
Performance Analysis and Design Space Exploration
for High-End Biomedical Applications:

Challenges and Solutions

Iyad Al Khatib
IMIT, ICT, KTH
Royal Institute of

Technology, Sweden
+4687904111

iyad@imit.kth.se

Davide Bertozzi
ENDIF

University of Ferrara
Ferrara, Italy

+390532974832
dbertozzi@ing.unife.it

Axel Jantsch
IMIT, ICT, KTH

Royal Institute of
Technology, Sweden

+4687904124
 axel@imit.kth.se

Luca Benini
DEIS

University of Bologna,
Bologna, Italy

+390512093782
lbenini@deis.unibo.it

ABSTRACT
High-end biomedical applications are a good target for specific-
purpose system-on-chip (SoC) implementations. Human heart
electrocardiogram (ECG) real-time monitoring and analysis is an
immediate example with a large potential market. Today, the lack
of scalable hardware platforms limits real-time analysis
capabilities of most portable ECG analyzers, and prevents the
upgrade of analysis algorithms for better accuracy.
Multiprocessor system-on-chip (MPSoC) technology, which is
becoming main-stream in the domain of high-performance
microprocessors, is becoming attractive even for power-
constrained portable applications, due to the capability to provide
scalable computation horsepower at an affordable power cost.
This paper illustrates one of the first comprehensive HW/SW
exploration frameworks to fully exploit MPSoC technology to
improve the quality of real-time ECG analysis.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]:
Microprocessor/microcomputer applications, Real-time and
embedded systems

General Terms
Performance, Design, Experimentation.

Keywords
Multiprocessor System-on-Chip, biomedical, electrocardiogram
algorithms, real-time analysis, design space exploration.

1. INTRODUCTION
Heart disorders remain by far the leading cause of death in the
world for both women and men of all ethnic backgrounds [1].
ECG monitoring during normal activity using Holter devices has

become a standard procedure for the detection of diseases such as
cardiac arrhythmias [2].

Unfortunately, limited processing power and tight power budgets
of Holter devices have traditionally limited their functionality to
data acquisition and recording of full ECG traces or abnormal
events. Record analysis and diagnosis are performed offline at the
medical center. Remote real-time ECG monitoring through
dedicated telemedicine links involve transmission of a huge
amount of life-critical data and a 100% functional always-on
connection.

The recent advances in silicon integration technology are paving
the way for real-time ECG monitoring and analysis, thus allowing
to promptly react to life-threatening heart malfunctions and to
relax the requirements on telemedicine links. In particular,
boosting clock frequencies of monolithic single-core
microprocessors has clearly reached a point of diminishing returns
and in the next few years performance gains will mainly come
from an increase in the number of processor cores per chip.
Although evidence of this trend is unmistakable in the domain of
high-end microprocessors [3], the need to optimize performance
per watt is likely to lead even portable devices to deploy multiple
processor cores operating in parallel at lower clock speeds.
Scalable chip multiprocessing is therefore emerging as a major
design paradigm shift to provide scalable computation
horsepower in a power efficient fashion. On one hand, this trend
is accelerated by the stringent demands posed by increasingly
complex software applications, but in turn will force to radically
revise programming models.

Heart activity monitoring and analysis provide a promising
application domain for on-chip multiprocessor systems. It is
electrically recorded as a set of ECG signals which can reveal a
number of heart malfunctions [4]. The most reliable ECG
analysis technique is the 12-lead ECG, which requires processing
twelve different signals sensed from the patient’s body and which
renders a 3D view of the heartbeat. The migration towards 12-
lead ECG is facing computational challenges, especially in
portable devices, where the need to meet tight computation and
power budgets results in processing fewer leads. This is a
limitation to the development of more sophisticated analysis
algorithms, which are needed to overcome the concerns posed by
heartbeat analysis: physiological variability of QRS complexes,
base-line wander, muscle noise, artifacts due to electrode motion
and patient mobility.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CODES+ISSS’07, September 30–October 3, 2007, Salzburg, Austria.
Copyright 2007 ACM 978-1-59593-824-4/07/0009…$5.00.

217

Multi-Processor System-on-Chip technology provides a disruptive
means of overcoming the aforementioned challenges. It consists
of an energy-efficient and scalable hardware/software (HW/SW)
platform which can meet computation demands at an affordable
power cost. In this paper, we introduce a novel MPSoC
architecture for ECG analysis which improves upon state-of-the-
art mostly for its capability to perform 12-lead real-time analyses
of input data with high sampling frequencies, leveraging the
computation horsepower and the functional flexibility provided
by many concurrent VLIW DSPs. This biomedical chip builds
upon some of the most advanced industrial components for
MPSoC design (multi-issue VLIW DSPs, system interconnect
from STMicroelectronics, and commercial off-the-shelf
biomedical sensors), which have been composed in a scalable and
flexible platform. Therefore, we have ensured its reusability for
future generations of ECG analysis algorithms and its suitability
for porting of other biomedical applications, in particular those
collecting input data from wired/wireless sensor networks.

The specific application domain addressed in this work calls for
specific design methodologies for which full system modeling
accuracy is critical, since the resulting architecture needs to be
highly predictable. Uncontrolled run-time fluctuations of the
system might lead to incorrect detection of life-threatening events
in the heartbeat traces. For this purpose, the most daunting
challenge for system designers perhaps consists of accurately
predicting the impact of the communication and I/O architectures
on system performance. Even more critical is the ability to
capture the interaction between these two sub-systems.

