
Leveraging Synchronous Language Principles for
Heterogeneous Modeling and Design of Embedded

Systems∗

Edward A. Lee
Department of EECS

University of California, Berkeley
Berkeley, CA 94720, USA

eal@eecs.berkeley.edu

Haiyang Zheng
Department of EECS

University of California, Berkeley
Berkeley, CA 94720, USA

hyzheng@eecs.berkeley.edu

ABSTRACT
This paper gives a semantics for discrete-event (DE) mod-
els that generalizes that of synchronous/reactive (SR) lan-
guages, and a continuous-time (CT) semantics that gener-
alizes the DE semantics. It shows that all three seman-
tic models can be used in actor-oriented composition lan-
guages, and that despite the fact that CT is the most gen-
eral, there are good reasons for using each of the more spe-
cialized semantics. Moreover, because of the generalization
relationship between them, these three models of computa-
tion (MoCs) compose hierarchically in arbitrary order. We
describe a design system that supports arbitrary combina-
tions of these three MoCs, leveraging the actor abstract se-
mantics of Ptolemy II.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques; D.1.5 [Programming Techniques]: Object-Oriented
Programming; D.2.11 [Software Engineering]: Software
Architectures

General Terms
Design, Languages

Keywords
Composition, Operational Semantics, Model-based design,

∗This work was supported in part by the Center for Hybrid
and Embedded Software Systems (CHESS) at UC Berkeley,
which receives support from the National Science Founda-
tion (NSF award #CCR-0225610), the Air Force Research
Lab (AFRL), the Army Research Office (ARO), the State
of California Micro Program, and the following companies:
Agilent, Bosch, DGIST, General Motors, Hewlett Pack, Mi-
crosoft, National Instruments, and Toyota.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’07, September 30–October 3, 2007, Salzburg, Austria.
Copyright 2007 ACM 978-1-59593-825-1/07/0009 ...$5.00.

Synchronous Languages, Discrete Events, Simulation, Hy-
brid System

1. INTRODUCTION
An embedded system mixes digital controllers realized

in hardware and software with the continuous dynamics of
physical systems [30]. Such systems are semantically het-
erogeneous, combining continuous dynamics, periodic timed
actions, and asynchronous event reactions. Modeling and
design of such heterogeneous systems is challenging. A num-
ber of researchers have defined concurrent models of com-
putation (MoCs) that support modeling, specification, and
design of such systems [11, 34, 22, 28, 26].

A variety of approaches have been tried for dealing with
the intrinsic heterogeneity of embedded systems. This pa-
per proposes a particularly useful combination of seman-
tics, providing a disciplined and rigorous mixture of syn-
chronous/reactive (SR) systems [4], discrete-event (DE) sys-
tems [29, 49, 19, 13], and continuous-time (CT) dynamics
[42, 20, 46, 35]. Our approach embraces heterogeneity, in
that subsystems can be modeled using any of the three se-
mantics, and these subsystem models can be combined hier-
archically to form a whole. We leverage the idea of an actor
abstract semantics [33] to provide a coherent and rigor-
ous meaning for the heterogeneous system. Our approach
also provides improvements to conventional DE and CT se-
mantics by leveraging the principles of synchronous/reactive
languages. These improvements facilitate the heterogeneous
combination of the three distinct modeling styles.

2. RELATED WORK
A number of authors advocate heterogeneous combina-

tions of semantics. Ptolemy Classic [11] introduced the
concept, showing useful combinations of asynchronous mod-
els based on variants of dataflow and timed discrete-event
models. The concept was picked up for hardware design
in SystemC (version 2.0 and higher) [45], on which some re-
searchers have specifically built heterogeneous design frame-
works [26]. Metropolis [22] introduced communication re-
finement as a mechanism for specializing a general MoC in
domain-specific ways, and also introduced “quantity man-
agers,” which provide a unified approach to resource man-
agement in heterogeneous systems.

Our approach in this paper is closest in spirit to SML-Sys
[41], which builds on Standard ML to provide for mixtures of
MoCs. SML-Sys combines asynchronous models (dataflow

114

models) with synchronous models (which the authors call
“timed”). Our approach, in contrast, combines only timed
models, including both discrete-event and continuous-time
dynamics.

A particular form of heterogeneous systems, hybrid sys-
tems provide for joint modeling of continuous and discrete
dynamics. A few software tools have been built to provide
simulation of hybrid systems, including Charon [2], Hysdel
[47], HyVisual [10], Modelica [46], Scicos [16], Shift [15], and
Simulink/Stateflow (from The MathWorks). An excellent
analysis and comparison of these tools is given by Carloni,
et al. [12]. We have previously extensively studied the se-
mantics of hybrid systems as heterogenous combinations of
finite state machines (FSM) and continuous dynamics [35].
Our approach in this paper extends this to include SR and
DE models. We focus here on the interactions between SR,
DE, and CT, because the interactions between FSM and SR,
DE, and CT have already been extensively studied [21, 35].

Several authors advocate unified MoCs as a binding agent
for heterogeneous models [3, 23, 9]. Heterogeneous designs
are expressed in terms of a common semantics. Some soft-
ware systems, such as Simulink from The MathWorks, take
the approach of supporting a general MoC (continuous-time
systems in the case of Simulink) within which more spe-
cialized behaviors (like periodic discrete-time) can be simu-
lated. The specialized behaviors amount to a design style
or design pattern within a single unified semantics. Con-
formance to design styles within this unified semantics can
result in models from which effective embedded software can
be synthesized, using for example Real-Time Workshop or
DSpace.

Our approach in this paper is different in that the binding
agent is an abstract semantics. By itself, it is not suffi-
ciently complete to specify system designs. Its role is ex-
clusively as a binding agent between diverse concrete MoCs,
each of which is expressive enough to define system behavior
(each in a different way).

