
Dynamic Security Domain Scaling on
Symmetric Multiprocessors for

Future High-End Embedded Systems
INOUE, Hiroaki†, Akihisa Ikeno‡, Tsuyoshi Abe†, Junji Sakai†, and Masato Edahiro†

† System IP Core Research Laboratories, NEC Corporation ‡ NEC Informatec Systems, Ltd.
1120, Shimokuzawa, Sagamihara,

Kanagawa, 229-1198 Japan
3-2-1, Sakado, Takatsu-ku, Kawasaki,

Kanagawa, 213-0012 Japan

{h-inoue@ce, a-ikeno@pb, t-abe@dr, jsakai@bc, eda@bp}.jp.nec.com

ABSTRACT
We propose a method for dynamic security domain scaling on
SMPs that offers both highly scalable performance and high
security for future high-end embedded systems. Its most
important feature is its highly efficient use of processor resources,
accomplished by dynamically changing the number of processors
within a security domain in response to application load
requirements. Two new technologies make this scaling possible
without any virtualization software: 1) self-transition management
and 2) unified virtual address mapping. Evaluations show that this
domain control provides highly scalable performance and incurs
almost no performance overhead in security domains. The
increase in binary code size is less than 40KB, and the time
required for individual state transitions is of a single-millisecond
order. This scaling is the first in the world to make possible
dynamic changing of the number of processors within a security
domain on an ARM SMP.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures – mobile
processors; D.4.7 [Operating System]: Organization and Design
– real-time systems and embedded systems.

General Terms
Design, Security.

Keywords
SMP, AMP, Dynamic security domain scaling

1. INTRODUCTION
Future high-end embedded systems, such as mobile phones,
digital home appliances and car infotainment systems, will require
heavy CPU-centric applications that employ high-load functions
(e.g., XML processing, navigation, speech search and speech
translation) in order to provide more user-friendly services. This
means that embedded processors will have to offer highly scalable

performance in response to application loads. One promising
approach would seem to be the use of Symmetric Multi-
Processors (SMPs), such as ARM MPCores [1]. The use of SMPs
would help exploit both the thread-level and process-level
parallelism of applications and would achieve flexible dynamic
load distribution over the processors as a whole.

Future high-end embedded systems will also require a mechanism
to execute native applications downloaded from open networks in
order to provide high flexibility for users. This means that the
security needed to protect pre-installed (i.e., basic-function)
applications will become an increasingly important issue since
such downloaded native applications might include viruses. An
especially important security technique is the creation of OS
instances, called security domains. A security domain is
specifically defined as an isolated execution environment
prepared for a group of applications. Security domain isolation
makes it possible to prevent illegal access to the address spaces of
other security domains and to limit the maximum amount of
resources that applications on the security domain may use. Intel
and NTT DoCoMo have, in fact, jointly announced new mobile
phone specifications [8], referred to as the Open and Secure
Terminal Initiative (OSTI), that are designed to make possible the
installation of a wide variety of OSs and applications with the use
of security domains. One particularly promising approach for
supporting security domains is the use of Asymmetric Multi-
Processors (AMPs) [6] [7], which would help enhance system
security since this approach enables individual security domains
(OSs) used for pre-installed or downloaded applications to be
independently executed on each processor of the AMP with
support of hardware designed for processor-level separation. This
means that it will be highly secure to be able to protect pre-
installed applications on processors from interference from
applications downloaded to other processors by means of
processor-level separation. This approach would also enhance
application performance because no virtualization software is
required [2] [3] [4] [13].

Neither the SMP nor the AMP approach is, however, in itself
satisfactory. While the SMP approach provides highly scalable
performance for heavy pre-installed applications by means of
dynamic load distribution over the processors as a whole, it fails
to support the multiple processor-level security domains required
to enhance system security. This is because the SMP OS manages
all processors contained in an SMP in order to provide high
scalability. By way of contrast, the AMP approach supports the
multiple processor-level security domains required to enhance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CODES+ISSS’07, September 30–October 3, 2007, Salzburg, Austria.
Copyright 2007 ACM 978-1-59593-824-4/07/0009…$5.00.