Finally, our architecture allows to compare existing analysis
algorithms and to develop new ones, while keeping low-level
implications of software decisions under control through the
support of a virtual platform. In this paper, we illustrate the pros
and cons of deploying more complex analysis techniques than the
traditional Pan-Tompkins algorithm [5], from a comprehensive
hardware and software viewpoint.

2. BACKGROUND
The biomedical application we choose for our design is the ECG,
which is a diagnosis tool used by medical doctors and nurses to
check the status of the heart. For the purpose of designing an
algorithm and code (hence SW), understanding ECG signals is
firstly done. Each ECG signal is an electrical recording of the
heart activity taken from many sensors connected on the patient’s
body. Each ECG signal comes from a connection that is referred
to- in the biomedical field- as a “lead”. The more the leads the
larger the information set of data we can get for the heart
activities. One of the latest techniques for monitoring heart
activity is the 12-lead ECG, which relies on nine sensors placed
on the patient’s body (Figure 1-a). Before the 12 lead technique,
physicians used only three sensors (RA, LA, and LL as shown in
Figure 1-a) in a method known as the 3-lead ECG, which suffers
from the lack of information about the whole of the heart. The 12-
lead ECG technique, offers a view of the heart in its three
dimensional form and can thus detect many more abnormalities.
The cost for this increased amount of information is higher
number of computations, more sophisticated monitoring and
analysis of large data sets, and stringent requirements on the
underlying portable hardware platform.

Figure 1-b shows a typical ECG signal for a healthy heart. The
important peaks on the ECG signal are : P, Q, R, S, and T, each of

which refers to some heart activity. Figure 1-c shows real
recorded signals from 12-leads. Many healthcare centers, till now,
still print these signals on an eyeballing paper; therefore, they
may be confusing for the doctor’s eyes. On the other hand, when
using digital recording and filtering we can determine the peaks
more accurately especially that digital computing becomes
applicable.

Figure 1. 12 lead ECG: (a) Sensors on a human body. (b) The
QRS complex. (c) Complete 12 lead readout.

5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6
-0.4

-0.2

0

0.2

0.4

0.6

Time (sec)

Vo
lta

ge
 (m

V)

Q

P

R

S

T
U

Sensor Raw Data

Filtered Data

Two confusing R peaks before filtering

One clear R peak after filtering

V6

V2V1
V3

V5V4

aVR

aVL

aVF

RA LA

LL

+
-

 RL
Ground

Lead I

Lead II

+

-

Lead III

+ -

+ -

+

-

+

-

(a)

(b)

(c)

218

Most of the available solutions consist of real-time storage of
acquired data and of later processing via single computers or
networks of parallel machines. In addition, real-time analysis is
limited to deciding only whether the heartbeat is normal or
abnormal. In some cases, monitored heartbeat activity is
transmitted to a local machine [6] or to a remote healthcare center
 [7] for faster reaction to abnormal events. Alternatively, more
computation efficiency of portable devices for online analysis
comes at the cost of reduced patient mobility. Moreover, the
commercial solutions under study [8] do not look into the
parallelization of the ECG analysis into multiple cores.

A point worth mentioning from an implementation viewpoint is
the performance of biomedical sensors. Biomedical sensors today
are built for longer lifetimes than the usual hourly based ones, and
higher sampling frequencies (up to 10 KHz for ECG). Moreover,
an unfortunate mismatch exists between sensors nowadays and
the state-of-the-art heart analysis machines [9], which cannot
keep up with the data acquisition rate, and are usually wall-
plugged. The high computation capability made available by the
MPSoC technology can potentially remove this bottleneck, and
since MPSoC is relatively smaller in size than wall plugged
machines, it will add the dimension of mobility for patients.

3. VIRTUAL PLATFORM
When we view the target application domain in relation to the
candidate hardware platforms for it, the following requirements
become evident:

 Life-critical application. Contrary to other domains, such as
multimedia and entertainment, we need to come up with
accurate system component models already in the early design
stages, so to limit the degrees of execution unpredictability to
the minimum. Therefore, transaction-level modelling did not
seem to us as the best option, but we rather focused on cycle-
accurate modelling and simulation.

 High task level parallelism. Each individual lead signal can
be potentially processed in parallel with minimum inter-task
interaction. Only in the end of the data processing phase, such
interaction is eventually needed by diagnosis tasks to reveal
heartbeat abnormalities and to analyze them. Therefore, a
parallel hardware platform is well suited for this kind of
algorithms.