We are heavily inspired here by the fixed-point seman-
tics of synchronous languages [4], particularly Lustre [25],
Esterel [8], and Signal [24]. SCADE [7] (Safety Critical Ap-
plication Development Environment), a commercial product
of Esterel Technologies, builds on the synchronous language
Lustre [25], providing a graphical programming framework
with Lustre semantics. All the synchronous languages have
strong formal properties that yield quite effectively to formal
verification techniques. Our approach, however, is to use the
principles of synchronous languages in the style of a coor-
dination language rather than a programming language,
as done in Ptolemy [17] and ForSyDe [44]. This allows for
“primitives” in a synchronous system to be complex com-
ponents rather than built-in language primitives. This ap-
proach will allow for heterogeneous combinations of MoCs,
since the complex components may themselves be given as
compositions of further subcomponents under some other
MoC.

A number of researchers have combined synchronous lan-
guages with asynchronous interactions using a principle called
globally asynchronous, locally synchronous or GALS
(see for example [5]). In our case, all the MoCs we consider
are timed.

3. ACTOR-ORIENTED MODELS
Our approach here closely follows the principles of actor-

composite actor

hierarchical abstraction

actor
port

external port

Figure 1: Illustration of a composite actor (above)
and its hierarchical abstraction (below).

oriented design [33], a component methodology where
components called actors execute and communicate with
other actors in a model, as illustrated in figure 1. Actors have
a well defined component interface. This interface abstracts
the internal state and behavior of an actor, and restricts
how an actor interacts with its environment. The interface
includes ports that represent points of communication for an
actor, and parameters which are used to configure the oper-
ation of an actor. Often, parameter values are part of the a
priori configuration of an actor and do not change when a
model is executed. The configuration of a model also con-
tains explicit communication channels that pass data from
one port to another. The use of channels to mediate commu-
nication implies that actors interact only with the channels
that they are connected to and not directly with other ac-
tors.

Like actors, which have a well-defined external interface, a
composition of actors may also define an external interface,
which we call its hierarchical abstraction. This interface con-
sists of external ports and external parameters, which are
distinct from the ports and parameters of the individual ac-
tors in the composite. The external ports of a composite
can be connected (on the inside) by channels to other exter-
nal ports of the composite or to the ports of actors within
the composite. External parameters of a composite can be
used to determine the values of the parameters of actors in-
side the composite. Actors that are not composite actors
are called atomic actors. We assume that the behavior of
atomic actors is given in a host language (in Ptolemy II,
Java or C).

Taken together, the concepts of actors, ports, parame-
ters and channels describe the abstract syntax of actor-
oriented design. This syntax can be represented concretely
in several ways, such as graphically, as in figure 1, in XML
[32], or in a program designed to a specific API (as in Sys-
temC). Ptolemy II [18] offers all three alternatives. In some
systems, such as SML-Sys, the syntax of the host language
specifies the interconnection of actors.

It is important to realize that the syntactic structure of an
actor-oriented design says little about the semantics. The
semantics is largely orthogonal to the syntax, and is deter-
mined by an MoC. The model of computation might give
operational rules for executing a model. These rules de-
termine when actors perform internal computation, update
their internal state, and perform external communication.

115

The model of computation also defines the nature of commu-
nication between components (buffered, rendezvous, etc.).

Our notion of actor-oriented modeling is related to the
work of Gul Agha and others. The term actor was intro-
duced in the 1970’s by Carl Hewitt of MIT to describe the
concept of autonomous reasoning agents [27]. The term
evolved through the work of Agha and others to describe
a formalized model of concurrency [1]. Agha’s actors each
have an independent thread of control and communicate via
asynchronous message passing. We are further developing
the term to embrace a larger family of models of concur-
rency that are often more constrained than general message
passing. Our actors are still conceptually concurrent, but
unlike Agha’s actors, they need not have their own thread of
control. Moreover, although communication is still through
some form of message passing, it need not be strictly asyn-
chronous.

In this paper, we will consider three MoCs, namely SR,
DE, and CT. We carefully define the semantics of DE and
CT so that the three MoCs are related in an interesting
way. Specifically, SR is a special case of DE, and DE is
a special case of CT. This does not mean that we should
automatically use the most general MoC, CT, because exe-
cution efficiency, modeling convenience, and synthesizability
all may be compromised. In fact, there are good reasons to
use all three MoCs.

Most interestingly, we will show that these three MoCs
can be combined hierarchically in arbitrary order. That is,
in a hierarchical model like that figure 1, the higher level
of the hierarchy and the lower level need not use the same
MoC. In fact, all combinations of SR, DE, and CT are sup-
ported by our framework. We describe a prototype of this
framework constructed in Ptolemy II.

4. ACTOR ABSTRACT SEMANTICS
In order to preserve the specialization of models of compu-

tation while also building general models overall, we concen-
trate on the hierarchical composition of heterogenous mod-
els of computation. The composition of arbitrary models
of computation is made tractable by an abstract seman-
tics, which abstracts how communication and flow of control
work. The abstract semantics is (loosely speaking) not the
union of interesting semantics, but rather the intersection.
It is abstract in the sense that it represents the common fea-
tures of models of computation as opposed to their collection
of features.

A familiar example of an abstract semantics is represented
by the Simulink S-function interface. Although not formally
described as such, it in fact functions as such. In fact,
Simulink works with Stateflow to accomplish a limited form
of hierarchical heterogeneity through this S-function inter-
face. We will describe an abstract semantics that is similar
to that of Simulink, but simpler. It is the one realized in
the Ptolemy II framework for actor-oriented design.

In Ptolemy II models, a director realizes the model of
computation. A director is placed in a model by the model
builder to indicate the model of computation for the model.
For example, an SR director is shown visually as the upper-
most icon in figure 1. The director manages the execution
of the model, defining the flow of control, and also defines
the communication semantics.

When a director is placed in a composite actor, as in fig-
ure 1, the composite actor becomes an opaque composite

setup Initialize the actor.
prefire Test preconditions for firing.
fire Read inputs and produce outputs.
postfire Update the state.
wrapup End execution of the actor.

Figure 2: The key flow of control operations in the
Ptolemy II abstract semantics. These are methods
of the Executable interface.

actor. To the outside environment, it appears to be an
atomic actor. But inside, it is a composite, executing under
the semantics defined by the local director. Obviously, there
has to be some coordination between the execution on the
outside and the execution on the inside. That coordination
is defined by the abstract semantics.