39

system security by means of processor-level separation.
Unfortunately, however, this separation fixes the number of
processors within an OS. Thus, this AMP approach results in
providing heavy pre-installed applications with only low
performance scalability.

This paper reports our design and implementation of dynamic
security domain scaling on SMPs in order to provide both highly
scalable performance and high security in future high-end
embedded systems. Our design is a hybrid of the SMP and AMP
approaches. Where the execution of heavy pre-installed
applications is required, our dynamic security domain scaling
enables all processors contained in an SMP to be allocated for
pre-installed applications by means of the SMP approach. Where
coordination between pre-installed and downloaded applications
is required in order to provide system flexibility, our dynamic
domain security scaling reduces the number of processors
allocated for pre-installed applications and allows deallocated
processors to be dynamically allocated for the execution of
downloaded applications. This achieves processor-level
separation of security domains by means of the AMP approach.

The major contributions of this work include achievement of the
following design objectives:

• Flexible Security Domain Scaling: The number of processors
within a security domain must be flexibly changeable in order
to provide scalable performance for pre-installed or
downloaded applications. By integrating a conventional CPU
Hotplug technology [12] with our innovative context handling
technology, our dynamic security domain scaling satisfies this
requirement without any virtualization software.

• Highly Scalable Performance: Future high-end embedded
systems will be required to execute heavy pre-installed
applications in order to achieve user-friendly services. The
SMP element of our approach provides highly scalable
performance in pre-installed applications since the use of a
SMP achieves flexible dynamic load distribution over the
processors as a whole.

• Hardened Security: Pre-installed applications executed in
high-end embedded systems must be protected from
downloaded native applications. With the AMP element of our
approach, the creation of a separate, processor-level domain for
pre-installed applications helps ensure their greater protection.

• High Performance in Security Domains: Since our non-
virtualization approach provides physical processors for pre-
installed and downloaded applications, it enhances application
performance.

• Small Binary Code Size: Future embedded systems will need
to be able to operate with limited resources, and the integrated
design of our dynamic security domain scaling is designed to
help them operate with a smaller binary code size.

Our dynamic security domain scaling features two new
technologies: 1) self-transition management, by which processors
for pre-installed applications are dynamically allocated for the
execution of downloaded applications; and 2) unified virtual
address mapping, by which there are seamless transitions back
and forth between the executions in separate security domains,
those for downloaded applications and those for pre-installed

applications. These technologies help make SMPs with our
dynamic security domain scaling ideally suited to high-end
embedded systems.

The remainder of this paper is structured as follows: Section 2
describes related work, Section 3 explains our dynamic security
domain scaling, Section 4 shows the results of our evaluation of it,
and Section 5 summarizes our work.

2. RELATED WORK
Our research differs in a number of respects from the current body
of research on domains. Our dynamic security domain scaling is
designed to exploit the benefits of both AMPs and SMPs.
Major user-level domain approaches include eSOL eT-Kernel [5]
and QNX BMP [11]. Since these approaches use processor
affinity settings to allow applications executed on an SMP OS to
be run only on specified processors, they make it possible to
change the number of processors assigned to an application. The
execution of pre-installed and downloaded applications on the
same SMP OS, however, will result in critical security
vulnerability.
Major kernel-level domain approaches, such as SELinux [9],
allow both pre-installed and downloaded applications to be run on
the same SMP OS since a security module within the SMP OS
monitors system calls issued from all applications and imposes
mandatory access control on all applications. Such monitoring
results in severe performance degradation, however, even in pre-
installed applications. Further, with such approaches, it is difficult
to avoid security vulnerability in OSs and security modules.
Major virtualized domain approaches include type-I VMMs, such
as LPAR [2] and Xen [3], and type-II VMMs, such as UML [4]
and VMware [13]. VMMs enhance system security since they
allow pre-installed applications to be separated from downloaded
applications at the OS level. In addition, VMMs make it possible
to provide any number of processors to pre-installed applications
through processor virtualization features. Virtualization, however,
results in unignorable performance degradation, and there is a
degree of security vulnerability in complex virtualization software.
By way of contrast, SMP platforms with our dynamic security
domain scaling not only allow the number of processors within a
security domain to be dynamically changed, they also make it
possible to support high security by means of processor-level
separation, and application performance in security domains is
high because no virtualization software is required.