 Communication bandwidth requirements. Regardless of the
specific ECG analysis algorithm, large amounts of data have to
be stored in the system memory to keep the records of
heartbeat activity over a long observation window. This
involves a continuous flow of data towards the off-chip
memory. Moreover, incoming new sampled data to be
processed must be considered as well in order to assess the
communication bandwidth requirements. From a hardware
viewpoint, there are two important implications. On one hand,
processor core-to-off-chip memory communication is
becoming a major bottleneck in modern MPSoC platforms.
Optimization of memory access of multiple on-chip computing
cores to the finite bandwidth of off-chip memory is key point
to the success of parallel MPSoC architectures. This calls for
an incremental effort for accurate modelling off-chip memory
controllers, including their optimization engines and
interfacing mechanisms. On the other hand, even admitting
unlimited I/O bandwidth, the communication architecture turns

out to be the most critical component for system performance.
In the context of parallel MPSoCs, such performance is in fact
not computation but rather communication limited. It is,
therefore, necessary to accurately model this component (we
chose cycle- and signal-accuracy) in order to assess the
scalability of the hardware platform at hand, as will be
discussed later on in the paper. Finally, having independently
optimized communication and I/O architectures might be
misleading, since the interaction between specific features of
the communication protocol and a many-to-one traffic pattern
might degrade ideal performance of both components [10].
Finally, optimizations at the memory controller might make
this interaction unpredictable unless an accurate virtual
platform is set up.

Figure 2. Methodology used for high-end biomedical

application HW/SW co-design (applied for ECG analysis).

Is there a need for problem (Alg.) partitioning?

Parallelism specification
for the code

Un-optimized HW

YES NO

Set high-layer (biomedical) standards specs & test for

Design models and biomedical Algorithm (Alg.) &
generate code to test algorithm for biomedical specs

Define parameters to respect, e.g. time
consumption for analysis

YES Dependencies
& specs

NO

HW
Layer

SW
Layer

HW interfaces

Standard
Component

Problem partitioning

Parallelize the code

Optimized SW and HW

Can we parallelize the Alg. more?
(e.g. per lead)

Define basic HW blocks, interconnections,
requirements, & accurate modeling for bottlenecks

Un-optimized code

HW/SW Co-simulation
(cycle & signal accurate)

Compare results with biomed.
layer specs & SW specs (is HW
computation or Communication limited?)

Biomedical
Layer

Locate the problem to solve, e.g. heartbeat analysis, i.e.
life-critical application

Optimized Physical Solution

219

 Computation and communication parallelism. Storage of
processing results and the next computation round should be
handled in parallel for efficient execution. Therefore, the
deployment of DMA engines is highly attractive in this case.
However, two conflicting requirements should be taken into
account. On one hand, storage data size needs to be kept to the
minimum to extend the observation window (given the finite
memory size), while on the other hand sufficiently long data
transfers are required to amortize the cost of DMA transfer
programming.

In a step further to implement the HW/SW co-design based on the
above analysis, we are pushed to found a guiding (flow of logical
steps) methodology that we refer to in order to keep on optimizing
the life-critical biomedical algorithm, SW and HW. This type of
methodology was induced throughout the work of the design and
implementation, which we present in a flow of steps and their
inter-relations for HW/SW co-design for high-end biomedical
applications. This methodology is summarized in the flowchart
presented in Figure 2, where we divide the work into three main
layers: biomedical layer, SW layer, and HW layer. The starting
point is always the right choice of an application (problem) that
has medical significance (heart diagnosis via ECG analysis in our
case). In the first layer, the biomedical specifications for the
problem must be set pedantically in order to design an algorithm
that suits the life-critical application as discussed in the first point
of the aforementioned analysis of this section. At this stage and at
every stage, we need to keep in mind and thus in the design flow
the relationship with and the effects on other layers and stages.
Hence, we find a major need to look at whether the biomedical
problem can be partitioned (e.g. period analysis and peak analysis
for ECG signals). This defines one sort of parallelism that is
reflected in the SW code in a later stage. Then the SW design
requires defining parameters needed to respect in the analysis
(e.g. real-time limits in seconds in our case and also power
consumption as the device should be wearable and self powered).
After defining these specs, a look at the algorithm from a SW
parallelization viewpoint is essential since it shall affect both time
and power consumption spec results in the simulation stage
further in the HW layer. Once the parallelism is defined, the
parallelized code is generated. A note worth mentioning is that it
is possible to parallelize some loops without the need to
parallelise the biomedical algorithm itself to minimize time-
consumption. At this stage we have a block of functional code but
not yet optimized to best suit the HW computation and
communication requirements. This code and its dependencies
(e.g. the data chunks and their specs as number of samples and
length of recording) inspire the HW designer to define the HW
needs for accurate modelling. The result is an un-optimized HW
with interface mechanisms that is ready to load the SW to go
further to the HW/SW co-simulation stage. Since this is a life-
critical application, it calls upon cycle and signal accurate co-
simulation. The results of the co-simulation are the major
outcome to test and compare with specs in above stages in higher
layers. For a life-critical application, like real-time ECG analysis,
a step back to compare with the high layer (biomedical) standards
and specs is a must. This may affect the optimization of the
algorithm, SW, and HW, respectively. When the HW/SW co-
simulation results are pedantically investigated and accepted, we
get the optimised HW and its relative SW in a stage guiding the
optimized physical solution.

Based on all the above analyses, we came up with a virtual
platform with mixed modelling abstractions so to trade-off
accuracy with simulation time. The MPSIM modelling and
simulation environment [11] was chosen as the starting point for
an intensive extension and customization effort for the target
application domain and to meet its requirements.

We chose SystemC as the reference description language and
simulation engine, due to its ability to perform efficient HW/SW
co-design. The entire on-chip HW/SW architecture was modelled
with clock-cycle accuracy extended to the chip boundaries. While
retaining this level of accuracy, processor cores were modelled at
the level of their instruction set, while only the on-chip bus was
modelled with signal accuracy due to its criticality. As an effect,
we were able to achieve simulation speeds up to 200 Kcycles/sec
on a P4@3.5GHz.

