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ABSTRACT

Synchronous reactive formalisms associate concurrent behaviors to
precise schedules on global clock(s). This allows a non-ambiguous
notion of “absent” signal, which can be reacted upon. But in desyn-
chronized (possibly distributed) implementations, absent values must
be explicitely exchanged, unless behaviors were already provably
independent and asynchronous (a property formerly introduced as
endochrony).

We provide further criteria restricting “reaction to absence” to
allow correct desynchronized implementation. We also show that
these criteria not only depend on the desired correctness properties,
but also on the desired structure of the implementation.

Categories and Subject Descriptors: C.3 [Special-Purpose and
Application-Based Systems]: Real-Time and Embedded Systems
D.3.1 [Formal Definitions and Theory]: Semantics

General Terms: Theory, Languages, Design

Keywords: Desynchronization, GALS, Endochrony, Execution ma-
chine, Correctness, Determinism, Reaction to signal absence, Kahn
process networks

1. INTRODUCTION

Synchronous reactive formalisms [9, 4] are modeling and pro-
gramming languages used in the specification and analysis of safety-
critical embedded systems. They comprise (synchronous) concur-
rency features, and are based on the Mealy machine paradigm: In-
put signals can occur from the environment, possibly simultane-
ously, at the pace of a given global clock. Output signals and state
changes are then computed before the next clock tick, grouped as
one atomic reaction. Because common computation instants are
well-defined, so is the notion of signal absence at a given instant.
Reaction to absence is allowed, i.e., a change can be caused by
the absence of a signal on a new clock tick. Since component in-
puts may become local signals in a larger concurrent system, absent
values may have to be computed and propagated, to implement cor-
rectly the synchronous semantics.

When an asynchronous implementation is meant, where possi-
bly distributed components communicate via message passing, the
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explicit propagatation of all absent values may clog the system to a
certain extent. A natural question arises: when can one dispose of
such ”absent signal” communications?

Sufficient conditions, known as (weak) endochrony [3, 8, 14, 13],
have been introduced in the past to figure when the absent values
can be replaced in the implementation by actual absence of mes-
sages without affecting its correctness and determinism. Weak en-
dochrony determines that compound reactions that are apparently
synchronous can be split into independent smaller reactions that are
asynchronously feasible in a confluent way (one after the other in-
stead of simultaneously), so that the first one does not discard the
second. This is also linked to the Kahn principles for networks [11],
where only internal choice is allowed to ensure that overall lack of
confluence cannot be caused by input signal speed variations.

In this paper, we rephrase these issues to better show their mutual
relations, we strengthen the theory by asserting necessary and suf-
ficient conditions, and we show that these conditions need to take
into account the structure of the execution machines used to give a
globally asynchronous implementation to a synchronous specifica-
tion.

Outline. Section 2 explains what we understand by synchronous
specification, asynchronous implementation, and signal absence. It
starts with a brief introduction to Kahn process networks, which in-
cludes the formal notations for the asynchronous framework. Sec-
tion 3 covers the representation of signal absence in various lan-
guages. Section 4 is on reaction to signal absence. It gives its
formal definition, implementation details, and examples. Section 5
takes into account concurrency and gives our main result. We give
examples in Section 6 and conclude in Section 7.

2. BASIC NOTIONS

2.1 Kahn process networks

In 1974, Gilles Kahn wrote his seminal paper [11] on what is
known today as Kahn process networks (KPN). He introduced a
simple language for defining distributed systems of communicating
sequential processes, and fully specified the underlying communi-
cation and execution mechanisms.

In a KPN, interprocess communication is done through mes-
sage passing along channels (asynchronous lossless FIFOs). When
reading a channel, a process is blocked until a message is avail-
able. There is no block on writing. Once sent, a message reaches
its destination in a finite (but unbounded) time, meaning that one
communication cannot block another indefinitely. On the receiver
end, the message remains on the channel until it is read. Any num-
ber of messages can be sent before one is read (the channels are
unbounded). No other communication or synchronization mecha-



nism exists between processes (which run in parallel). In particular,
time is not used to make decisions or trigger computations.

The simple model of the KPN proved to be an excellent basis for
the compositional modelling of deterministic systems that operate
infinitely using limited resources [12]. Variants or extensions of
the original model are currently used in a variety of industrial and
academic settings.

2.1.1 Formalization

The formal analysis of a KPN is based on the representation of
each process as a stream function converting input histories into
output histories. Formally, a Kahn process network has a set of
FIFO channels C and a set of processes P.

Given a channel ¢ € C, its domain D, is the set of values that
can be transmitted as messages over c¢. We denote with D.* the set
of all finite sequences over D., and with D.“ the set of all finite
or infinite sequences. Given an execution of the KPN, the history
Hist(c) of a channel c is the sequence of all messages that tran-
sit ¢ during the execution. For a finite execution, Hist(c) € D.*.
For an infinite execution, Hist(c) € D.”. The set D.* is or-
dered by the prefix order <. We denote with ¢ the empty sequence.
Any increasing sequence (h;)72; in D has a limit lim; . h;.
The prefix order and the limit operator on individual D.“ induce a
product order and a limit operator on any product set H;.lzl De;”.

Each process f € P has zero or more input channels ci; €
C,1 < j < n, and zero or more output channels co; € C,1 <
j < m. Given an execution of f, the input history of f is
(Hist(cij))j=1 € IIj—; Dei;* and the output history of f is
(Hist(coj))j=1 € [/, Deo;“.

Given that f is sequential and deterministic, its behavior can be
defined as a function from input histories to output histories:

n
f : H Dcijw
j=1

We shall call this function the stream function of f, and denote it
with the process name.

2.1.2  The Kahn principle

All the stream functions associated with Kahn processes are:

m

- H Dcoj-w

j=1

e Monotonous, in the sense of <, meaning that giving more
messages on the input channels results in more output mes-
sages.

e Continuous, in the sense of the limit operator, meaning that
for any sequence of input histories hj, € H;.lzl Dei;“ k> 1
such that limy_—.oc hxy = h we also have limy_—.oc f(hg)
f(h). Continuity means that the emission of one output mes-
sage should not depend on the reception of infinitely many
input messages.