3. SMP PLATFORM WITH DYNAMIC
SECURITY DOMAIN SCALING

3.1 Overview and Principles
Figure 1 shows the application of our dynamic security domain
scaling to an SMP platform containing four processors. This
platform has three security domains, a base domain for the
execution of pre-installed applications and two security domains
(A/B) for the execution of downloaded applications. It contains a
function for changing the number of processors assigned to
individual security domains. The base domain maintains at least
one processor for its executions. Note that our scaling is not
limited to use with the structure shown in this figure; any number

40

of processors can be dynamically allocated to any number of
security domains with any kind of OSs.

For heavy pre-installed applications, all four processors are
allocated to the base domain on the SMP OS. Further, where
coordination is required between pre-installed and downloaded
applications, a processor allocated to the base domain (e.g.,
CPU#3) will be yielded to a security domain used for downloaded
applications. As shown on the right-hand side of the figure, pre-
installed applications can, for example, be executed separately on
an SMP OS with three processors, while downloaded applications
are executed with the remaining processor. Note that an domain
manager application, which supports the similar functions of an
Java application manager, is executed on the base domain in order
to control the timing of domain switching and the allocation of
processors to individual domains.

The platform contains both a software component, which includes
a context manager and context handlers, and a hardware
component, which includes bus filter logic. Here, context refers to
the register values required to restore a processor state (e.g., mode
registers and CP15 control registers of an ARM processor).

CPU#0 CPU#1 CPU#2 CPU#3

Bus Filter

Memory I/O

SMP OS

AP

AP
AP

Base Domain

Context Mgr.

CPU#0 CPU#1 CPU#2 CPU#3

SMP OS AMP
OS

Base Domain Domain A

DL
APAP

AP
AP

Context Mgr.

Context Handler

Context Handler

(1)

(2)

CPU#0 CPU#1 CPU#2 CPU#3

SMP OS AMP
OS

Base Domain Domain B

AP

AP
AP

Context Mgr.

DL
AP

(3)

(3)

(1)

Figure 1: SMP Platform Applied to
Dynamic Security Domain Scaling

The context manager is run only on the base domain, and it
manages base domain contexts, which are required to restore to
the base domain any processors previously allocated to security
domains. It also manages all security domain contexts for
downloaded applications. Further, it controls dynamic security
domain scaling (see Section 3.2.1). It also sends to a context
handler the context of a security domain in which an execution is
to be performed and orders that the execution be made.

A context handler [7] is run on each security domain for
downloaded applications, and it conducts domain switching, from
a current security domain to a security domain specified by the
context manager. To do this, it functions as an interrupt handler.

In transitions from, for example, a state with only a base domain
to one with both a base domain and a security domain (e.g.,
domain (A) in state transition (1) in Figure 1), the context
manager saves the context of the processor (here, CPU#3)
allocated for the execution of the security domain (A), and
restores the context of that security domain to the processor. As a

result, the number of processors allocated to the base domain is
dynamically reduced from four to three.

In state transition (2) in Figure 1, e.g., in switching from security
domain A to security domain B, the context manager sends the
context of security domain B to the context handler of security
domain A, using shared memory and inter-processor interrupts in
inter-processor communication, and it receives from the context
handler the context of security domain A, which had previously
been saved. As a result, switching from security domain A to
security domain B is seamless.