The flow of control and communication semantics are ab-
stracted in Ptolemy II by the Executable and Receiver inter-
faces, respectively. These interfaces define a suite of meth-
ods, the semantics of which are the actor abstract semantics
of Ptolemy II. A receiver is supplied for each channel in a
model by the director; this ensures that the communication
semantics and flow of control work in concert to implement
the model of computation.

In the Ptolemy II abstract semantics, actors execute in
three phases, setup, a sequence of iterations, and wrapup.
An iteration is a sequence of operations that read input
data, produce output data, and update the state, but in a
particular, structured way. The operations of an iteration
consist of one or more invocations of the following pseudo-
code:

if (prefire()) {

fire();

}

If fire is invoked at least once in the iteration, then the
iteration concludes with exactly one invocation of postfire.

These operations and their significance constitute the Ex-
ecutable interface and are summarized in figure 2. The first
part of an iteration is the invocation of prefire, which tests
preconditions for firing. The actor thus determines whether
its conditions for firing are satisfied. If it indicates that they
are (by a return value of true), then the iteration proceeds
by invoking fire. This may be repeated an arbitrary number
of times. The contract with the actor is that prefire and
fire do not change the state of the actor. Hence, multiple
invocations with the same input values in a given iteration
will produce the same results. This contract is essential to
guarantee convergence to a fixed point.

If prefire indicates that preconditions are satisfied, then
most actors guarantee that invocations of fire and postfire
will complete in a finite amount of time. Such actors are said
to realize a precise reaction [37]. A director that tests these
preconditions prior to invoking the actor, and fires the actor
only if the preconditions are satisfied, is said to realize a
responsible framework [37]. Responsible frameworks coupled
with precise reactions are key to hierarchical heterogeneity.

The abstract semantics also provides the set of primitive
communication operations shown in figure 3. These oper-
ations allow an actor to query the state of communication
channels, and subsequently retrieve information from the
channels or send information to the channels. These oper-

116

get Retrieve a data token via the port.
put Produce a data token via the port.
hasToken(k) Test whether get will succeed k times.
hasRoom(k) Test whether put will succeed k times.

Figure 3: Communication operations in Ptolemy II.
These are methods of the Receiver interface.

ations are invoked in prefire and fire. Actors are also per-
mitted to read inputs in postfire, but they are not permitted
to produce outputs (by invoking put). Violations of this
contract can lead to nondeterminism.

These operations are abstract, in the sense that the me-
chanics of the communication channel is not defined. It
is determined by the model of computation. A domain-
polymorphic actor is not concerned with how these opera-
tions are implemented. The actor is designed assuming only
the abstract semantics, not the specific realization.

A hierarchically heterogeneous model is supported by this
abstract semantics as follows. Figure 1 shows an opaque
composite actor. It is opaque because it contains a direc-
tor. That director gives the composite a behavior like that
of an atomic actor viewed from the outside. A director im-
plements the Executable interface, and thus provides the
operations of figure 2.

Suppose that in figure 1 the hierarchical abstraction of
the Sinewave component is used in a model of computa-
tion different from SR. Then from the outside, this model
will appear to be a domain-polymorphic actor. When its
prefire method is invoked, for example, the inside director
must determine whether the preconditions are satisfied for
the model to execute (in the SR case, they always are), and
return true or false accordingly. When fire is invoked, the
director must manage the execution of the inside model so
that input data (if any) are read, and output data are pro-
duced. When postfire is invoked, the director must update
the state of the inside actors by invoking their postfire meth-
ods. Obviously, directors must be carefully designed to obey
the actor abstract semantics contract. By obeying it, they
gain the ability to be nested arbitrarily with other directors
that also obey the contract.

The communication across the hierarchical boundary will
likely end up heterogeneous. In figure 1, the connection
between the TrigFunction actor and the external port will be
a channel obeying SR semantics (that is, it will be realized
as a simple buffer with length one, support for unknown
state, and enforcement of monotonicity constraints). The
connection between the external port and some other port
on the outside will obey the semantics of whatever director
is provided on the outside. This need not be the same as
the SR semantics.

In this paper, we will focus on the use of three directors
in Ptolemy II implementing synchronous/reactive, discrete-
event, and continuous-time MoCs.

5. SYNCHRONOUS/REACTIVE MODELS
We begin with the principle of synchronous languages, but

used in the style of a coordination language rather than a
programming language, as done in Ptolemy [17] and ForSyDe
[44]. We will show that by adding time to this, we get a clean
semantics for DE systems, and that by adding continuous

Figure 4: A simple feedback system.

dynamics, we get a clean semantics for continuous-time, hy-
brid and mixed signal systems (CT models).

The principle behind synchronous languages is simple, al-
though the consequences are profound [4]. Execution follows
“ticks” of a global “clock.” At each tick, each variable (rep-
resented visually by the wires that connect the blocks) may
have a value (it can also be absent, having no value). Its
value (or absence of value) is defined by functions associ-
ated with each block. That is, at each tick, each block is
a function from input values to output values (the function
can vary from tick to tick). In figure 4, the variables x and
y at a particular tick are related by

x = f(y), and y = g(x).

The task of the compiler is to synthesize a program that, at
each tick, solves these equations. We assume a Scott order
on the values that x and y can take on at each tick, with ⊥
being the bottom of the order, representing “unknown.” It
is well known that if the functions f and g are monotonic
in this order, then a unique least fixed point solution can
be found in finite time. See [17] for a readable exposition of
this semantics.

In most synchronous languages, there is no metric associ-
ated with the time between ticks (ForSyDe is an exception,
as it defines a fixed constant “distance” between events of
a signal). This means that programs can be designed to
simply react to events, whenever they occur. This contrasts
with Simulink, which has temporal semantics.

In our case, SR models by default have no notion of the
passage of time, and only a notion of sequences of ticks. The
semantics can be easily extended by associating a fixed inter-
val of time between ticks, or even by associating a variable
interval (somehow determined by the environment). These
extensions have no effect on the SR semantics, and hence
just amount to interpretations of an execution.