The virtual platform was augmented to support non-functional
metrics, such as power dissipation and breakdown. Industry-
provided and technology-homogenous 0.13µm power models of
all system components were deployed for power analysis
 [12] [13].

4. MPSOC ARCHITECTURE
In order to process filtered ECG data in real-time, we choose to
deploy a parallel MPSoC architecture. The key point of these
systems is to break up functions into parallel operations, thus
speeding up execution and allowing individual cores to run at a
lower frequency with respect to traditional monolithic processor
cores. Technology today allows the integration of tens of cores
onto the same silicon die, and we therefore designed a parallel
system with up to 13 masters and 16 slaves Figure 3. Since we
are targeting a platform of practical interest, we choose advanced
industrial components [12]. The processing elements are multi-
issue VLIW DSP cores from STMicroelectronics, featuring 32kB
instruction and data caches and with maximum clock speed of
400MHz. These cores have 4 execution units and rely on a highly
optimized cross-compiler in order to exploit the parallelism. They
try to combine the flexibility of programmable cores and the
computation efficiency of DSP cores. This way, the platform can
be used for applications other than the 12-lead ECG, so to make it
cost-effective. Each processor core has its own private memory
(up to 512KB), which is accessible through the bus, and can
access an on-chip shared memory (8KB are enough for our target
application) for storing computation results, prior to swapping to
the off-chip memory. Other relevant slave components are a
semaphore slave, implementing the test-and-set operation in
hardware and used for synchronization purposes by the processors
or for accessing critical sections, and an interrupt slave, which
distributes interrupt signals to the processors. Interrupts to a
certain processor are generated by writing to a specific location
mapped to this slave core. The STBus interconnect from
STMicroelectronics [14] was instantiated as the system
communication backbone. STBus can be instantiated as both:
shared-bus or crossbar (partial or full), thus allowing efficient
interconnect design and providing flexible support for design
space exploration and for platform scalability. In our first
implementation, we target a shared bus to reduce system
complexity (Figure 3) and assess whether application
requirements can already be met or not with this configuration.
We then explore also a crossbar-based system (Figure 4).

220

The inherent increased parallelism exposed by a crossbar
topology allows decreasing contention on shared communication
resources, thus reducing overall execution time. In our
implementation, only the instantiation of a 3x6 crossbar was
interesting for the experiments.

Figure 3. Single bus architecture with STBus interconnect.

Figure 4. Crossbar architecture with STBus interconnect .

We put a private memory on each branch of the crossbar, which
can be accessed by the associated processor core or by a DMA
engine for off-chip to on-chip data transfers. Finally, we have a
critical component for system performance which is the memory
controller. It allows efficient access to the external 64MB
SDRAM off-chip memory. A DMA engine is embedded in the
memory controller tile, featuring multiple programming channels.
The controller tile has two ports on the system interconnect, one
slave port for control and one master port for data transfers. The
overall controller is optimized to perform long DMA-driven data
transfers and can reach the maximum speed of 600MB/s.
Embedding the DMA engine in the controller has the additional
benefit of minimizing overall bus traffic with respect to traditional
standalone solutions. Our implementation is particularly suitable
for I/O intensive applications such as the one we are targeting in
this work.

Each processor core programs the DMA engine to periodically
transfer input data chunks onto their private on-chip memories.
Moved data corresponds to 5 seconds of data acquisition at the
sensors: 10kB at 1000Hz sampling frequency, transferred on
average in 319279 clock cycles (DMA programming plus actual
data transfer) on a shared bus with 12 processors. The consumed

bus bandwidth is about 6Mbyte/sec, which is negligible for an
STBus interconnect, whose maximum theoretical bandwidth with
1 wait state memories exceeds 400Mbyte/sec. Then each
processor performs computation independently, and accesses its
own private memory for cache line refills. Different solutions can
be explored, such as processing more leads onto the same
processor, thus impacting the final execution time. Output data,
amounting to 64 byte, are written to the on-chip shared memory,
but their contribution to the consumed bus bandwidth is
negligible. In principle, when the shared memory is filled beyond
a certain level, its content can be swapped by the DMA engine to
the off-chip SDRAM, where the records of 8 hours of
computation can be stored.

In the above description, weOff-Chip
SDRAM

On-Chip
Memory

Memory
Controller

+
DMA

DSP 1

DSP N

PRIVATE 1

PRIVATE N

Semaphore

INTERRUPT

 have reported the worst case system

n independent

configurations. In fact, fewer cores can be easily instantiated if
needed but this is a fist un-optimized HW design as discussed in
Section 3. This architectural template is very scalable and allows
for further future increase in the number of processors. This will
allow to run in real time even more accurate ECG analyses for the
highest sampling frequency available in sensors.