Finally, in state transition (3) in Figure 1, e.g., in switching from a
state with both a base domain and a security domain to one with
only a base domain, the context manager sends the base domain
context of the processor performing executions in security domain
B (i.e., CPU#3) to the context handler of security domain B, and
it receives from the context handler the context of security
domain B, which had previously been saved. As a result, the
processor allocated for executions in a downloaded domain (i.e.,
CPU#3) is restored to the base domain, and the number of
processors allocated to the base domain is dynamically increased
from three to four.

Bus filter logic [6] determines whether an access from a processor
to a bus slave should be granted. This decision is made on the
basis of an access matrix. While the processors executing in the
base domain, for example, are allowed access to any resources,
such as I/Os or memories, processors executing in security
domains for downloaded applications are allowed access only to
resources allocated to a specific security domain, and are
prohibited to access to resources used in an other domain. In this
way, this platform achieves hardened protection among security
domains at the processor level. In addition, in contrast to the slow
access checking offered by such virtualization software as type-I
or type-II VMMs, this logic offers the fast access checking
required to maintain separate security domains.

3.2 Two New Technologies
In order to apply our dynamic security domain scaling to an SMP
platform, we had to address two important technical issues,
particularly with respect to the important state transitions of (1)
and (3) in Figure 1: 1) how processors to be used for downloaded
applications are to be dynamically separated from the base
domain and then merged again with it; and 2) how the execution
of a software component to be shared among domains, including
the base domain, is to be stabilized during state transitions
between different OSs. In the following sections, we assume that
an ARM MPCore [1], which provides both AMP and SMP modes
to each processor, is used as an SMP, and that Linux is used for
the OSs of security domains.

3.2.1 Self-Transition Management
For separating a processor from a base domain (state transition (1)
in Figure 1) and merging a processor back to the base domain
(state transition (3) in Figure 1), simple operational control of
processors, such that including only suspend and resume, would
be insufficient. In addition to operational control, the base domain
is also required to support context handling for the processors.
Self-transition management achieves such context handling for
processors by means of integrating CPU Hotplug technology [12]

41

with it. CPU Hotplug technology, originally developed by Russell
et al., is used to remove faulty processors from a system and add
new processor substitutes to that system without stopping on-line
operations. In ARM MPCore Linux, this technology allows
unused processors to be put into a low power mode in order to
reduce power consumption. In other words, it simply suspends
use of the processors.
Figure 2 shows the relationship between our self-transition
management and CPU Hotplug technology. In the figure, gray
boxes indicate newly-added operations for the self-transition
management. With respect to CPU Hotplug technology (i.e., the
white boxes) implemented on ARM MPCore Linux, when a
processor in an idle state is put into a low power mode, the CPU
Hotplug technology requests the execution of a “CPU Hot
Remove,” which might involve, for example, 1) the migration of
processes previously executed on that processor to other live
processors, 2) a change in interrupt distribution to the processor,
3) deactivation of cache coherence, or 4) a processor’s waiting for
an interrupt while clock gating is being conducted. After the
processor receives a wake-up interrupt, the technology requests
the execution of a “CPU Hot Add,” such as the re-activation of
cache coherence or the return of a processor to an idle state.

Modified Flow of CPU Hotplug

Need for Domain
Transition ?

Save this
Removed

CPU Context

Switch to
a New Domain

Context

Yes No

Wait for
a Wake-Up
Interrupt

“CPU Hot Remove” Processing
for Entering Low Power Mode

“CPU Hot Add” Processing
for Leaving Low Power Mode

SMP OS

Base Domain

APAP

CPU#3CPU#2CPU#1CPU#0

SMP OS

Base Domain

APAP

CPU#3CPU#2CPU#1CPU#0

SMP OS

Base Domain

APAP

CPU#3CPU#2CPU#1CPU#0

AMP OS

Domain A
DL
AP

(1)

(3)