Unlike most work with synchronous languages, we assume
that the SR model is being used to coordinate components of
arbitrary complexity, rather than to coordinate known lan-
guage primitives. For example, a Lustre compiler “knows”
that pre breaks data precedences, whereas in our framework,
we may not be able to know whether a component breaks
data precedences. We can give an execution model that is
very simple, but rather inefficient. In particular, at each tick
of the clock, we can start with all signal values unknown, ⊥,
and invoke prefire and fire on each actor, in arbitrary order,
until signal values stabilize at a fixed point. Here, prefire will
specify whether there is sufficient information about the in-
puts for fire to execute. Once a fixed point is reached, then
postfire is invoked on each actor exactly once, allowing the
actor to update its state.

This execution strategy requires no knowledge of the in-
ternals of the components, except that they conform with
the actor abstract semantics and implement monotonic func-

117

tions. But it may result in rather inefficient execution. Fol-
lowing [17], we rely on causality interface information for
actors (see [36]) to develop more efficient execution strate-
gies. A key property of SR models is that the results of
execution do not depend on the execution strategy. Only
the efficiency of execution does.

To give a denotational semantics for such systems, we fol-
low the approach in [38], which specializes the tagged signal
model [34] to timed systems. Denotationally, a signal is the
entire history of a communication between an output port
and an input port. Specifically, let T = N be the tag set,
where N is the set of natural numbers with the usual numer-
ical order. Let V be an arbitrary family of values (a data
type, or alphabet). Let

Vε = V ∪ {ε}

be the set of values plus “absent.” Then a signal s is a
partial function:

s : T ⇀ Vε

defined on an initial segment of T . Execution of an SR
model begins with all signals being empty (defined on the
empty initial segment ∅ ⊂ N). The first step of execution
extends the signals so that they are all defined on the initial
segment {0} ⊂ N. If this is not possible (some signals remain
undefined, or equivalently, unknown (⊥), at tag 0), then we
declare the model to be flawed (it has a “causality loop”).1

The second step of execution extends the signals so that they
are defined on the initial segment {0, 1} ⊂ N. The third step
defines them on {0, 1, 2} ⊂ N, and so on.

For hierarchical models, like those in figure 1, we can
exploit the actor abstract semantics to get multiclock SR
models. Specifically, consider the example in figure 5. This
shows a classic example from the early literature on syn-
chronous languages, the “guarded count.” The interesting
part of the model is that the composite actor in the middle of
the figure has its own SR Director, and hence is an opaque
composite actor. The outside director cannot distinguish
between it and an atomic actor, like the When actor at the
bottom. This particular composite actor has a specialized
behavior. When its fire method is invoked, it examines the
enable input port. If the signal value at the current tick is
known and present at this port, then it fires the inside actors
until it reaches a fixed point. This fixed point may define
output values. When the postfire method of the composite
actor is invoked, then it invokes postfire on all the contained
actors that were fired in the iteration. Thus, the clock of the
inside model is a subclock of the outside model. The com-
posite actor with a director itself behaves just like an atomic
actor, conforming to the actor abstract semantics. It is pre-
cisely this compositional property that will enable us to put
SR models within DE or CT models and vice versa.

Note that the composite actor at the bottom of figure 5
has no director, and hence is said to be transparent. The
actors within it are controlled by the top-level director as if
there were no hierarchy. Readers familiar with synchronous
language operators like “when” and “default” should be able
to read this model and understand how it implements the
guarded count.

1This conforms to the constructive semantics of Berry [6].

Figure 5: Example of a multiclock SR model.

6. DISCRETE-EVENT MODELS
There is a long history of DE modeling techniques, and

a number of widely used simulation systems (e.g., Opnet,
NS-2) and programming languages (e.g., VHDL, Verilog)
with DE semantics. The approach we take, however, is a bit
different from all the DE systems we know of. In particular,
we define DE to be an extension of SR where there is a
measurable time between ticks of the clock. Specifically, a
DE model becomes an SR model if we ignore the passage
of time and focus instead only on the sequence of times at
which events occur (each such time is a “tick” of the SR
clock). The SR model is an abstraction of the DE model.

Since for DE we want to measure the passage of time, the
tag set T = N that we used for SR becomes inadequate. A
first attempt at a denotational semantics would simply use
real numbers for time increments between ticks of the clock.
Specifically, we would replace the tag set T with T = R+,
the non-negative real numbers, instead of T = N. A signal
s becomes a partial function,

s : R+ ⇀ Vε

defined on an initial segment of R+. If we let I ⊆ R+ be the
initial segment where the signal is defined, then for s to be
a discrete-event signal, we require that s(τ) = ε for all τ ∈ I
except for a discrete subset D ⊂ R+.2

This semantic model, however, is not sufficiently rich. In
particular, signals cannot have multiple values at the same

2A discrete subset is one that is order isomorphic to a subset
of the natural numbers. This property ensures that every
DE model has an SR abstraction.

118

value of time. This makes the model awkward for models of
software sequences that are abstracted as instantaneous (the
perfect synchrony hypothesis [4]), transient states in modal
models [35], and batch arrivals in network systems, to name
a few examples.

Following [40, 35, 39], we solve these problems by using
super-dense time. Let T = R+ × N be a set of tags, and
give a signal s as a partial function:

s : T ⇀ Vε

defined on an initial segment of T , assuming a lexical order-
ing on T :

(t1, n1) ≤ (t2, n2) ⇐⇒ t1 < t2, or t1 = t2 and n1 ≤ n2 .

For a particular tag t = (τ, n) ∈ T , τ ∈ R+ represents
physical time, whereas n ∈ N represents the ordering of
events that occur at that physical time. We again require
s(τ) = ε for all tags τ in the initial segment on which s is
defined except a discrete subset.