The main contribution of Kahn’s paper is the Kahn principle,
which states that the monotony and continuity of the individual
Kahn processes implies the monotony and continuity of the stream
function associated with the whole process network. Moreover, the
stream function associated with the KPN can be computed as the
least fixed point of the system of equations:

(Hist(coj))j1 = f((Hist(ciz))j=,) forall f € P

which can be computed iteratively. The Kahn principle thus gives
the means for constructing in a compositional fashion deterministic
systems.
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Figure 1: Desired GALS component structure. The syn-
chronous module can be software (a reaction function) or hard-
ware (a circuit).

2.2 The problem we address

The notions of monotony and continuity are of particular impor-
tance for us, because they are not restricted to the language de-
fined by Kahn, nor to sequential programs. Provided we ensure the
monotony and continuity of an asynchronous component, we can
apply the Kahn principle.

In this paper, we address the construction of deterministic glob-
ally asynchronous systems starting from synchronous specifications.
More precisely, we focus on the problem of constructing one
asynchronous process with monotonous and continuous stream
function from one concurrent synchronous module. Then, the
Kahn principle can be used to compose such asynchronous pro-
cesses into a deterministic system.

This paper does not deal with global correctness properties of a
Kahn process network, such as the absence of overflows or dead-
locks, nor with the ways of implementing and ensuring the fair-
ness of the underlying physical computing architecture. It does not
cover, either, the related problem of preserving the synchronous
composition semantics in the implementation of multi-module syn-
chronous specifications. We only focus here on the interface be-
tween the synchronous and the asynchronous parts of a single pro-
cess.

2.3 Asynchronous component

We are targeting implementations having the structure depicted
in Fig. 1, which are best described as globally asynchronous, lo-
cally synchronous (GALS). At the core stands the synchronous mod-
ule, which is driven by an execution machine (also called GALS
wrapper), which allows the execution of the synchronous mod-
ule in the asynchronous framework defined above. This general
pattern covers a large class of implementations. For instance, the
synchronous module can be a sequential reaction function (in soft-
ware), or a synchronous IP (in hardware).

The execution machine performs the following functions:

e Reaction triggering. The successive reactions of the syn-
chronous module are triggered, using for instance a clock
generation mechanism (in synchronous hardware), or suc-
cessive calls of the reaction function (in software).

e [/O handling. Handle the communication with both the asyn-
chronous environment and the synchronous module, and re-
alize the necessary transformations between the two (e.g. sig-
nal absence encoding, if any).

The resulting GALS component must satisfy two main correctness
conditions:

o Semantics preservation. It must preserve, in some sense, the
semantics of the original synchronous module.



e Monotony and continuity. Its stream function must satisfy
the hypothesis of the Kahn principle.

We shall formally define implementation correctness in Section 2.5.1.

In addition, we make an assumption that we consider realistic
for any implementation, by requiring that all resulting GALS im-
plementations must be is confluent: For given, finite asynchronous
inputs, any two complete executions of the implementation end up
in the same state, regardless of the order in which the inputs arrive.

The form and the capabilities of the execution machine depend
on the underlying hardware platform, and they must match the
properties of the synchronous module to allow implementation. '
This means that the discussion concerning the form of the execution
machine cannot be done at this point. We defer it to the following
sections.

2.4 Synchronous module

The various synchronous formalisms [9] are used to develop
specifications that can be interpreted as incomplete synchronous
Mealy machines. This is the model we use throughout this paper to
represent synchronous modules. A module is any finite automaton
whose transitions are labeled with reactions. An execution (trace)
of the module is a sequence of reactions indexed by the global
clock.

A reaction is a valuation of the input and output signals of the
module. All signals are typed. We denote with D the domain of a
signal S. Not all signals need to have a value in a reaction, to model
cases where only parts of the module compute. We will say that a
signal is present in a reaction when it has a value in Dg. Otherwise,
we say that it is absent. Absence is simply represented with a new
value L, which is appended to all domains Dg = DsU{L}. With
this convention, a reaction is a valuation of all the signals S of the
module in their extended domains D& . We say that two reactions
r1 and ro are non-contradictory, denoted r1 D 12, when there
exists no signal S that is present, but different in the two reactions
L # r1(S) # r2(S) # L. The support of a reaction r, denoted
supp(r), is the set of present signals. Given a set of signals X,
we denote with R(X) the set of all reactions over X. When r €
R(X)and X’ C X, then we denote with r | x/ the restriction of 7
to X'.

To represent reactions in a compact form, we use a set-like no-
tation and omit signals with value L. For instance, the reaction
associating 1 to A, T to B, and L to C' is represented with <
A =1,B =T >. The delimiters can be dropped if there is no con-
fusion. On non-contradictory reactions we define the union (U) and
difference (\) operators, with their natural meanings from set the-
ory. Forinstance, < A=1,B=T >U<A=1,C=7>=<
A=1,B=T,C=7>.

When representing a reaction r, we shall usually separate the
valuations of the input and output signals » = i/o, where i is the
restriction of r on input signals, and o is the restriction on output
signals. All the operators defined above (>, U, \, supp()) can
be applied on components. With these conventions, the stuttering
reaction assigning L to all input and output signals is denoted /.

DEFINITION 1 (INCOMPLETE MEALY MACHINE). A synchro-
nous automaton is a tuple ¥ = (Z,0,S8,T), where I and O are
the finite and disjoint sets of input and output signals, S is the set

"For instance, if the reactions of the synchronous module are trig-
gered periodically (as opposed to controlled by the execution ma-
chine), the module will have to be stuttering-invariant (defined in
the next section), so that the synchronous module can make stut-
tering transitions while the execution machine waits for the inputs
needed to perform computations.
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of states, and T : S x R(Z) —o—= S x R(O) is the function
representing the transitions. The function T is partial to represent
the fact that the system may not accept any input. In addition, we
require that T is non-void.*

We will write s e s instead of 7 (s,i) = (s’,0) to repre-
sent system transitions. Note that the functional definition of the
transitions implies determinism (at most one transition for given
state and input), a property we require for all synchronous modules
throught this paper.