Figure 2: Self-Transition Management – Integration between

CPU Hotplug and Fast Context Handling
Our self-transition management modifies the operational flow of
CPU Hotplug technology. In the case of separating a processor
from the base domain and allocating it to a security domain for
downloaded applications (i.e., state transition (1) in Figure 1), it
requests the processor to execute a “CPU Hotplug Remove.”
After that, rather than make the processor wait for an interrupt, it
saves the base domain context required to restore the processor
and restores to the processor the context of the security domain
for downloaded applications. In this way, our self-transition
management enables processors which previously executed
functions in the base domain to start to execute in security
domains. The key feature in our self-transition management is
changing the value of the program counter saved in a base
domain context to the program address which corresponds to the
point at which waiting for an interrupt has been completed, i.e.,
the address that corresponds to the point just before “CPU Hot
Add” processing commences.
In the case of merging a processor from a security domain back
into the base domain (i.e., state transition (3) in Figure 1), the

self-transition management requests the context manager to
perform a domain context switch. Using the base domain context
required to restore the processor to the base domain, the context
manager orders the processor’s context handler to perform a
domain context switch. The context handler then conducts a
domain switch from the current security domain to the base
domain. Here, as mentioned earlier, since the value of the
program counter is changed to the address directly preceding
“CPU Hot Add,” the processor executes “CPU Hot Add” and
returns to an idle state in the base domain as if it had received a
wake-up interrupt. In this way, the self-transition management
enables processors which previously executed functions in
security domains to resume making executions in the base domain.
Note that, while our self-transition manager is not based on
virtualization software technologies, the security level of domain
separation is kept high by means of bus filter logic. Thus, SMP
platforms with dynamic security domain scaling are able to
provide highly secure, high-performance domains.

3.2.2 Unified Virtual Address Mapping
For a state transition between security domains, all registers in a
processor have to be set with the register values of a new domain
context. Traditional embedded processors, including ARM
MPCores, generally do not allow mode registers or control
registers, such as a pointer register for use with a page table, to be
simultaneously restored. This restriction would make the register
setting code executed for state transitions unstable during the
register setting between a pointer register setting and the program
counter setting, since the register setting code executed in an OS
before a state transition would use virtual addresses different from
those in an OS after the state transition.
To avoid this situation, we employ unified virtual address
mapping, a technology for matching virtual addresses in the
register setting code shared between an OS used before a state
transition and an OS used after that state transition. It is employed
to help achieve stable state transitions. Figure 3 shows the
mapping between physical addresses and virtual addresses in
terms of both the SMP OS of the base domain and AMP OSs of
security domains used for downloaded applications (i.e., security
domains A and B). Unified virtual address mapping arranges
common instructions and data used for the register setting code in
an area of the physical memory (e.g., 0x0e001000 for the
common instructions in Figure 3 and 0x0f000000 for the
common data) that is separate from areas of the physical memory
used by the SMP OS and AMP OSs. Further, it assigns the
common instructions and data to virtual addresses that are the
same in both the SMP OS and the AMP OSs (e.g., 0x0ffb0000 in
Figure 3). In this way, unified virtual address mapping achieves
stable operations, enabling, for example, a processor executing
the register setting code to fetch correct instructions or read
correct data even after the setting of a pointer register to a page
table, since the instructions and data used for the register setting
code are assigned to the same virtual addresses as those in both
the OS used before a state transition and the OS used after that
state transition.
In addition, unified virtual address mapping is designed to prevent
extra virtual addresses from being newly allocated to OSs, since it
utilizes unused virtual addresses within the virtual address ranges
allocated to I/O devices. This means that no extra virtual
addresses are required for mapping our register setting code.

42

Note that bus filter logic makes unified virtual addresses read-
only, since the register setting code only fetches instructions and
reads data. This results in protecting the code from modifications
that might be caused by viruses, and SMP platforms with our
dynamic security domain scaling help maintain system security.

