
dl the max number of entries within a node

at l-th level
f the max number of entries within a page
nh the total number of records to be indexed

with a height h tree
vB , vµ the total number of valid pages in B+-Tree

(vB) or µ-Tree (vµ)
cr the cost of read operation on flash memory
cw the cost of write operation on flash memory

tion is performed. Assume that an entry in the right leaf
node in Figure 6(a) is removed. This eventually results in
a situation that the root contains only a single pointer as
illustrated in Figure 6(b). The final state is shown in Fig-
ure 6(c), where the node previously at level 2 is promoted
to the root with decreasing the height of the tree.

Our current implementation does not include any opti-
mization for node balancing such as redistribution or con-
catenation, because it requires additional flash operations.
A node simply disappears when it has no entry.

4. SYSTEM ANALYSIS
We develop an analytical model to compare the behavior

of µ-Tree and the wandering B+-Tree. For ease of analysis,
we assume that the system has no additional memory for
cache (or journal tree in B+-Tree), and there are enough
free blocks to perform tree operations without any garbage
collection. Table 2 summarizes the notation used in our
analysis.

4.1 The Cost of Operations
Table 3 shows the cost for each tree operation when there

is no node split or removal. Obviously, the cost of a re-
trieval operation is linearly proportional to the tree height.
For insertion and deletion operations, we have to reach a
leaf node first and then the leaf node is updated. B+-Tree
requires write operations as many as its height, while µ-Tree
only a single write operation.

4.2 The Height of Trees
The height of µ-Tree can be slightly higher than that of

B+-Tree for the same number of entries. This is because, as
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Table 3: The cost of operations

Operations B+-Tree µ-Tree
Retrieval crhB crhµ

Insertion (cr + cw)hB crhµ + cw

Deletion (cr + cw)hB crhµ + cw

the level increases, the fanout of a node becomes smaller in
µ-Tree due to the decreased node size.

First, we analyze the height of B+-Tree in which the node
size is same for all nodes. Assuming each node occupies a
page, we have

dl = f, for all 1 ≤ l ≤ hB (1)

We can obtain nh by multiplying dl for all levels.

nh =
h∏

i=1

di = fh (2)

From (2), hB is expressed as follows for n records.

hB = logf n (3)

In µ-Tree, dl is given by

dl =

{
f/2l−1 if root (l = hµ);
f/2l otherwise (l < hµ).

(4)

In the same manner,

nh =
h∏

i=1

di = 2
h∏

i=1

(f/2i) (5)

From (5), hµ for n records can be represented as follows.

hµ = − log2

√
2

f
−

√
log2

2

√
2

f
− 2 log2

n

2
(6)

Figure 7 plots hB , �hB�, hµ, and �hµ� obtained from (3)
and (6) when the page size is 4 Kbytes and the entry size
is 8 bytes (i.e., f = 512). We can see that the height of
µ-Tree is equal to or at most one level higher than that of
B+-Tree up to one billion records. Although the increased
tree height raises the number of flash read operations during
retrieval, insertion, and deletion, the impact on the overall
performance can be alleviated by the fact that the read op-
eration is much faster than the write operation on NAND
flash memory.

4.3 Space Overhead
As mentioned in Section 3, µ-Tree requires more space

than B+-Tree for the same number of records because the
fanout of the leaf node is smaller. Assuming that every leaf
node is filled with entries, vB can be calculated as follows.

vB =

⌈
n

d1

⌉
+

⌈
n

d1d2

⌉
+ . . . +

⌈
n

d1d2 . . . dhB

⌉
(7)

By applying (1),

vB =

⌈
n

f

⌉
+

⌈
n

f2

⌉
+ . . . +

⌈
n

fhB

⌉
(8)

In most cases f is sufficiently large (f > 100), and we can

ignore
⌈

n
f2

⌉
+ . . . +

⌈
n

fhB

⌉
. Hence vB is given by

vB ≈
⌈

n

f

⌉
(9)
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Figure 7: Comparison of the height of B+-Tree and
µ-Tree

In µ-Tree, we can only count leaf nodes because index
nodes are stored with leaf nodes. Therefore, vµ can be ex-
pressed as

vµ =

⌈
n

d1

⌉
=

⌈
n

f/2

⌉
(10)

From (9) and (10) we have

vB ≈ vµ

2
(11)

µ-Tree takes up approximately twice as many as flash
memory pages compared to B+-Tree. The space overhead
of µ-Tree can be reduced by allocating more space to leaf
nodes inside a page. Often the number of valid pages is not
directly related to the overall space utilization on a system
using the out-of-place update scheme since nodes become
invalid as the tree is updated. Note that B+-Tree generates
more invalid pages than µ-Tree during insertion or deletion
operations (cf. Section 6.3).