We denote with Traces(X) C R(Z U O)“ the set of traces of
the synchronous module 3. The determinism of 3 implies that we
can also see it as a function converting sequences of input events
into sequences of output events:

Y Traces(X) |z —— Traces(X) |o

A Mealy machine can stutter in state s if the stuttering transi-

tion g _/> s is defined. We say that a machine is stuttering-

invariant when there is a stuttering transition in each state. We say
that a machine has no input-less transition if the only transitions

s 1% s’ with supp(i) = ) are stuttering transitions. In other
words, no state change can be realized and no output can be pro-
duced without new inputs.

Systems that have input-less transitions, even deterministic ones,
require special attention in order to produce monotonous and con-
tinuous asynchronous implementations.> To simplify the presen-
tation, we shall assume that all synchronous systems of this paper
have no input-less transitions.

2.5 The implementation problem

The main issue in specifying asynchronous components using
synchronous specifications is the treatment of signal absence. In
the synchronous model, the absence of a signal in a given reaction
can be sensed and tested in order to make decisions. It is a special
absent value, denoted _L. In the considered asynchronous imple-
mentation model, the absence of a message on a channel cannot be
sensed or tested.

When transforming the synchronous specification into a globally
asynchronous implementation, the sequences of present and absent
values on each signal are mapped into sequences of messages sent
or received on the associated communication channels. To simplify
the problem, we assume one asynchronous FIFO channel is associ-
ated with each signal of the synchronous model.

We have to define the encoding of signal values with messages
on channels. When a signal S has value v # 1 during a reaction,
the most natural encoding associates one message carrying value
v on the corresponding channel. The message is sent or received,
depending on whether S is an output or an input signal. We assume
this encoding throughout the paper.

Things are more complicated for absent (L) values. The most
natural solution is to represent them with actual message absence

2Our goal is the transformation of synchronous automata in
monotonous asynchronous components. Monotony implies deter-
minism, and input-less components, such as sensors, are determin-
istic only when their output values are not important (which is
rarely the case in practice). We explain in Section 2.6 how our
work can be extended to cover input-less components.

3For instance, some form of execution fairness is needed when a
synchronous automaton contains a cycle formed of input-less tran-
sitions (to ensure that the cycle does not monopolize the computing
power of the implementation).



module PREEMPT:
input A,C ; output B,D ;
abort

await immediate A ; emit B
when immediate C do emit D end
end module

A/B

m

/{ start ——— done
o

Figure 2: A small Esterel program (top), and its Mealy machine
representation (bottom)

(i.e. no message at all). Unfortunately, forgetting all absence in-
formation does not allow the construction of deterministic globally
asynchronous implementations for general synchronous specifica-
tions. Consider, for instance, the Esterel program of Fig. 2. The
program awaits for the arrival of at least one of its two input sig-
nals. If A arrives alone, then the program terminates by emitting
B. If C arrives alone or if A and C arrive at the same time, then the
program terminates by emitting D.

Assume that A arrives in the start state. Then, we need to know
whether C is present or absent, to decide which of B or D is emit-
ted. We will say that the program reacts to signal absence, because
the presence or absence of C must be tested. An asynchronous im-
plementation of PREEMPT needs absence information in order to
deterministically decide which transition to trigger in state start.

To generate deterministic asynchronous implementations for syn-
chronous programs such as PREEMPT, messages must be added
to represent the necessary absence information. This can be done
either by transmitting absent (L) values through messages, or by
adding other synchronization messages on new or already existent
communication channels.

In this paper, our objective is to characterize the class of syn-
chronous specifications that can be transformed into monoto-
nous and continuous asynchronous implementations without
adding such new messages to encode absence. Our characteri-
zation has important consequences. In particular, it establishes the
theoretical limits of the two-phase implementation process a la Sig-
nal/Polychrony [8], where all absence encoding problems are dealt
with inside the synchronous model, thus facilitating the analysis
of large specifications using existing synchronous tools and tech-
niques:

Step 1: Signal absence encoding. Transform the synchronous
specification into one where reaction to signal absence is not
needed.* This is done by either (1) deciding which L values
are relevant and must be transmitted, and represent them with
a new value 1", or (2) adding new signals and messages to
the specification.

Step 2: Implementation synthesis. Give a deterministic asynchro-
nous implementation to the transformed synchronous speci-
fication. This implementation follows the natural encoding
defined above: no message for the remaining absent L val-
ues, and one message for each other signal value.

“The transformation can be automatic, as Polychrony does for sim-
ulation purposes, or manual, when building an implementation that
must be finely tuned to match the underlying execution platform.
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2.5.1 Formal correctness criterion

Assume that ¥ = (Z,0,S,7) is a synchronous module and
that [X] is his GALS implementation. As stated above, there is a
1-to-1 correspondence between the signals of 3 and the channels
of [X]. By an abuse of notations, we identify the set of channels C'
of [X] withZ U O.

The encoding of signal absence with actual absence of messages
is represented using the desynchronization operator (), which con-
verts synchronous traces (sequences of reactions) into asynchronous
histories by forgetting L values. On individual signals/channels:

e,ifv=_Lorv=c¢
v, ifv € Dg
0(w)d(w), if v =uw

5(): Dg¥ — Dg® d(v)

For a set of signals/channels X:

50 : R(X)” = [Igex Ds®  8(1)(S) = 6(t |(sy)

‘We have now all the formal elements needed to define the desired
sematics preservation criterion the GALS implementation must sat-
isfy. Assume t is a synchronous trace of ¥. When feeding the
GALS implementation [X] with §(¢ |z), which contains all the in-
puts values different from L, we expect as output § (¢ |o):

[Z]:6(t |2) = d(t |o) )

Generally, this mapping does not define, by itself, a monotonous
and continuous stream function. Two problems arise:

e The mapping is usually incomplete, as the inputs of syn-
chronous traces do not cover all possible input histories.” We
must extend it to a full stream function.

e The mapping cannot always be extended to a monotonous
and continuous function. For instance, this is impossible for
the synchronous module in Fig. 2.