User

Virtual Address
(AMP OS A/B)

0xc0000000

0x00000000

User

Virtual Address
(SMP OS)

0xc0000000

0x00000000

Physical RAM

SMP OS

AMP OS A

AMP OS B

Common Insts.
0x0e001000

0x00000000

0x06000000

0x09000000

0x0c000000

Common Insts.
0xffb00000

Common Data

Kernel

Common Insts.
0xffb00000

Common Data

KernelCommon Data
0x0f000000

Figure 3: Unified Virtual Address Mapping for
Stabilizing Dynamic Security Domain Scaling

4. EVALUATION
Evaluation conditions are summarized in Table 1.

Table 1: Evaluation Conditions
Item Feature
SoC MPCore (MP11 CPU x 4) @ 130nm

Cache I$: 32KB, D$: 32KB per MP11 CPU
Clock Frequency ARM: 240MHz, Bus: 35MHz

OS Linux 2.6.7 / SMP OS x 1, AMP OS x 2

Figure 4: Evaluation Board with an ARM MPCore

4.1 Highly Scalable Performance
Figure 5 shows allocation of MultiProcessor Dhrystone MIPS
(MP DMIPS) to the base domain and a security domain in
response to dynamic security domain scaling. We have confirmed
that state transition (1) in Figure 1 reduces total performance in
the base domain by an amount corresponding to that of a single
processor, and that the amount of reduced performance is gained

in the security domain. Further, with state transition (3) in Figure
1, performance in the base domain is increased back to the
previous level.

0

100

200

300

400

500

600

700

800

900

1000

M
P

D
hr

ys
to

ne
 M

IP
S

4CPU SMP 3CPU SMP +
1CPU AMP

4CPU SMP

State
Transition

(1)

State
Transition

(3)

Reduce
1CPU

MPDMIPS

Increase
1CPU

MPDMIPS

SMP
OS

AMP
OS

Figure 5: Highly Scalable Performance in the Base Domain

4.2 High Performance in Security Domains
Figure 6 and Figure 7 show the results (i.e., average of 10
measurements) for LMbench [10] processes and context
switching micro-benchmarks executed in the base domain.
LMbench is a typical OS benchmark. Average results for
conventional virtualization software, Xen (a type-I VMM) and
UML (a type-II VMM) are also shown in the figure [3]. For the
sake of comparison, also shown are performance results
normalized to 1 with respect to the reference base of micro-
benchmarks executed with unmodified Linux.

0

0.2

0.4

0.6

0.8

1

null
call

null
I/O

stat open
close

sig
inst

sig
hndl

fork
proc

exec
proc

sh
proc

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Our Proposal Xen UML 1.4

Figure 6: Low Performance Overhead in the Base Domain

– Process Micro-Benchmarks -
The base domain with dynamic security domain scaling achieves
nearly the same performance as does the base-reference SMP
Linux. This cannot be said for conventional virtualization
software. Here, our bus filter logic helps provide fast checking of
access requests issued from security domains. Two small
anomalies seen here, signal handling in Xen and two processes of
16KB array size each with our approach, presumably occurred
due to a fortuitous cache alignment (see [3]). Note that we have
also confirmed that the performance overhead in security domains

43

for downloaded applications is almost the same as that with un-
modified AMP Linux.

0

0.2

0.4

0.6

0.8

1

2p
0K

2p
16K

2p
64K

8p
16K

8p
64K

16p
16K

16p
64K

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Our Proposal Xen UML1.4

Figure 7: Low Performance Overhead in the Base Domain

– Context Switching Micro-Benchmarks -

4.3 Small Binary Code Size
As may be seen in Table 2, dynamic security domain scaling is
implemented with a small binary code size (i.e., less than 40KB)
by means of the CPU Hotplug integrated design. The binary code
size for common text (instructions) and data is also small, being
implemented in only 9.2KB. The increases in binary code size of
SMP Linux and AMP Linux with our dynamic security domain
scaling are only 1.5% and 1.3%, respectively, over that for un-
modified OSs. In terms of Lines of Code (LOC), the modified
LOC values of SMP Linux and AMP Linux with dynamic
security domain scaling are 1549 LOC and 1145 LOC,
respectively.