STBus

5. SOFTWARE ARCHITECTURE
The software architecture is fully distributed and aDSP 1

 Memory
Controller

+
DMA

Shared
Memory

INTERRUPT

Semaphore

DSP N

PRIVATE 1

PRIVATE N

RTEMS operating system [15] runs on top of each processor
core. Kernel images reside in the private memory of each core. A
middleware support for inter-processor communication was
ported to the system, and a special purpose library was used for
DMA programming [16]. Next, we will devote our attention the
algorithm for ECG monitoring and analysis. Off-Chip

SDRAM

5.1 Algorithms/ Software Description
A few algorithms have been developed for detection of heart

 a basic

of nowadays and long-lived

solutions. An overview of the three algorithms follows.

abnormalities. Most of the solutions available try to locate the
QRS interval (see Figure 1-b) in order to estimate the heart period
by calculating the distance of two consecutive R peaks. In spite of
their lightweight complexity, such algorithms do not provide
enough confidence in analyzing highly irregular heartbeats,
associated with specific patients and/or arrhythmias. Moreover,
even when they work fine in defining the QRS interval, the other
peaks (which represent other heart activities) will still be obscure
for the doctors/nurses looking at the algorithm results.

At the biomedical layer, a choice for the algorithm is
block for the success. We start looking at the most widely used
algorithm for heart beat detection in healthcare centers is the Pan
Tompkins algorithm [5]. The Pan Tompkins solution is built to
detect the QRS interval only, and its low complexity makes it
suitable for porting on a large number of low-end portable
devices. The disadvantages are of course many, e.g. lack of 100%
success, confusing peaks and thus diseases, lack of full analysis of
all heart activities, and oftentimes a lack of sufficient informative
content provided to medical doctors.

In a step to overcome the limitations
solutions, and relying on the performance accelerations
guaranteed by MPSoC platforms, we came up with more
computation demanding analysis (biomedical) algorithms than the
traditional QRS detection technique, and pointed out their pros
and cons from a comprehensive hardware-software
implementation viewpoint. In what follows we refer to our two
biomedical algorithms as the: ACF-based and FFT-based

221

5.2 Pan Tompkins Algorithm
The Pan-Tompkins algorithm detects only the QRS co

 [17]
mplex of

the ECG signal via three detection steps: linear digital filtering,
 rule algorithms. The

, and S peaks and waves are needed in the Pan

ional ECG analysis starts from a reference point

the

non-linear transformations, and decision
technique consists of an analog filter, a band-pass filtering stage,
derivative, squaring, and windowing stage. The algorithm was
originally made to run on a Z80 (Zilog) or an NSC800 (National
Semiconductor) microprocessor. Hence, it runs relatively fast in
today’s platforms. However, it may fail in giving correct results.
The processing is done in integer arithmetic so that the algorithm
operates in real-time [5] without consuming significant power.
The algorithm detects QRS complexes using slope, amplitude and
width information.

First, an analog filter is used to band limit the ECG signal at
50Hz. Then, an A/D converter samples the signal at Fs=200Hz.
Since only the Q, R
Tompkins algorithm, then there is no harm in filtering the P and T
waves. Therefore, after the A/D conversion, the signal passes
through band-pass filter and high-pass filter stages to remove
high-frequency noise, P-waves, T-waves, and other artifacts. The
resultant signal is then passed through a local peak detection
algorithm which identifies and marks all the peaks found in the
signal. This algorithm uses a set of thresholds in order to be able
to select candidate QRS complexes. These thresholds are adaptive
and thus are modified based on the amplitude of the new peak
found. However, the first thresholds and the relations between
them are defined by the SW implementer, i.e. suffer from human
subjectivity and depend on the SW developer’s experience in
QRS complexes, which usually is not very thorough. The filtered
signal is then sent to the non-linear transformation stage, where
the derivative of the signal is calculated. The derivative contains
information about the slope of the QRS. The squaring process
intensifies the slope of the frequency response of the
differentiated signal to help detect false peaks like the T-waves. A
moving window integrator obtains information about the width of
the QRS complex. This result is then passed through the same
local peak detection and threshold setting algorithms as the
original band-pass filtered signal to identify QRS slope
information. All the candidate QRS peaks found in both filtered
and transformed waveforms are then compared. Only those
appearing in both processed waveforms are classified to be valid
QRS complexes. The output is a stream of pulses indicating the
locations of the QRS complexes. Such an algorithm not only
relies on slope information, but also on the amplitude and width
information of the QRS complex. In the Pan Tompkins algorithm,
the human factor plays a role in the choice of thresholds and the
relations therein.

5.3 Analysis via the ACF–Based Algorithm
In principle, tradit
in the heart cycle (the R-peak is commonly used as the reference
point). As a consequence, accurate detection of the R-peak of
QRS complex is a prerequisite for the reliable functionality of
ECG analyzers [12]. However, as an effect of ECG signal high
variability, R-peak detection might be inaccurate. For instance, in
the R on T phenomena, a T peak may be wrongly taken for an R
peak, and then the R-T interval will be considered as an R-R
interval, and the period will be wrong. Hence, other QRS
parameters will be consequently inaccurate. As a result,
traditional techniques may fail in detecting some serious heart
disorders such as the R-on-T phenomenon (associated with

premature ventricular complexes) . Our approach takes a
different perspective: instead of looking for the R-peaks and then
detecting the period, we detect the period first (via
autocorrelation) and then look for the peaks. We use an
autocorrelation function to calculate the heartbeat period without
looking for peaks. Then, we can restrict our analysis to a time
window equal to the period and detect all peaks. Although
potentially more accurate, our algorithm incurs a higher
computational complexity: 3.5 million multiplications, which
have been reduced to 1.75 million through a number of code (SW-
layer) optimizations.