We will say that the GALS implementation [X] is correct when it
is confluent and has a monotonous and continuous stream function
ensuring the mapping of Equation 1.

This criterion specializes and enriches the semantics-preservation
criterion originally defined by Benveniste, Caillaud and LeGuer-
nic [3] by taking into account the properties of our implementation
framework.

We shall see in the following sections how the execution ma-
chine further limits the class of programs that can be implemented,
beyond the limits imposed by the previous criterion.

2.6 Related work

Our work is closely related to, and can be seen as a generaliza-
tion over, the multiple variants of endochrony(3, 8, 14, 13]. In-
deed, we determine here necessary and sufficient conditions for de-
terministic and confluent asynchronous implementation of a syn-
chronous specification, where the various endochrony variants of-
fer only sufficient conditions. The fact that our formalization cov-
ers only deterministic systems, whereas endochrony also also al-
lows some non-determinism, is due to a presentation choice. As
explained in [14], the Kahn principle can be generalized to ensure
a form of predictability® instead of determinism. Our results can be

For instance, an adder needs both inputs at each reaction, so the
mapping is defined only for input histories with the same number
of values on each channel.

®Non-deterministic internal choices of a process are possible, as
long as they are published through the outputs, allowing the envi-
ronment to change its behavior accordingly.



easily generalized following the same scheme. This generalization
should also allow the modelling of sensors (which is impossible
in the current KPN-based setting, because a source is usually non-
deterministic).

It must be noted, however, that we pursue slightly different goals
than the endochrony-based approaches. More precisely, we do not
address here the preservation of synchronous composition seman-
tics in a distributed asynchronous setting. This is why we do not
define a second property (like (weak) isochrony [3, 14]) covering
composition, and instead focus on the transformation of the syn-
chronous specification of a single component into an asynchronous
implementation.

We determine that the various formulations of (weak) endochrony
aim at expressing a more fundamental property of a concurrent syn-
chronous specification: the fact that it does not react to signal
absence.

Work on endochrony also justifies our approach from a practi-
cal point of view. First, the two-step implementation process we
advocate for generalizes the process of the Polychrony [8, 1] envi-
ronment developed around the Signal language and the endochrony
variant of Benveniste, Caillaud, and Le Guernic [3]. Second, we es-
tablish limits that must be respected by any globally asynchronous
implementation.

Technical comparisons with the endochronous systems of Ben-
veniste, Caillaud, and Le Guernic [3] and with the (microstep)
weakly endochronous systems of Potop, Caillaud, and Benveniste
[14, 13], will be respectively provided in Sections 4.1 and 5.2.1.

The endochrony variant of LeGuernic, Talpin, and Le Lann [8]
has a more marked difference with respect to our model. It only
requires that the system produces correct output for specified sets
of inputs, which leads to composition problems and more complex
analysis techniques. ' By comparison, our GALS components are
deterministic for any input (like Kahn processes do).

The latency-insensitive systems of Carloni, McMillan, and
Sangiovanni-Vincentelli, the Lustre language [10], and the
AAA/SynDEx methodology [7] take a very simple solution to the
absence encoding problem, by prohibiting the absence of interface
signals. This means that the programmer must perform the absence
encoding step, and that all concurrency is lost in the system (the
approach is not very efficient). The generalized latency-insensitive
systems of Singh and Theobald [15] try to relax these constraints.

Our results do not cover the distributed implementation of reac-
tive systems, as do Caspi, Girault, and Pilaud [6], nor have the same
global approach. We only deal with the construction of one deter-
ministic asynchronous component from one synchronous specifi-
cation.

From another perspective, the synchronous systems, as defined
in distributed computing [2] correspond in our case to (concurrent)
synchronous specifications without reaction to signal absence.

Our work has different goals from Boussinot and de Simone’s
work on instantaneous reaction to signal absence [5]. There, the
issue is that of determining signal absence while avoiding causality
problems.

3. SIGNAL ABSENCE IN VARIOUS
LANGUAGES

Programs written in the three main synchronous languages are
easily represented with our Mealy machines.

For the Signal language, we consider its trace semantics, as de-
fined in [1]. A reaction of the program is a partial assignment of the
signals that satisfies the constraints represented by the statements

"This is similar to hardware-like don’t care-based approaches.
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of the program. When a reaction does not assign a signal, we say
that the signal is absent. This absence representation is naturally
mapped to our absence encoding which uses explicit L values. We
shall denote with T the unique present value of the signals of type
event. A Signal program has no explicit global clock, so that all
Signal programs are stuttering-invariant (the stuttering transition is
defined in all states), but all Signal programs are not determinis-
tic. For the scope of this paper, we shall only consider determinis-
tic Signal programs.® Stuttering-invariance and determinism imply
that the programs we consider have no input-less transition.

Lustre and the specification formalism of the SynDEx software
can be seen as sub-sets of Signal, the main differences being that
the global clock is specified, and that no interface signal is ever
absent (by consequence, no input-less transition exists). Thus, we
can use the same encoding as for Signal.

In Esterel, every signal has a status of present (true) or absent
(false).” Valued signals also carry a value, that should be read
only during reactions where the signal is present (status=true). The
mapping from the Esterel absence encoding to ours is again natural:
a signal which is present is represented by its value (if the signal is
valued), or by T (if the signal is not valued). A signal that is absent
has value L.

The Esterel language defines a global clock. Time flow, and
therefore the reactions where a signal can be absent, is determined
by the successive occurrences of the implicit TICK signal. In par-
ticular, no other signal can be present if TICK is absent.