Table 2: Increases in Binary Code Size (KB)

Linux Text Data BSS Common
Text

Common
Data Total

SMP +11.2 +1.6 +16.2 +38.2
AMP +6.6 +1.1 +16.1 +0.3 +8.9 +32.9

4.4 Low State Transition Time Overhead
We measured the elapsed time from initiating a state transition
request in the base domain to finishing processing the request in
an other domain. Table 3 shows times required for the state
transitions shown in Figure 1. Values in parenthesis indicate
differences in time with respect to corresponding processing using
CPU Hotplug technology. The time required for state transitions
with dynamic security control is of a single-millisecond order.
Further, the greatest time difference with CPU Hotplug
technology is only 2.0ms.

Table 3: Low Overhead of State Transition Time
State Transition in Figure 1 Time

(1) Separation from the base domain 2.5ms (+1.5ms)
(2) Switching to a security domain for
downloaded applications 0.5ms (---------)

(3) Merge to the base domain 4.5ms (+2.0ms)

5. CONCLUSION
The requirements for more highly scalable performance and
higher security in future high-end embedded systems will
necessitate the use of SMPs. We have here proposed dynamic
security domain scaling on SMPs that allows the number of
processors within a security domain to be dynamically changed,
and we have applied our approach to ARM MPCores. Key to the
success of this dynamic security domain scaling are two new
technologies: self-transition management and unified virtual
address mapping. We have shown the effectiveness of the scaling
in our evaluations with respect to performance scalability,
performance overhead, binary code size, and state transition times.

6. REFERENCES
[1] ARM. ARM11 MPCore Processor Technical Reference

Manual. Revision r1p0, August 2006.
[2] Armstrong, W. J. et al. Advanced Virtualization Capabilities

of POWER5 Systems. IBM Journal of Research and
Development, 49, 4/5(July/September 2005), 523-532.

[3] Barham, P. et al. Xen and the Art of Virtualization. In
Proceeding of the ACM Symposium on Operating Systems
Principles, October 2003, 164-177.

[4] Dike, J. A User-Mode Port of the Linux Kernel. In
Proceedings of the 4th Annual Linux Showcase &
Conference, 2000, 63-72.

[5] eSOL. eT-Kernel Multi-Core Edition. http://www.esol.co.jp/
english/embedded/et-kernel_multicore-edition.html.

[6] Inoue, H. et al. FIDES: An Advanced Chip Multiprocessor
Platform for Secure Next Generation Mobile Terminals. In
Proceedings of the IEEE/ACM/IFIP International
Conference on Hardware/Software Codesign and System
Synthesis, September 2005, 178-183.

[7] Inoue, H. et al. VIRTUS: A New Processor Virtualization
Architecture for Security-Oriented Next-Generation Mobile
Terminals. In Proceedings of the ACM/IEEE Design
Automation Conference, July 2006, 484-489.

[8] Intel, and NTT DoCoMo. Open and Secure Terminal
Initiative (OSTI) Architecture Specification. Revision 1.00,
November 2006. http://www.nttdocomo.co.jp/binary/pdf/
corporate/technology/osti/OSTI_Arch_R1_00.pdf.

[9] Loscocco, P. and Smalley, S. Integrating Flexible Support
for Security Policies into the Linux Operating System. In
Proceedings of the FREENIX Track of the USENIX Annual
Technical Conference, 2001, 29-42.

[10] McVoy, L. and Staelin, C. lmbench: Portable Tools for
Performance Analysis. In Proceedings of the USENIX
Annual Technical Conference, January 1996, 279-294.

[11] QNX. Multi-Core Technology Development Kit. 2006.
http://www.qnx.com/download/download/12449/194.09_Mu
lticore_TDK_p41.pdf.

[12] Russell, R. et al. Linux Kernel Hotplug CPU Support. In
Proceedings of the Linux Symposium, vol. 2, July 2004, 467-
480.

[13] Sugerman, J. et al. Virtualizing I/O Devices on VMware
Workstation's Hosted Virtual Machine Monitor. In
Proceedings of the USENIX Annual Technical Conference,
June 2001, 1-14.

44