Figure 5. ACF-based algorithm for Heart period analysis.

The er
f Lags (L) to minimize the computation for our specific
plication as discussed below.

where, Ry is the autocorrelation function, y is the filtered signal
under study, n is the index of the signal y, and k is the numbe
lags of the autocorrelation (L has ance

of the derivative can give the period as shown in Figure 5. The

(b)

(c)

 autocorrelation we use as shown in (1) has a certain numb
o
ap

[] [] []
n

R k y n y n ky
n

=∞
= × −∑
=−∞

 (1)

r of
 an effect on the perform

due to the high number of multiplications). We run the
experiments for n = 1250, 5000 and 50,000 relative to the
sampling frequencies of 250, 1000, and 10,000Hz, respectively.

In order to minimize errors and execution time we use the
derivative of the ECG filtered signal since if a function is periodic
then its derivative is periodic. Hence, the autocorrelation function

(a)
R

P

Q

R

T

S

R’

U

R’

222

advantage of taking the derivative, and thus adding some
overhead to the code, is that the fluctuations taking place in the
signal and especially those around the peaks would be reduced to
a near-zero-value. In order to be able to analyze ECG data in real-
time and to be reactive in transmitting alarm signals to healthcare
centers (in less than 1 minute), a minimum amount of acquired
data has to be processed at a time without losing the validity of
the results. For the heart beat period, we need at least 4 seconds of
ECG data in order for the ACF to give correct results [18].

Our proposed ECG-analysis algorithm was conceived to be
parallel and hence scalable from the ground up, so to be able to
extend it to any number of leads for analysis for future
generations of biomedical devices.

5.4 Analysis via the FFT-Based Algorithm
At this step, we are still investigating algorithm optimization
before going to the HW design. Looking for a less demanding

the

hm will be now highlighted.

orithms, and

Figure 6. Period detection using the ACF-based direct

method to calculate the autocorrelation coefficients for a
patient.

t

analysis method from a computation viewpoint, while still
retaining higher accuracy than the Pan Tompkins, we revert to
FFT algorithm to minimize the number of computations needed to
estimate the autocorrelation coefficients. In our implementation of
the FFT algorithm, data are read from the ECG signal with a
specified sampling frequency into a buffer with a limited buffer
capacity of 4 seconds. Then, we differentiate the resultant signal
so as to enhance its shape. Only the first quarter of the
differentiated samples will be used as an input into the FFT block.
This technique allows us to save time and unnecessary
calculations while still getting to similar results. The
differentiated data need to be reordered so that they are correctly
used as an input to the FFT block. We perform decimal to binary
conversion of the indices of the elements in this array, then
reverse the bits of the binary representation of those indices, then
perform binary to decimal conversion of the result to get the
reordered indices. By correctly applying the butterfly method of
the FFT and using the twiddle factors at every stage, FFT data are
calculated. The algorithm uses two ‘For’ loops, the outer loop
loops log (N/4) times (which represents the number of stages in
the butterfly diagram), where N is the number of samples
increased to the nearest power-of-2 value. The other loop loops
N/4 samples, since at every stage; N/4 FFT values are calculated.
We finally get the FFT data in the last stage. Although the FFT-
based algorithm results are faster to compute, we observe a loss in
the quality of the output autocorrelation plot in the end, i.e. the
autocorrelation function coefficients (which is the final plot in
both FFT-based and ACF-based algorithms) are not as accurate as
the ones described in our ACF-based Algorithm, hence we win on
computations and lose on accuracy.

5.5 MPSoC Pros for ECG Analysis
The distinctive features of the above algorithms with respect to
the traditional Pan Tompkins algorit
We aim at proving user-perceived practical advantages of
deploying more computation-demanding alg
therefore the advantages that MPSoC technology can bring to the
ECG domain in view of its scalable and energy efficient
computation horsepower. A detailed comparison between analysis
algorithms is beyond the scope of this paper.

The biomedical advantages that both our algorithms (ACF-based
and FFT-based) have with respect to traditional solutions are
mainly: (1) eliminating failure in calculating the heart period

since we use a time based autocorrelation instead of using human-
chosen thresholds, (2) ability to learn about all the heart activities
since even if the Pan Tompkins gave a good detection, it already
filters out the P and T waves, (3) ability to detect more diseases,
(4) increased accuracy by increased sampling frequency, and (5)
better scalability and parallelism.

Hence, both the ACF-based algorithm and the FFT-based
algorithm share the aforementioned advantages over the Pan
Tompkins; however, we also can look at the medical implications
when comparing the ACF-based algorithm with the FFT-based
algorithm. In this respect, the FFT-based algorithm gives a faster
result than the ACF-based algorithm, but it may not be as
accurate, since the peak of the autocorrelation coefficients is
surrounded by many similar peaks which are shown in Figure 6
and Figure 7.

Easier to detect
the largest peak

Figure 7. Period detection using FFT-based algorithm to

calculate the autocorrelation coefficients for the same patien
in Figure 6.

Close peaks, making
decision very difficult
for the SW to detect
the largest peak

223

Pe d

(same period) as with the to calculate the ACF but
e had a little difference between the data resulting from the two

or our specific

leveraging
be deployed. Our work is a first step in

rforming this same operation on different cases, we deduce
that the peaks resulting from the FFT method yielded same results

direct method
w
methods; the second peaks for the FFT-based method (Figure 7)
were lower in amplitude relative to the maximum at the origin
than those for the direct method (Figure 6), which will require
more difficult thresholds choice for the FFT case.