Esterel programs can have input-less transitions. The following
program can produce O without reading a single input (TICK is not
an input signal):

module TIMEFLOW:
output O;
loop
every 2 TICK do emit O end
end
end module

However, meaningful classes of Esterel programs exist without input-
less transitions. Such a class is the syntactical sub-set of Esterel
containing no pause or suspend statements and no reference to
TICK, and where all preemption triggers are reduced to one signal.

To represent the behavior of TIMEFLOW with a deterministic
Signal program (without input-less transitions), the TICK signal
must be explicitly represented in the input interface of the program,
for instance:

process TIMEFLOW =
(? event TICK ; !
(] State "= TICK

7

event O

| State := preState $init (-1)

| preState := (State+l) modulo 2
| O := when State=1

)

where integer State,preState ; end ;

Line 3 specifies that the state is read and updated whenever TICK
is present.

Representing the behavior of TIMEFLOW in Lustre leads to dif-
ferent problems. Like in Esterel, Lustre programs define a notion
of global clock. However, the use of absence is constrained. More
precisely, all the inputs and outputs of a Lustre program (node)

80nly such programs can be given deterministic asynchronous im-
plementations without signal absence encoding.

"We consider here only correct programs, and ignore all causality
issues.



need to be present at all instants where the node is executed. This
means that the previous example cannot be encoded while stick-
ing to the absence encoding defined above. The only solution is
to explicitly encode absence using “present” signal values. One
typical solution is to use a Boolean signal with the same encod-
ing as the one used for signal statuses in the compilation of Esterel
(present=true/absent=false):

node TIMEFLOW() returns (O:boolean);
var state integer ;
let
state = (-1) -> (pre(state)+1l) mod 2 ;
O = state== ;
tel

Not having a dedicated signal absence representation for interface
signals means that a Lustre program uses one message per absent
value. The specification formalism of the SynDEx software has
roughly the same constraints as Lustre. The Scade formalism — the
graphical counterpart of Lustre — relaxes this rule, but still does not
allow the direct representation of the previous example.

4. REACTION TO SIGNAL ABSENCE

In this section, we formally define reaction to signal absence and
we explain how synchronous specifications without reaction to sig-
nal absence can be given deterministic asynchronous implementa-
tions.

We say that a system reacts to signal absence when the choice
between two transitions in a state is based on the choice over the
present/absent value of a signal. Formally, it is simpler to define
the dual property:

DEFINITION 2 (NO REACTION TO SIGNAL ABSENCE (NRSA)).

Let ¥ = (Z,0,8,T) be a synchronous Mealy machine. We say
that ¥ does not react to signal absence if for every state s and ev-

Sk, TE # /,

. .. Tk =ik /0K
ery two non-stuttering transitions S

k =1, 2, we have:
7'1#TQZ}HSGI:L#Q(S)#’L'Q(S)#J_

In other words, we can decide which transition to do by testing
the value (and not the presence/absence) of an input. This choice
can be implemented as a deterministic choice in our asynchronous
framework.

4.1 Asynchronous implementation issues

The NRSA criterion preserves the spirit of endochrony, as de-
fined in [3], but strictly generalizes it. The following example
shows the difference between NRSA and endochrony:

process NOABSENCEl =
(? boolean A, B, C ;

! event 01, 02, 03;)

(] 01 "= when A=true "= when B=true
| 02 "= when B=false "= when C=false
| 03 "= when A=false "= when C=true
I

The corresponding automaton in our model is the following:

A=false,C=true/O3=T
NS
—t o
B=false,C=false/O2=T /Q

A=true,B=true/O1=T
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Choosing between the three non-stuttering transitions can be done
without signal absence information, so deterministic implementa-
tion is possible in an asynchronous environment.

However, the program is not endochronous in the sense of [3].
In an endochronous program, the signals can be organized in a de-
cision tree (called clock tree). Input reading starts with the signals
at the top level of the tree, which are present in each reaction. De-
pending on their values, some of their direct children are read, and
the process continues recursively from each present signal to its
present children signals. A signal is present in the current reaction
iff its clock tree node has been traversed. Blocking reads can be
used to produce a fully deterministic top-down input reading pro-
cess. This form of endochrony stands at the basis of the Signal
compiler [1].

In our example, the signals cannot be organized in a tree deter-
mining which signals are present in an incremental fashion. Block-
ing reads can no longer be used. Instead, each input FIFO must
deliver messages as they arrive. Once an input message m arrives
on the FIFO head fs corresponding to signal S € Z, fs will accept
no more messages until a reaction consumes the value v(m) of m
(i.e. until a reaction i/o is executed so that i(S) = v(m)). A fire-
able reaction ¢/o can be triggered as soon as its present input values
are available as messages on the input FIFO heads corresponding
to the present signals of 7. Once this condition is met, the actual
transition can be triggered in a variety of ways, without affecting
the functionality and determinism of the implementation: by some
external clock (periodic or not), when enough input is available to
trigger a non-stuttering reaction, etc.

4.1.1 Incremental ASAP input reading

One possible asynchronous execution of the previous example is
given in Fig. 3. It corresponds to a GALS implementation where
reactions are triggered by an external clock. The input FIFO as-

A=false B=false 02

N

reaction 3
B=false,C=false/02=T

C=false B=true A=true 0Ol

NN

reaction 1 reaction 2
A=true,B=true/O1=T 1

Figure 3: Incremental ASAP asynchronous execution of
NOABSENCE1

sociated with signal C is the first to deliver a value (false). Then,
new values arrive for B and A. When a reaction is triggered by the
external clock, the only non-stuttering fireable reaction is

A = true, B = true/O1 = T. This reaction is performed, O1 is
emitted, the first messages on FIFOs A and B are consumed (new
messages can arrive), but the message on FIFO C remains uncon-
sumed. After a new value arrives for A, a new reaction is triggered
by the external clock. Given the available inputs, the only fire-
able transition is L, which changes nothing. The third reaction is
B = false,C = false/O2 =T.

Note that, in our example, we always perform a reaction as soon
as its inputs are available at clock activation time (never delaying
execution). This choice is natural, as it minimizes the number of
clock cycles needed to complete a computation. We shall say that
reactions are executed as soon as possible (ASAP).