Execution again starts with all signals being empty (i.e.
nowhere defined, or unknown at all tags), and finds a fixed
point at the first tag (0, 0) ∈ T , just as in SR. To proceed to
the next step, however, it would not be sufficient to simply
go to the second tag (0, 1) ∈ T . With such an execution
policy, we would have an infinite sequence of steps to resolve
signal values at all tags of the form (0, n), where n ∈ N.
Physical time would not advance. We thus need to augment
the actor abstract semantics.

The augmentation of the actor abstract semantics that is
realized in Ptolemy II reflects a preference for absent values,
ε over present values.3 Specifically, we assume that if at
a tag t ∈ T an actor is presented with all input signals
that have value ε at that tag, then all its outputs will be ε
unless it has specifically declared otherwise. Operationally,
each time the setup phase or postfire method of an actor
is invoked, it has the option of requesting a firing at some
future tag t, in which case it will be fired at that tag even
if all its inputs are ε. In Ptolemy II, the actor does this by
calling a Director method called fireAt, passing it a future
time value at which the actor wishes to be fired. Otherwise,
it has no expectation of being fired at any tag when its
inputs are all absent.

Thus, when a fixed point is reached at any tag t = (τ, n)
(e.g., on the first step, a fixed point is reached at t = (0, 0)),
then when postfire is invoked on all the actors, some of them
may call fireAt. If no actor called fireAt, then implicitly all
actors have declared that they will not produce non-absent
events given absent inputs any time in the future, and we
can infer that all signals are therefore absent for all future
tags. Now all signals are completely defined on the tag set T
and the execution is complete. More commonly, some actors
will have called fireAt specifying a time value. We find the
minimum such time value τmin. If τmin = τ , the current
time value, then we proceed with the next iteration at tag
t = (τ, n+1). Otherwise, we proceed with the next iteration
at tag t = (τmin, 0).

In our operational semantics postfire is called exactly once
at each tag for any actor that was fired. Thus, τmin is
uniquely determined for each tag τ at which actors are fired.
The first τ at which to fire actors is uniquely determined by
giving each actor an opportunity to call fireAt in its setup

3This observation is due to Eleftherios Matsikoudis.

phase. Thus, composition of actors remains associative, as
it is with SR.

Of course, this execution strategy does not guarantee that
time will advance forever. In particular, by invoking fireAt
with sufficiently small time increments, any actor may block
the progress of time. Such a situation is known as a Zeno
condition. Zeno conditions can be prevented with appropri-
ate constraints on the behavior of actors (see for example
[14, 38, 39].

When we proceed from tag to tag, we must keep track of
all previous fireAt requests that have not yet been satisfied.
This task is, essentially, what a typical DE simulator uses an
event queue for. In our model, an event queue can be as
simple as a set of tags in the future. A more efficient imple-
mentation (but semantically equivalent) would keep the set
ordered (using for example a priority queue). A still more
efficient implementation would keep track, for each event, of
which actor(s) requested a firing at the tag. Then the execu-
tion engine would not need to fire actors that have already
(implicitly) declared that their outputs will be absent.

Although these implementations are more efficient, they
are semantically equivalent to a very simple execution strat-
egy. Start at tag t = (0, 0) and fire actors to find a fixed
point. If a fixed point results in some signals being unde-
fined (⊥) at t = (0, 0), then declare the model to be flawed
(causality loop). Otherwise, postfire all actors that were
fired. Then select the smallest tag in the event queue, incre-
ment t, and repeat. Semantically, this is exactly SR, except
that now there is a measurable time between ticks of the
clock, and the measure of the time increment is determined
by the actor invocations of fireAt.

Consider the example in figure 6, which represents a fairly
typical scenario. The top-level model is a DE model of a sys-
tem that is clocked at a regular rate (by the Clock actor),
but is also affected by irregular events generated by the Pois-
sonClock actor. This example produces a sinusoidal signal,
generating one sample for each event from the Clock actor.
When the PoissonClock actor produces an event, however,
the model switches from generating a clean sinusoid to a
noisy sinusoid, or vice versa. The switching is modeled one
level down in the hierarchy by a modal model [21] with two
modes, labeled “clean” and “noisy.” The sinusoids them-
selves are generated one level further down in the hierarchy
by a SR opaque composite actors, as shown. The SR com-
posites themselves have no timed semantics. They simply
produce the next sample of the sinusoid on each tick. When
these ticks occur is controlled above these composites in the
hierarchy.

In this example, the ability to put SR composites within
a modal model within a DE model is a direct consequence of
the fact that each of these opaque composite actors conforms
to the actor abstract semantics.

The converse containment is also possible, where DE is
put within SR. However, if SR is the top level, then the
top-level SR Director needs to regulate the passage of time,
effectively acquiring DE semantics. That is, it cannot ab-
stract away the passage of time if its submodels have to be
concrete about the passage of time. For this reason, the SR
Director in Ptolemy II includes a period parameter, that if
set, defines a fixed time increment between ticks of the SR
model. If used, this turns an SR model into a simple DE
model with a fixed time increment between ticks.

119

Figure 6: Example of mixed DE and SR model.

7. CONTINUOUS-TIME MODELS
CT models include continuous dynamics, typically given

as ordinary differential equations (ODEs). Figure 7 shows
a block diagram representation representing a simple third-
order nonlinear differential equation. An ODE can be rep-
resented by a set of first-order differential equations on a
vector-valued state,

ẋ(t) = g(x(t), u(t), t),

y(t) = f(x(t), u(t), t),

where x : R → Rn, y : R → Rm, and u : R → Rl are state,
output, and input signals. The functions g : Rn ×Rl ×R →
Rn and f : Rn×Rl×R → Rm are state functions and output
functions respectively. The state function g is represented
collectively by the actors in the grey area (the grey box is
purely decorative and devoid of semantics) on the left in
figure 7.

In [35], we have shown how to extend the semantics of such
differential equation systems to superdense time, allowing
us to use the same model of time that we used with DE.
This is useful for modeling hybrid systems, which combine
continuous dynamics like that in figure 7 with discrete mode
transitions like that in figure 6. In fact, for the tags at which
these discrete mode transitions occur, the model functions
exactly like a DE model. The interesting extension with CT
is that between these tags, instead of all signals being absent,
some (or all) signals have continuously evolving values, as
governed by an ODE.