5. IMPLEMENTATION ISSUES

5.1 Garbage Collection
When the number of free blocks goes down below a certain

threshold, the system needs to trigger garbage collection to
reclaim invalidated flash memory pages. Once the garbage
collection process is triggered, we first have to choose a vic-
tim block which will be cleaned. The ideal candidate that
minimizes the cost of garbage collection is the block which
has the minimum number of valid pages. Unfortunately,
keeping track of the number of valid pages for all blocks
limits the scalability of µ-Tree. Instead, we maintain the
information for a small number of blocks whose pages are
invalidated after the system boots.

If the victim block is selected, the next step is to separate
valid pages from invalid pages. A page is invalid if all the
nodes in the page are not reachable from the root node. In
order to minimize the time and the space needed to identify
valid pages, we store the information on the validity of every
page into the spare area of the last page in each block. Since
a page can be invalidated anytime after the validity infor-
mation is written into flash memory, the garbage collection
process checks again whether the page marked as valid is
still reachable from the root node. The descendant-ancestor
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Table 4: The characteristics of traces used for evaluation
Trace Description Retrieval Insertion Deletion

kernel compile This trace is obtained while we untar, compile, clean, and remove the
Linux kernel source.

2,274,867 260,974 236,027

postmark This is a trace for postmark benchmark. This benchmark models the
workload of an e-mail server, where lots of files are created and deleted.

4,617,494 574,148 391,847

mp3 This is a trace for synthetic workload, where we model the usage sce-
nario of a MP3 player. The storage of 8 Gbytes is filled with MP3 files
fully, and then 50% of files are deleted and copied again five times.

512,986 223,188 23,950

relationship described in Section 3.3 makes it easier to per-
form this test; it is enough to test only the reachability of
the node at the lowest level in a page to see if the page
is valid or not. According to the descendant-ancestor rela-
tionship, if the node at the lowest level is invalid, no valid
parent nodes can exist in the same page. During garbage
collection, the valid page can be moved to another block
simply by updating any key in the lowest-level node with
the same value.

5.2 Recovery
We also need a resilient recovery mechanism that can cope

with sudden power failure. µ-Tree basically relies on check-
pointing, where the information including the tree height,
the blocks used by µ-Tree, and the address of the root
node is periodically written into the special checkpoint area
in NAND flash memory. In our current implementation,
the checkpoint area is organized similar to the superblock
management scheme of JFFS3 [4], and the block containing
the checkpoint information is indirectly referenced from the
fixed location.

During initialization, the system first checks whether it is
turned off normally. If the system has terminated abnor-
mally, the recent checkpoint information is loaded and the
location of the root node is identified by following the pages
updated after the last checkpoint operation. Even when the
crash occurs during an insertion or a deletion which involves
more than one flash write operations, we can easily recover
from the situation because µ-Tree ensures that the page con-
taining the root node is written in the end. Pages that are
not ended with the valid root node can be simply discarded.

5.3 Caching
The use of in-memory cache such as the JFFS3’s journal

tree [4] is effective in reducing the number of read and write
operations on flash memory. By keeping the nodes accessed
by previous operations in memory, subsequent read requests
can be satisfied without any flash operation. Likewise, the
updated nodes are temporarily buffered in the cache which
can absorb subsequent write requests to the same node.

We have implemented a cache system which consists of
separate read and write cache. Both caches are maintained
on a page basis and the contents are mutually exclusive. The
pages in the read cache are managed by an LRU list, while
those in the write cache are handled in an allocation order.

For read requests from µ-Tree, our cache system first ex-
amines the read cache, and then the write cache. If the
requested page does not exist in both caches, a read com-
mand is sent to the flash device. When µ-Tree writes a new
page, a page allocation request is issued to the write cache.
If the write cache is full, all the pages in the write cache are

written in bulk into the flash device. For insertion opera-
tion which generates more than one pages due to node split,
the cache flush is delayed until the end of each operation in
order to guarantee the atomicity of operation. A page can
become invalid while it is in the cache, in which case the
page slot in the cache is immediately reused.