Also note that the NRSA property allows an incremental reading
of the inputs needed to trigger a reaction r. As soon as the system
enters a state where r = i/o is fireable, we can start a process
W ait; that waits for the values of ¢ to arrive on the input FIFOs.
Once the inputs are assembled, 7 can be executed ASAP. The input



reading process Wait; is killed if some input FIFO fs with S €
supp(4) brings a message m with i(.S) # v(m).

In Fig. 3, for instance, the input reading processes
WaitA:true,B:t'rue, WaitB:false,C:falsey and
Wait A= faise,c=true Start when execution starts. We focus on
WaitB=faise,c=faise- It assembles C' = false, but B = true
arrives and W ait p=faise,c=faise 18 killed. However, the reaction
B = false,C = false/O2 =T is again fireable after the exe-
cution of the first reaction. Therefore, Wait g faise,c=faise iS
restarted. It assembles C' = false, which is still unconsumed. Fi-
nally, B = false arrives and the W ait = fqaise,c= faise cOmpletes
its execution by triggering the associated reaction at the third acti-
vation of the clock (as soon as possible). When ASAP execution is
combined with this incremental input reading mechanism, we shall
say that we have an Incremental ASAP input reading (and reaction
triggering) policy.

Incremental ASAP input reading is more complex than endo-
chronous input reading but allows the deterministic asynchronous
implementation of more synchronous systems. The basic Incre-
mental ASAP technique described here can be optimized, e.g. by
using blocking reads (like in the endochronous approach) every
time this is possible. But we shall not cover optimization aspects
here.

S. EXTENSION TO CONCURRENT
SYSTEMS

The NRSA property ensures that for given input messages, the
program can choose deterministically the non-stuttering reaction to
trigger. However, this strong form of determinism is not always
necessary to ensure the I/O determinism of an asynchronous im-
plementation. Consider the following Signal program:

process WEl =
(? event A, B ; ! event C, D ;)
(] ¢c:=a | D:=B|)

The corresponding automaton in our model is the following:
B=T/D=T
NPT
o2 =
A=T,B=T/C=T,D=T ’u
A=T/C=T

The automaton does not satisfy the NRSA property, because ab-

sence is needed to choose between A = T/C =T,B=T/D =T,

and A=T,B=T/C=T,D = T. However, the program can
be asynchronously implemented, without added signalling, if we
use an Incremental ASAP input reading and reaction triggering pol-
icy. Indeed, as soon as A is received, the reaction A =T /C =T
can be executed, whether B has been received or not.

Intuitively, reactions A=T/C =T and B=T/D =T are
independent. The interleaving between incoming messages on the
A and B channels, and the associated interleaving of reactions do
not change the asynchronous I/O behavior of WE1. The same is
true for the corresponding Esterel program:

module WEl: input A,B ; output C,D ;
[

every immediate A do emit C end

every immediate B do emit D end
1

end module

More generally, the weak endochrony property introduced by Po-
top, Caillaud, and Benveniste [14] ensures that an Incremental ASAP
input reading policy produces deterministic asynchronous imple-
mentations.

While weak endochrony is a sufficient condition, we determine
here the exact class of synchronous programs (automata) that pro-
duce deterministic asynchronous implementations when an Incre-
mental ASAP policy is used.

5.1 Concurrent Incremental ASAP

The first step in this direction is to determine that the Incremental
ASAP policy is compatible with concurrent systems such as WEL.

In systems with the NRSA property, at most one non-stuttering
reaction r is executed during a clock activation because at most
one input gathering process can complete between two clock acti-
vations. This is no longer the case when concurrent reactions are
accepted. For instance, assume that both inputs A and B arrive
before the first clock activation of example WE1. Three input gath-
ering processes are started (one for each non-stuttering fireable re-
action), and all three are completed before the first clock activation.
In the end, to avoid ambiguity, only one should be executed. In our
case, the combined reaction A=T,B=T/C=T,D=T.

To obtain this behavior, we extend Incremental NRSA with two
new rules allowing the handling of non-contradictory concurrent
reactions. Assume that two input reading processes are started for
reactions 41 /01 and 42 /02, with i1 < 42 and supp(i1)Nsupp(iz) #
(). The rules are the following:

SR1 (competition for resources) If W ait;, is completed and W ait;,
is not, then 41 /o1 is executed and W ait;, is killed.

SR2 (the bigger transition wins) If both Wait;, and Wait;, are
completed and i1 C 2, then i2 /02 is executed and Wait;,
is killed.

We shall call this extended input reading policy Concurrent Incre-
mental ASAP.

Note that the correctness of an Incremental ASAP policy (con-
current or not) relies on two fundamental properties:

FP1 The scheduling rules leave at most one transition executable
at each activation of the clock.

FP2 A reaction i/o is still fireable when W ait; is completed. This
means that the transitions realized from the moment W ait;
is started and until it completes without being killed leave the
reaction fireable.

These properties are implied by the NRSA property, and need to be
preserved by its extension to concurrent systems.

5.2 Concurrent NRSA

Consider a synchronous specification X = (Z, O, S, T ) with the
property that its implementation [X] using a Concurrent Incremen-
tal ASAP input reading policy is monotonous and deterministic.

.. Tp=iK/0k
Assume that X is in state s and that s Sk k=

1,2 such that 1 and r2 are not stuttering transitions and 1 > %2.
Assume that all the inputs of 41 U4z arrive through messages before
a new activation of the clock. Then, Wazit;, and Wait;, are both
completed, but to comply with property FP1 only one reaction must
be executed. Rule SR1 cannot be used to make this choice, meaning
that we have to use rule SR2. This means that the reaction /o that
is executed must satisfy ¢; C ¢ and i2 C 4. At the same time, given
the available input, we also need ¢ C 71 Ut2. Therefore, ¢ = 71 Uia.
Also, from the I/0 monotony of the asynchronous implementation,



and from the fact that X has no input-less transitions, we have 01 C
o and 03 C o, and therefore 01 U 02 C o. In other words, there

. (i1Uiz2)/o . .
exists s 1 s’ witho;, Co,i=1,2.