Of course, in a digital computer, values do not evolve con-
tinuously. The ODE must be approximated by a solver [43].

Figure 7: Continuous-time model.

The solver will provide samples of the continuous evolution,
and typically, to maintain adequate accuracy, must control
the time steps between such samples. The actor abstract se-
mantics, it turns out, supports the inclusion of such solvers
as part of the execution of models.

One family of solvers use Runge-Kutta (RK) methods,
which perform interpolation at each integration step to ap-
proximate the derivative at a discrete subset of time points.
An explicit k stage RK method has the form

x(tn) = x(tn−1) +

k−1X

i=0

ciKi, (1)

where

K0 = hng(x(tn−1), u(tn−1), tn−1),

Ki = hng(x(tn−1) +

i−1X

j=0

Ai,jKj , u(tn−1 + hbi),

tn−1 + hbi), i ∈ {1, · · · , k − 1}

and Ai,j , bi and ci are algorithm parameters calculated by
comparing the form of a Taylor expansion of x with (1).

The first order RK method, also called the forward Euler
method, has the (much simpler) form

x(tn) = x(tn−1) + hnẋ(tn−1).

This method is conceptually important but not recommended
for practical usage on real applications. More practical RK
methods have k = 3 or 4, and also control the step size
for each integration step. An RK method implemented in
Matlab ODE suite is a k = 3 stage method and given by

x(tn) = x(tn−1) +
2

9
K0 +

3

9
K1 +

4

9
K2, (2)

120

where

K0 = hng(x(tn−1), tn−1), (3)

K1 = hng(x(tn−1) + 0.5K0, u(tn−1 + 0.5hn),

tn−1 + 0.5hn), (4)

K2 = hng(x(tn−1) + 0.75K1, u(tn−1 + 0.75hn),

tn−1 + 0.75hn). (5)

Notice that in order to complete one integration step, this
method requires evaluation of the function g at intermediate
times tn−1+0.5hn and tn−1+0.75hn, in addition to the times
tn−1, where hn is the step size. This fact has significant con-
sequences for compositionality of this method. In fact, any
method that requires intermediate evaluations of the state
functions g, such as the classical fourth-order RK method,
the linear multi-step methods (LMS) and Burlirsch-Store
methods, will have to face the same issue during composi-
tion. An additional complication is that validity of a step
size hn is not known until the full integration step has been
completed.

To show how solving these problems is facilitated by the
actor abstract semantics, consider the model shown in fig-
ure 7. In the grey area on the left is a collection of actors
that collectively implement the state function g. We as-
sume these actors are black boxes that conform with the
actor abstract semantics. That is, they could be internally
implemented as composite actors with SR or DE directors,
for example, or as modal models [21]. To evaluate g at
tn−1 + 0.5hn and tn−1 + 0.75hn, we must fire but not post-
fire these actors. Postfiring the actors would erroneously
commit them to state updates before we know whether the
step size hn is valid. Thus, in effect, the solver must provide
them with tentative inputs at each tag (one tag for each of
these time values), as shown in (4) and (5), and find a fixed
point at that tag. But it must not commit the actors to any
state changes until it is sure of the step size. Avoiding invo-
cation of the postfire method successfully avoids these state
changes, as long as all actors conform to the actor abstract
semantics.

We can now see that CT operates similarly to DE models,
with the only real difference being that in addition to using
an event queue to determine the advancement of time, we
must also consult an ODE solver. The same fireAt mech-
anism that we used in DE would be adequate, but for ef-
ficiency we have chosen to use a different mechanism that
polls relevant actors for their constraints on the advance-
ment of time and aggregates the results. In our implemen-
tation, any actor can assert that it wishes to exert some
influence on the passage of time by implementing a Continu-
ousStepSizeController interface. All such actors will be con-
sulted before time is advanced. The Integrator actors imple-
ment this interface and serve as proxies for the solver. But
given this general mechanism, there are other useful actors
that also implement this interface. For example, the Level-
CrossingDetector actor implements this interface. Given a
continuous-time input signal, it looks for tags at which the
value of the signal crosses some threshold, given as a pa-
rameter. If a step size results in a crossing of the threshold,
the actor will exert control over the step size, reducing it
until the time of the crossing is identified to some specified
precision.

Since the CT Director only assumes that component ac-
tors conform to the actor abstract semantics, these actors

can be opaque composite actors that internally contain SR
or DE models. Moreover, a CT model can now form an
opaque composite actor that exports the actor abstract se-
mantics, and hence CT models can be included within SR or
DE models and vice-versa (subject again to the constraint
that if SR is at the top level, then it must be explicit about
time).

Figure 8: Continuous-time opaque composite actor
within a DE model.

A simple example is shown in figure 8. The top-level
model is DE representing a sequence of discrete jobs with
increasing service requirements. For each job, a random (ex-
ponential) service rate is generated. The inside model uses a
single integrator to model the (continuous) servicing of the
job and a level-crossing detector to detect completion of the
job.

8. SOFTWARE IMPLEMENTATION
A prototype of the techniques described here in Ptolemy

II is available in open-source form (BSD-style license) at
http://ptolemy.org. We started with the SRDirector cre-
ated by Whitaker [48], which was based on an SR director
in Ptolemy Classic created by Edwards [17]. We then used
this director as a base class for a new ContinuousDirector.
Unlike the predecessor CTDirector created by Liu [37], this
new director realizes a fixed point semantics at each dis-
crete time point. The discrete time points are selected from
the time continuum, as explained above, in response to ac-
tors that invoke fireAt and actors that implement Continu-
ousStepSizeController. The latter include Integrator actors,
which use an underlying ODE solver with variable step size
control.

We modified SRDirector and implemented ContinuousDi-
rector so that both now rigorously export the actor abstract
semantics. That is, when the fire method of either direc-
tor is invoked, the director does not commit to any state

121

changes, and it does not invoke postfire on any actors con-
tained in its composite. Thus, if those actors conform to the
actor abstract semantics, then so does the opaque composite
actor containing the director.