6. EXPERIMENTAL EVALUATION

6.1 Evaluation Methodology
µ-Tree has been built on a NAND flash simulator which

has an ability to count the number of flash read, write, and
erase operations performed. For a fair comparison, we have
also implemented the wandering B+-Tree scheme proposed
by JFFS3 [4] on the same simulator. The simulator is con-
figured for 64MB MLC NAND flash memory with 4 Kbytes
page size and 512 Kbytes block size. It is used exclusively
for storing indexes (excluding actual records).

The performance of µ-Tree is investigated by microbench-
mark and traces extracted from real workloads. We have de-
veloped our own microbenchmark where, after inserting one
million records initially, we conduct ten thousands of re-
trievals followed by the same number of deletions and then
insertions with randomly generated key values. The mi-
crobenchmark is used to compare the average number of
flash memory operations required for each retrieval, inser-
tion, and deletion operation.

To evaluate the performance of µ-Tree for real workloads,
we collected traces of B+-Tree operations from Reiser file
system (ReiserFS) [17]. ReiserFS is one of the representa-
tive disk-based file systems in Linux and it uses B+-Tree
extensively for indexing directory entries and the metadata
of files. We have instrumented the internal of ReiserFS on
Linux kernel 2.6.16.1 to log every B+-Tree operation while
we execute several tasks which require lots of metadata op-
erations. Table 4 summarizes the characteristics of traces
used in our experiments.

6.2 Microbenchmark Results
Table 5 summarizes the average number of flash read and

write operations required for each retrieval, insertion, and
deletion operation in B+-Tree and µ-Tree. The cache size
is represented as a pair of the read cache size and the write
cache size. The first configuration denoted as “0KB+0KB”
is the case where the cache is not used at all. The flash mem-
ory access cost is calculated based on the access latencies of
MLC NAND shown in Table 1. Since garbage collection is
invoked during the execution of microbenchmark, the flash
erase operation is also performed once in a while. In ta-
ble 5, we omit the number of flash erase operations since
the number is very small in most cases (< 0.03 in B+-Tree
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Table 5: Microbenchmark results
Cache size

Metrics
Retrieval Insertion Deletion

(Read+Write) B+-Tree µ-Tree B+-Tree µ-Tree B+-Tree µ-Tree
Average number of flash read / operation 3.00 2.97 4.11 3.32 4.14 3.34

0KB+0KB Average number of flash write / operation 0.00 0.00 3.83 1.08 3.85 1.09
Flash memory access cost (ms) 0.50 0.50 4.19 1.55 4.19 1.54
Average number of flash read / operation 2.00 1.97 2.83 2.74 2.83 2.76

4KB+4KB Average number flash write / operation 0.00 0.00 3.83 1.08 3.83 1.09
Flash memory access cost (ms) 0.33 0.33 3.98 1.45 3.98 1.45
Average number of flash read / operation 1.77 1.94 2.40 2.49 2.40 2.51

8KB+8KB Average number of flash write / operation 0.00 0.00 3.84 1.08 3.85 1.09
Flash memory access cost (ms) 0.29 0.32 3.92 1.40 3.93 1.41
Average number of flash read / operation 1.67 1.90 2.03 2.29 1.82 2.08

16KB+16KB Average number of flash write / operation 0.00 0.00 2.75 1.08 2.74 1.09
Flash memory access cost (ms) 0.28 0.31 2.85 1.37 2.84 1.38
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Figure 8: The total elapsed time to replay tree operations for each trace

and < 0.01 in µ-Tree). However, the erase cost is reflected
in computing the flash memory access cost.

From Table 5, we can observe that both trees benefit from
the increased cache size. When there is no cache, each re-
trieval operation requires almost three flash read operations.
This is obvious because the height of B+-Tree or µ-Tree
grows to three for one million records. When the cache can
hold two pages, one for the read cache and another for the
write cache, the costs for retrieval lessen in both trees be-
cause the root node is kept in write cache. The read cache
is not useful for B+-Tree since B+-Tree needs to start from
the root node every time discarding the leaf node previously
read. In µ-Tree, however, there can be a cache hit in the
same condition since a page holds several nodes in different
levels. For the read cache size larger than 8 Kbytes, µ-Tree
requires slightly more number of flash read operation com-
pared to B+-Tree. This is because currently the cache is
managed on a page basis, and µ-Tree does not utilize the
entire cache area effectively due to the unused area and in-
valid nodes inside a page.