From the confluence property required for the asynchronous im-
plementations in Section 2.3, and from the restriction to systems
that have no input-less transitions, we can deduce that there exist
the reactions i% /o¥ with j € {1,2} and 0 < k < m; such that:

1,1
iy/01

my, mq

§1 ———= - .- iy /oy
v

(i1Uiz) /o
s o (enrsa)
iz/ox 1
Z2/0%
Sg ——> ... a2 om2

where the following equalities hold, their terms being defined, and
defining partitions (in terms of support) of their left terms:

mi m2
ir \in = #] i\ iz = J # )
j=1 j=1
m1 ) mo )
o:olLJUo{:OzUUO% 3)
j=1 j=1

This is the property defining concurrent systems without reaction
to signal absence.

DEFINITION 3 (CONCURRENT NRSA). Given a synchronous
specification ¥ = (Z,0, S, T), we shall say that it satisfies the no
reaction to signal absence property for concurrent systems (Con-

iy /0K

current NRSA) if for every two transitions s ———— Sk ,k =

1,2 such that i1 > is, there exist s' € S and o valuation of the out-
put signals such that o1 U o2 C o, as well as the reactions zf / 0?
with j € {1,2} and 0 < k < mj satisfying equations (cnrsa), (2),
and (3).

The following theorem is our main result. It proves that the Con-
current NRSA property indeed characterizes synchronous specifi-
cations that give deterministic asynchronous implementations when
a Concurrent Incremental ASAP input reading policy is used.

THEOREM 1  (CHARACTERIZATION). Let ¥ = (Z,0,8,7)
be a synchronous specification with no input-less transitions. Then,
the Concurrent Incremental ASAP asynchronous implementation of
3 is confluent, monotonous and deterministic if and only if ¥ has
the Concurrent NRSA property.

Proof: =-. Already done, in a constructive fashion, in this section.
<=. Given the form of our implementations, proving confluence and
monotony is sufficient (continuity is implied, as no output message
needs to wait for an infinity of input messages).

Consider now a finite input history (the result for infinite input
histories is a consequence of continuity). Also consider two arrival
orders of these incoming inputs with respect to the clock triggering
instants, and consider the associated maximal Concurrent Incre-
mental ASAP executions without final stuttering transitions. Given
that every transition (stuttering ones excepted) consumes at least
one input, the two executions are finite.

To prove confluence, we need to prove that the two executions
read the same input messages, produce the same output messages,
and end up in the same state.
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Note that confluence implies monotony. Indeed, consider two fi-
nite input histories y =< x’. Then, the confluence result allows us
to consider for the input ¥’ a maximal execution that is a comple-
tion of a maximal execution for x (by assuming that the inputs of
X’ that are not in  arrive only after the maximal execution for x is
completed). This proves monotony.

The proof of confluence (all that remains to be done) is based
on Lemma 2. This lemma, when applied to maximal traces with
the same asynchronous input gives us the needed confluence result.
End proof.

LEMMA 2
t = 1,2 such that for all S € T we have 6(t1)(S) = §(t2)(S) or
5(t2)(S) = 6(t1)(S). Then, t; can be extended tot; € Traces(Z),
i = 1,2, such that 5(t}) = 6(t5), 6(t1 |z) = 6(t1 |7) V 8(¢2 |7).
Moreover; the execution of both ty and t} ends in the same state.

In other words, if two traces have inputs that are asynchronously
compatible, then they can be seen as partial executions of [X] for
the input §(¢1 |z) V d(t2 |z) (on each input channel S, the max-
imum of §(¢1)(S) and 6(¢2)(S)). Then, each trace can be com-
pleted to one that reads the whole input, and the destination state is
the same.

For space reasons, we do not give here the proof of the lemma.
It is done by induction over the lengths of the two traces.

5.2.1 Relation with weak endochrony
Consider a synchronous system 3 satisfying the Concurrent NRSA

. . ik /o
property and two non-contradictory transitions s —— Sk , k =
. i1Uiz/0 .

1, 2. Then, there exists s s’ withoi1Uoz C 0. As-
sume the inputs of ¢; arrive before the first activation of the clock,
and that the inputs of i3 \ i, arrive before the second activation of
the clock. From the determinism of the asynchronous implemen-
tation, we know that all the inputs of 71 U i2 will be read, and all
the outputs of o produced. However, we have no guarantee on the
number of clock activations needed to consume the inputs of 42 \ 1,
and to produce the outputs of 0 \ 0;.

The most natural way to limit the number of clock activations
needed to ensure confluence is to require that the outputs of o are
all produced by the end of the reaction where the last inputs of
i1 U 42 are consumed. Formally, this strengthens axiom (cnrsa)
into:

S1

i1/0/4 \\Zi/o%
(i1Uiz) /o ,

S————>35

7;2/>\ Aoé

52

(enrsa — fast)

with i1 = iz \il,oi :o\ol,i% =1 \ig,ando% =0\ 02.

This property is just a sufficient condition ensuring monotonous
and deterministic Concurrent Incremental ASAP execution, but it
allows more efficient implementations. Note that it can be seen as
the macrostep version of microstep weak endochrony [13]. Prop-
erties (cnrsa) and (cnrsa-fast) are not compositional, but this is not
an issue here, because we are only considering one implementation
level (the interface with the runtime) and no hierarchy.

An example of synchronous system satisfying the Concurrent
NRSA property, but which cannot be represented with a microste

(CONFLUENCE). Consider the traces t; € Traces(X%),



weakly endochronous automaton is:

S1

A:T,B:T/c74
A=T,B=T,D=T/C=T,E=T

S0 S4

D=T/EA{ aer) /qu/C:T

S —— S3

An even stricter restriction consists in requiring that rule SR1
is never applied, which greatly simplifies the structure of the asyn-
chronous implementation. In this case, we are lead to a decomposi-
tion of all executions into atomic reactions. The result is macrostep
weak endochrony [14].