These improvements led to significant improvements in
simplicity and usability. For one, whereas before we had a
menagerie of distinct versions of CTDirector, we now only
need one. Previously, in order to compose continuous-time
models with other MoCs (such as DE for mixed signal mod-
els and FSM for modal models and hybrid systems), we
needed to implement specialized cross-hierarchy operations
to coordinate the speculative execution of the ODE solver
with the environment. This resulted in distinct directors for
use inside opaque composite actors and inside modal models.

We also acquired the ability to put SR inside continuous-
time models. This is extremely convenient, because SR can
be used to efficiently specify numeric computations and com-
plex decision logic, where the continuous dynamics of CT is
irrelevant and distracting. Note that it would be much more
difficult to use dataflow models, such as SDF [31] inside CT
models. This is because in dataflow models, communication
between actors is queued. In order to support the specula-
tive executions that an ODE solver performs, we would have
to be able to backtrack the state of the queues. This would
add considerable complexity. SR has no such difficulty.

Since the CT MoC is a generalization of the SR, in princi-
ple, SR becomes unnecessary. However, SR is much simpler,
not requiring the baggage of support for ODE solvers, and
hence is more amenable to formal analysis, optimization,
and code generation.

At the time of this writing, the DEDirector is not a sub-
class of SRDirector. Our implementation of the SR seman-
tics presumes that most actors will have something useful
to do on every tick of the clock, and hence invokes at least
prefire for every actor. However, our implementation of DE
semantics presupposes that unless an actor has previously
called fireAt, that it will respond to absent inputs by produc-
ing absent outputs. Thus, actors with absent inputs are not
invoked at all. Unfortunately, this presupposition is actu-
ally an unwritten and unenforced contract with the actors.
A consequence is that the same actor may behave signifi-
cantly differently under the SR director than under the DE
director. It is unclear to us at this point whether this is a
feature or a bug. We feel that we need more design experi-
ence to determine this. We plan to continue evolving these
directors, improving their optimizations, and could perhaps
unify these distinct behaviors in a sensible way.

9. CONCLUSIONS
In this paper, we developed an operational semantics that

supports mixtures of SR, DE, and CT models of computa-
tion, and outlined a corresponding denotational semantics.
Dialects of DE and CT are developed that generalize SR,
but provide complementary modeling and design capabili-
ties. We show that the three MoCs can be combined hier-
archically in arbitrary order.

10. ACKNOWLEDGMENTS
Thanks to Jie Liu, Xiaojun Liu, Eleftherios Matsikoudis,

Reinhard von Hanxleden, and four anonymous reviewers for
helpful comments on the techniques and content of this pa-
per.

11. REFERENCES
[1] G. A. Agha, I. A. Mason, S. F. Smith, and C. L.

Talcott. A foundation for actor computation. Journal
of Functional Programming, 7(1):1–72, 1997.

[2] R. Alur, T. Dang, J. Esposito, Y. Hur, F. Ivancic,
V. Kumar, I. Lee, P. Mishra, G. J. Pappas, and
O. Sokolsky. Hierarchical modeling and analysis of
embedded systems. Proceedings of the IEEE,
91(1):11–28, 2003.

[3] A. Basu, M. Bozga, and J. Sifakis. Modeling
heterogeneous real-time components in bip. In
International Conference on Software Engineering and
Formal Methods (SEFM), pages 3–12, Pune, 2006.

[4] A. Benveniste and G. Berry. The synchronous
approach to reactive and real-time systems.
Proceedings of the IEEE, 79(9):1270–1282, 1991.

[5] A. Benveniste, L. Carloni, P. Caspi, and
A. Sangiovanni-Vincentelli. Heterogeneous reactive
systems modeling and correct-by-construction
deployment. In EMSOFT. Springer, 2003.

[6] G. Berry. The Constructive Semantics of Pure Esterel.
Book Draft, 1996.

[7] G. Berry. The effectiveness of synchronous languages
for the development of safety-critical systems. White
paper, Esterel Technologies, 2003.

[8] G. Berry and G. Gonthier. The esterel synchronous
programming language: Design, semantics,
implementation. Science of Computer Programming,
19(2):87–152, 1992.

[9] R. Boute. Integrating formal methods by unifying
abstractions. In E. Boiten, J. Derrick, and G. Smith,
editors, Fourth International Conference on Integrated
Formal Methods (IFM), volume LNCS 2999, page
441460, Canterbury, Kent, England, 2004.
Springer-Verlag.

[10] C. Brooks, A. Cataldo, C. Hylands, E. A. Lee, J. Liu,
X. Liu, S. Neuendorffer, and H. Zheng. Hyvisual: A
hybrid system visual modeler. Technical Report
UCB/ERL M03/30, University of California, Berkeley,
July 17 2003.

[11] J. T. Buck, S. Ha, E. A. Lee, and D. G.
Messerschmitt. Ptolemy: A framework for simulating
and prototyping heterogeneous systems. Int. Journal
of Computer Simulation, special issue on “Simulation
Software Development”, 4:155–182, 1994.

[12] L. P. Carloni, M. D. DiBenedetto, A. Pinto, and
A. Sangiovanni-Vincentelli. Modeling techniques,
programming languages, and design toolsets for
hybrid systems. Technical Report IST-2001-38314
WPHS, Columbus Project, June 2004.

[13] C. G. Cassandras. Discrete Event Systems, Modeling
and Performance Analysis. Irwin, 1993.

[14] A. Cataldo, E. A. Lee, X. Liu, E. Matsikoudis, and
H. Zheng. A constructive fixed-point theorem and the
feedback semantics of timed systems. In Workshop on
Discrete Event Systems (WODES), Ann Arbor,
Michigan, 2006.

[15] A. Deshpande, A. Gollu, and P. Varaiya. The shift
programming language for dynamic networks of
hybrid automata. IEEE Trans. on Automatic Control,
43(4), 1998.

[16] R. Djenidi, C. Lavarenne, R. Nikoukhah, Y. Sorel, and

122

S. Steer. From hybrid simulation to real-time
implementation. In 11th European Simulation
Symposium and Exhibition (ESS99), page 7478, 1999.