From a computation viewpoint, both the ACF direct method and
the FFT method are clearly more demanding with respect to the
Pan-Tompkins. The relative decrease of complexity that the FFT
method is able to provide in the computation f
algorithm and SW design (in SW layer, i.e. dependencies and
specs) of the autocorrelation function is well documented in
Figure 8, where the effect of input data (N) on the number of
algorithm multiplications is illustrated.

5.6 Summing Up
The biomedical algorithm and SW analysis carried out so far
proves the improvements to abnormalities detection that heartbeat
analyzers can enjoy, provided that new platforms
MPSoC technology can
the direction of a full exploitation of MPSoC technology for this
purpose, covering design methodologies and HW/SW
architectures. In order to better highlight the potential
performance achievable with our architecture and design flow, we
coded and mapped the most computation-demanding ACF-based
algorithm on the MPSoC platform. With respect to this algorithm,
we illustrate HW/SW design space exploration in Section 6,
trying to move from algorithm-specific insights to general
purpose indications for platform tuning.

Figure 8. Number of multiplications for the direct ACF

method and the FFT method for our biomedical algorithm.

6. HW/SW DESIGN SPACE EXPLORATION
The on
t
e

determined the best coding solution in terms of energy, execution

, we looked for the most efficient

ne using floating
point variables and (b) one using fixed point integers [19] with an

the results for the two different code

oating point code for a large

ec
ut

io
n

tim
e

(m
s)

 first analysis was done to profile the execution of the code
he SW layer and to determine the best coding solution in terms of
nergy, execution time, and precision (in the HW layer).

Furthermore, we have explored the design space searching for the
best platform configuration for the 12-lead ECG data analysis.
Alternative system configurations have been devised for different
levels of residual battery lifetime, trading off power with accuracy.

6.1 Processor Cores
Our platform tuning effort was structured in three steps. First, we

time and precision. Second
hardware platform configuration for the application at hand. Third,
we analyzed the scalability of the platform to support future
applications featuring a more aggressive parallelism. In doing this,
we tried to remove the communication bottleneck for the given
number of processor cores, hence came up with a platform
configuration which is again computation-limited.

6.2 Code Exploration
We ran two different code implementations: (a) o

exponent of 22. Figure 9 shows
implementations from time (execution time) and energy (relative)
points of view. The ST220 processor core runs at 200MHz. We
have performed the analysis for 3, 6 and 12 leads; furthermore we
process each lead on a separate core.

We found that the precision of the results obtained with fixed point
code, by using 64 bit integer data types representation, almost
matches the results obtained with fl
number of input data traces. On the contrary, the time needed to
process data, and also the energy required, decreases up to 5 times.
This is mainly due to the fact that, like many commercial DSPs, our
processor cores do not have a dedicated floating point unit.
Therefore, floating point computations are emulated by means of a
C SW-library linked at compile time. Figure 9 also shows that even
with 12 concurrent processors, the bus is not saturated, since we
observe negligible effects on the stretching of task execution times.
In contrast, adding more processors determines a linear increase in
energy dissipation.

Ex Floating point
Fixed Point

3 Leads and DSPs

6

12

0

50

100

150

200

250

300
Re

la
tiv

e
En

er
gy

Floating point
Fixed Point

3 Leads and DSPs

6

12

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

Figure 9. Comparison between d rent code implementations
for the analysis of the 3-lead, 6-lead and 12-lead ECG. Data

analysis for each lead is computed on a separate processor core.

We then compared RM7TDMI general
purpose processor core with that of our ST220 DSP cores, in order

y the

specific biomedical application, and de-emphasize system level

iffe

Sampling frequency of input data was 250Hz. System operating
frequency is 200 MHz.

6.3 Exploration of Computation Resources
the performance of an A

to assess the increased computation efficiency provided b
chosen VLIW DSPs when put at work with the computation kernel
of our specific ACF application. In order to have a safe comparison,
we set similar dimensions of the cache memory (32KB). Execution
statistics are taken for processing one ECG-Lead at 250Hz sampling
frequency. We count execution cycles to make up for the different
clock frequencies. We adopt this single-core architecture in the first
un-optimized HW/SW co simulation iteration, since our first aim is
to investigate the computation efficiency of the two cores for our

224

interaction effects such as synchronization mismatches or
contention latency for bus access. In Figure 10, we can observe that
the ST220 DSP proves more effective both in execution time and
energy consumption, as expected. In detail, the ARM core is 9 times
slower than the ST220 in terms of execution time, and it consumes
more than twice the energy incurred by the DSP. These results can
be explained based on three considerations from the SW and HW
layers:

• The ST220 has better software development tools, which result
in a smaller executable code.

• The ST220 is a VLIW DSP core, therefore it is able to

tric turns out to be 2.9

theoretically achieve the maximum performance of 4
instructions per cycle (i.e., 1 bundle).