Note how fine tuning efficiency and the capabilities of the execu-
tion machines leads to various sufficient conditions for determinis-
tic desynchronization.

6. EXAMPLES

All Lustre programs are endochronous in the sense of Benveniste
[3], and therefore satisfy property NRSA.

But it is more interesting to explain which common properties
of a synchronous program mean that it does not satisfy the NRSA
or Concurrent NRSA properties. We give here intuitive examples
where signal absence information is necessary for the deterministic
asynchronous implementation of a synchronous system.

6.1 Preemption (a simple example in Esterel,
Signal, and Lustre)

Consider the Esterel example PREEMPT, of Fig. 2. We recall the
program body:

abort
await immediate A ; emit B
when immediate C do emit D end

We explained in section Section 2.5 that the program does not have
the NRSA property. If we use no message to encode signal absence,
the resulting asynchronous implementation is non-deterministic:
For given input (one message on channel 2, and one message on
channel C) 2 different outputs can be obtained.

A simple Signal language counterpart makes reaction to signal
absence even more obvious, under the form of “not CE”, used in
the lines 8 and 11.

process PREEMPT =

(? event A,C,TICK ; ! event B,D ;)

(] state "= AE "= CE "= TICK
| 2 "+ C "< TICK
| AE := (true when A) default false
| CE := (true when C) default false
| state :=

(state and not AE and not CE)
$init true
| B :=
when (state=true and AE and not CE)
| D := when (state=true and CE)
|) where boolean state, AE, CE; end

By comparison, encoding the previous example into Lustre (or
SynDEX) requires the programmer to manually encode presence
and absence with non-absent values of Boolean signals. No signal
absence subsists on the program interface.
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node PREEMPT (A, C:boolean)
returns (B,D:boolean) ;
var active:boolean ;
let
active = true ->
pre(active and not A and not C) ;

B = state and A and not C ;
D = state and C
tel

6.2 Signal loss

Programs written in Esterel and Signal can lose incoming sig-
nals. By losing signals we mean that signal valuations can be left
unread (and thus discarded) without influencing the behavior of the
system in any way. This is generally not acceptable when we want
to achieve determinism in the chosen asynchronous framework, be-
cause we don’t know the number of messages to read. We start with
a simple Esterel example:

module LOSS1
input A, B ;
[

await immediate A ;

await immediate B ;
]

end module

output C,D ;
emit C

emit D

When A and B arrive simultaneously, the program instantly emits
C and D and terminates. Assume now that A arrives first, and that
B arrives in a subsequent instant. After the reception of A and
before the reception of B, the first branch is terminated, so that the
program does not explicitly use incoming A signals. However, such
signals can arrive (one per reaction, at most), and are lost.

By consequence, LOSS1 does not have the NRSA property. In
instants between the first occurrence of A and the first occurrence
of B, the program can choose between executing TICK = T/ or
TICK=T,A=T/oaTICK=T,B=T/D=Tor
TICK=T,A=T,B=T/D=T.

The behavior of the previous Esterel example can be modelled
in Signal as follows.

process LOSS1 =

event A,B,TICK ; ! event C,D ;)

(] A "< TICK | B "< TICK

| AE "= BE "= stateA "= stateB "= TICK
| AE := (true when A) default false

| BE := (true when B) default false

| stateA := stateAnxt $ init true

| stateAnxt := stateA and not AE

| stateB := stateBnxt $ init true

| stateBnxt := stateB and not BE

| stateA and AE

| stateB and BE

|

AE,BE, stateA, stateB,
stateAnxt, stateBnxt ;

The way signals are lost is more obvious here. The lines 5 and 6
show how inputs are read at each reaction. At the same time, the
input data is only used when stateA, respectively stateB are
true.

It is important to note that all useful Esterel programs lose mes-
sages. More precisely, the only programs that do not lose inputs



are those that read all their inputs at all instants. This is due to the
fact that Esterel programs do not constrain their environment, or
do it in elementary ways, whereas a Signal program specifies both
the system and its environment. To allow the use of Esterel for the
specification of systems that do not react to signal absence, we need
to constrain the environment, using a constraint language such as
Signal, so that signals do not arrive when they are not awaited.

The previous Signal program, which can lose signals, can be
“fixed” by requiring inputs to come only in instants where they are
awaited, for instance by changing line 3 as follows.

(] A "< TICK | B "< TICK

| A "< when stateA=true

| B "< when stateB=true
One could imagine combining Esterel programs with Signal envi-
ronment constraints, to obtain the same effect.

6.3 Signal merging and splitting

A special form of signal loss occurs when two or more state-
ments simultaneously emit or read a signal, while reading can also
be done separately:

The simplest case is that of emission, illustrated by the following
Esterel program:

module LOSS2 input A, B ; output C ;
[

await immediate A ; emit C

await immediate B ; emit C

]

end module

Depending on the arrival of A and B, the asynchronous implemen-
tation of the program can produce one or two messages on C.

The following example can read two messages for signal E (in
two different reactions), or just one (when A, B, and E arrive simul-
taneously), or none (when no A, nor B arrive):

module LOSS3
input A, B, E ;
[
await immediate
await immediate

]

end module

output C, D ;

[A and E] ; emit C

[B and E] ; emit D

7. CONCLUSION

We have introduced a simple formal definition of reaction to sig-
nal absence. We have defined the execution machine that allows the
deterministic execution of synchronous programs with no reaction
to signal absence (NRSA) in an asynchronous environment. We
have determined a formal criterion characterizing the class of con-
current programs that are deterministic when run using this execu-
tion machine. The Concurrent NRSA criterion generalizes various
notions of (weak) endochrony and establishes theoretical and prac-
tical limits for deterministic desynchronization. Intuitive examples
have been used to illustrate the various concepts.

Future work will concentrate on practical application of these
results to the optimization of the communication mechanisms of
GALS implementations generated by systems such as SynDEx. We
will also develop analysis and synthesis techniques for the deter-
ministic asynchronous implementation of programs written in com-
mon synchronous languages.
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