[17] S. A. Edwards and E. A. Lee. The semantics and
execution of a synchronous block-diagram language.
Science of Computer Programming, 48(1), 2003.

[18] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu,
J. Ludvig, S. Neuendorffer, S. Sachs, and Y. Xiong.
Taming heterogeneity—the Ptolemy approach.
Proceedings of the IEEE, 91(2):127–144, 2003.

[19] G. S. Fishman. Discrete-Event Simulation: Modeling,
Programming, and Analysis. Springer-Verlag, 2001.

[20] P. Fritzson. Principles of Object-Oriented Modeling
and Simulation with Modelica 2.1. Wiley, 2003.

[21] A. Girault, B. Lee, and E. A. Lee. Hierarchical finite
state machines with multiple concurrency models.
IEEE Transactions On Computer-aided Design Of
Integrated Circuits And Systems, 18(6):742–760, 1999.

[22] G. Goessler and A. Sangiovanni-Vincentelli.
Compositional modeling in metropolis. In Second
International Workshop on Embedded Software
(EMSOFT), Grenoble, France, 2002. Springer-Verlag.

[23] G. Goessler and J. Sifakis. Composition for
component-based modeling. Science of Computer
Programming, 55, 2005.

[24] P. L. Guernic, T. Gauthier, M. L. Borgne, and C. L.
Maire. Programming real-time applications with
signal. Proceedings of the IEEE, 79(9), 1991.

[25] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud.
The synchronous data flow programming language
LUSTRE. Proceedings of the IEEE, 79(9):1305–1319,
1991.

[26] F. Herrera and E. Villar. A framework for embedded
system specification under different models of
computation in systemc. In Design Automation
Conference (DAC), San Francisco, 2006. ACM.

[27] C. Hewitt. Viewing control structures as patterns of
passing messages. Journal of Artifical Intelligence,
8(3):323363, 1977.

[28] A. Jantsch. Modeling Embedded Systems and SoCs -
Concurrency and Time in Models of Computation.
Morgan Kaufmann, 2003.

[29] E. A. Lee. Modeling concurrent real-time processes
using discrete events. Annals of Software Engineering,
7:25–45, 1999.

[30] E. A. Lee. Embedded software. In M. Zelkowitz,
editor, Advances in Computers, volume 56. Academic
Press, 2002.

[31] E. A. Lee and D. G. Messerschmitt. Synchronous data
flow. Proceedings of the IEEE, 1987.

[32] E. A. Lee and S. Neuendorffer. Moml - a modeling
markup language in xml. Technical Report UCB/ERL
M00/12, UC Berkeley, March 14 2000.

[33] E. A. Lee, S. Neuendorffer, and M. J. Wirthlin.
Actor-oriented design of embedded hardware and
software systems. Journal of Circuits, Systems, and
Computers, 12(3):231–260, 2003.

[34] E. A. Lee and A. Sangiovanni-Vincentelli. A
framework for comparing models of computation.
IEEE Transactions on Computer-Aided Design of
Circuits and Systems, 17(12):1217–1229, 1998.

[35] E. A. Lee and H. Zheng. Operational semantics of
hybrid systems. In M. Morari and L. Thiele, editors,
Hybrid Systems: Computation and Control (HSCC),
volume LNCS 3414, pages pp. 25–53, Zurich,
Switzerland, 2005. Springer-Verlag.

[36] E. A. Lee, H. Zheng, and Y. Zhou. Causality
interfaces and compositional causality analysis. In
Foundations of Interface Technologies (FIT), Satellite
to CONCUR, San Francisco, CA, 2005.

[37] J. Liu. Responsible frameworks for heterogeneous
modeling and design of embedded systems. Ph.D.
Thesis Technical Memorandum UCB/ERL M01/41,
December 20 2001.

[38] X. Liu and E. A. Lee. CPO semantics of timed
interactive actor networks. Technical Report
EECS-2006-67, UC Berkeley, May 18 2006.

[39] X. Liu, E. Matsikoudis, and E. A. Lee. Modeling
timed concurrent systems. In CONCUR 2006 -
Concurrency Theory, volume LNCS 4137, Bonn,
Germany, 2006. Springer.

[40] Z. Manna and A. Pnueli. Verifying hybrid systems.
Hybrid Systems, pages 4–35, 1992.

[41] D. A. Mathaikutty, H. D. Patel, and S. K. Shukla. A
functional programming framework of heterogeneous
model of computation for system design. In Forum on
Design and Specification Languages (FDL), Lille,
France, 2004.

[42] P. Mosterman. An overview of hybrid simulation
phenomena and their support by simulation packages.
In F. Varager and J. H. v. Schuppen, editors, Hybrid
Systems: Computation and Control (HSCC), volume
LNCS 1569, page 165177. Springer-Verlag, 1999.

[43] W. H. Press, S. Teukolsky, W. T. Vetterling, and B. P.
Flannery. Numerical Recipes in C: the Art of Scientific
Computing. Cambridge University Press, 1992.

[44] I. Sander and A. Jantsch. System modeling and
transformational design refinement in forsyde. IEEE
Transactions on Computer-Aided Design of Circuits
and Systems, 23(1):17–32, 2004.

[45] S. Swan. An introduction to system level modeling in
systemc 2.0. Technical report, Open SystemC
Initiative, May 2001 2001.

[46] M. M. Tiller. Introduction to Physical Modeling with
Modelica. Kluwer Academic Publishers, 2001.

[47] F. D. Torrisi, A. Bemporad, G. Bertini, P. Hertach,
D. Jost, and D. Mignone. Hysdel 2.0.5 - user manual.
Technical report, ETH, 2002.

[48] P. Whitaker. The simulation of synchronous reactive
systems in Ptolemy II. Master’s Report Memorandum
UCB/ERL M01/20, Electronics Research Laboratory,
University of California, May 2001.

[49] B. P. Zeigler, H. Praehofer, and T. G. Kim. Theory of
Modeling and Simulation. Academic Press, 2nd
edition, 2000.

123