For insertion or deletion operations, µ-Tree outperforms
B+-Tree by around three times in flash memory access cost
regardless of the cache configuration. Note that when there
is no cache, the values in Table 5 are higher than the values
predicted by Table 3 due to garbage collection.

6.3 Real Workloads Results
Figure 8 compares the time to replay tree operations in

B+-Tree and µ-Tree for traces shown in Table 4. We break-
down the total elapsed time according to the time spent
performing flash read, write, and erase operations.

When there is no cache, µ-Tree improves the total execu-
tion time by 18%, 28%, and 20% for kernel compile, post-
mark, and mp3 traces, respectively, compared to B+-Tree.
Although µ-Tree requires slightly more number of flash read
operations, most speedup comes from the significant reduc-
tion in the number of flash write operations. µ-Tree requires
only one third of flash write operations for kernel compile
and postmark, and half for mp3. Again, the improvement
is related to the height of B+-Tree, which grows to three for
kernel compile and postmark, and to two for mp3.

In accordance with microbenchmark results, the cache is
useful for both B+-Tree and µ-Tree, but we can see that it
is more effective to µ-Tree. With a small cache of 8 Kbytes
(4KB+4KB), µ-Tree exhibits the performance improved by
51%, 61%, and 90% for kernel compile, postmark, and mp3,
respectively, compared to B+-Tree with the same cache size.
The notable speedup in mp3 is due to sequential insertion
operations to index the file allocation information in Reis-
erFS. Since the write cache can hold just a single page with 4
Kbytes, B+-Tree cannot fully utilize the write cache during
the repeated insertion operations.

Figure 9 illustrates the number of garbage collection in-
voked during the simulation of each trace when there is no
cache. Results for other cache configurations are also very
similar. Although µ-Tree has twice as many valid pages as
B+-Tree (cf. Section 4.3), garbage collection is invoked more
frequently for B+-Tree. This is because B+-Tree produces
more number of invalid pages during insertion or deletion,
suffering from the shortage of free blocks.
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7. RELATED WORK
Recently, several studies have been performed to develop

an efficient index structure for flash memory. Wu et al. in-
troduced BFTL, an optimized B+-Tree layer for flash mem-
ory [5]. BFTL does not suffer from the out-of-place update
problem of flash media because it was implemented on top
of FTL. They mainly focused on the trade-off between re-
trieval and update performance. To avoid expensive update
cost for each node, all changes are written in log pages. For
each node, an in-memory data structure called Node Trans-
lation Table (NTT) maintains a list of log pages that have
inserted or removed entries. While BFTL reduces the write
cost, the read cost is degraded by a factor of two or more
because many log pages related to the requested node must
be collected.

To address this problem, Nath et al. proposed a hybrid
approach [13]. They classify nodes into read-intensive and
write-intensive nodes by their cost model. To avoid the read
overhead for the read-intensive nodes, those nodes are dis-
allowed to use the log pages, thus they are written entirely
on updates. Those two approaches, however, can not be
adopted on small embedded systems with limited memory
because the memory footprint of NTT is proportional to
the number of nodes. Moreover, both approaches incur ad-
ditional cost because they are based on FTL. The updates
to B+-Tree reveal many small writes which are distributed
randomly across many blocks, but most FTL algorithms per-
form poorly for such a workload [1, 11]. The use of log pages
does not lessen the problem since the log entries in the same
node are eventually merged together.

Lin et al. proposed MicroHash [19], an indexing structure
based on hash table for sensor devices. However, MicroHash
is not scalable to a large number of records. It is also hardly
applicable to file systems or DBMSs because it assumes that
all stale records written before a certain amount of time are
abandoned in the deletion phase.

8. CONCLUSIONS AND FUTURE WORK
This paper proposes a novel index structure called µ-Tree

that can handle tree update requests efficiently on NAND
flash memory by storing all the nodes in the path from the
root to the leaf into a single flash page. Our evaluation
results show that µ-Tree outperforms B+-Tree by up to 28%
for traces extracted from real workloads. When the system
is able to utilize a small in-memory cache of 8 Kbytes, µ-Tree
improves the overall performance by up to 90% compared
to B+-Tree with the same cache size.

As mentioned in Section 4.3, the space used by the root
node need not necessarily be partitioned equally when the
height of µ-Tree grows. In fact, allocating more space to

the node in the lower level increases the overall space uti-
lization at the expense of the increase height. Our future
work includes the complete analysis on the impact of this
trade-off. We also plan to investigate more effective cache
management policies for µ-Tree.
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