• A metric which is related to both previous considerations is the
static instructions per-cycle, which depends on the compiler
efficiency and on the multi-pipeline execution path of the
ST220. For our application, this me
instructions-per-bundle for ST220.

arm7TDMI ST220
0

10

20

30

40

50

60

70

80

Processing of 1 Lead in one DSP at
a sampling frequency of 250Hz

M
ill

io
ns

 o
f C

yc
le

s

 R

el
at

iv
e E

ne
rg

y

arm7TDMI ST220
0

0.5

1

1.5

2

2.5

3

Processing of 1 Lead
at 250 Sampling Frequency

Figure 10. Comparing ARM7TDMI with ST200 DSP

performances, when proces 1 Lead at 250Hz sampling
frequency.

6.4
Ba ce
we can retain a multi-DSP architecture processing a fixed point

the

ng the required 4 seconds for real-time computation of

at
iv

e E
n

sing

Required Level of Hardware Parallelism
sed on these findings HW/SW optimization is investigated, hen

coding implementation of the ACF algorithm as an effective
solution for ECG analysis. Now the problem of finding
minimum number of DSP cores to activate for the application at
hand arises.

We found that when sampling ECG data from biomedical sensors at
250 Hz, 1 DSP core is enough to meet the real-time requirements of
the ACF SW-method (12 leads analysis): 0,2 seconds are taken,
largely meeti
input data frames. Interestingly, even increasing the 1 KHz
sampling frequency, and therefore increasing the computation
workload of processor cores, 1 DSP is still able to complete the 12-
lead analysis in slightly more than 3 seconds. This leaves about 1
second left to run diagnosis algorithms online (as a partition of the
main algorithm). The increased sampling frequency led to a 15x
increment of execution time and to a 90% increase in overall system
energy. By increasing the number of processor cores in both cases,
we got good scalability results (relative to execution time) up to 6
cores, with diminishing returns with increased parallelism.
Unfortunately, the energy increases, since the power overhead of
having more cores running is not offset by execution time savings.
This was expected, for the deployed processor cores are not general
purpose processors and are therefore more power-consuming.
However, more processor cores can be used if the 1 second margin
is not satisfactory, or if the platform is augmented with dynamic

voltage and frequency scaling (DVFS) support (this is work in
progress). This latter solution would make the multiprocessor
solution efficient not only from a performance perspective, but even
from an energy viewpoint. The large slacks that are available in the
current implementation make application of DVFS very promising.

Interestingly, using multiple cores to decrease execution time and
have more margins for online diagnosis incurs a higher energy cost
for the 250 Hz case than the 1000 Hz case, as illustrated in Figure
11. This is due to the fact that the increased workload in the 1 KHz
case justifies an increased hardware parallelism.

er
gy

 R

el Re
la

tiv
e

En
er

gy

(a)

1 2 4 6 12
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5

Number of DSPs
 (b)

1

1.2

1.4

1.6

1 2 4 6 12
0

0.2

0.4

0.6

0.8

Number of DSPs

igure 11. Energy scalability for: (a) the 250Hz, and (b) the
1000 Hz case.

6.5 Scalability
O o
meet the demand for high uencies that are raised by

 analysis and by the evolution
or technology.

der a fully parallel 12-lead

h the underlying parallel communication

F

ne main advantage of chip multiprocessing lies in its capability t
er sampling freq

the need to perform higher accuracy
of state-of-the-art sens

In order to prove this, we conducted some experiments [18] and
measured the maximum sampling frequency at which our MPSoC
platform can be operated while still meeting real-time requirements
of the ACF application. We consi
application spread over 12 processors. The resulting 2.2 KHz
frequency indicates poor scalability. The reason for this is mainly
the interconnect performance, which does not scale any more. In
fact, bus busy (the number of bus busy cycles over the total
execution time) at the critical frequency of 2200Hz is almost 100%
(99.95%), i.e., the bus is fully saturated. This is due to the fact that
the amount of data being transferred across the bus increases
linearly with the sampling frequency. In order to make the platform
performance more scalable, we revert to a full-crossbar solution for
the communication architecture. The benefits are clearly observed in
Figure 12, where the maximum analyzable frequency (with respect
to real-time constraints) amounts now to 4000Hz, i.e. nearly twice
as much as the performance with a shared bus. Moreover, we
observe that average bus transaction latencies at the critical
frequency are still very close to the minimum latencies, thus
indicating that the crossbar is very lightly loaded. Another
informative metric is the bus efficiency (number of cycles during
which the bus transfers useful data over the bus busy cycles), which
amounts to 71.83%.

This very good performance is an effect of the lack of contention on
the crossbar branches, which is in turn due to the high performance
of the memory controller and to the matching of the application
traffic patterns wit
architecture. As a consequence, with a full crossbar the system
performance is no more interconnect-limited but computation-
limited. Since the computation workload of the system grows in a
polynomial manner with the sampling frequency, it rapidly
increases task execution times and reduces the available slack time

225

with respect to the deadline. We observe that the performance with
an optimized partial crossbar closely matches that of a full-crossbar
(less than 2% average difference) but with almost 3 times less
hardware resources.

Figure 12. ling Frequencies for 3 architectures: (1) shared

rtial crossbar.

This paper illustrates the potential advantages that MPSoC
chnology can bring to real-time ECG analysis. They can be

y (provided DVFS support is available,

n, Vol. 99, Issue 9,

g 1999, Houston, Texas.

d
2006.

th
n the IEEE EMBS, San

[7]
 on

), 2004.
CG)

[9]

easurement Science and

[10] ano,

ystems in memory-

07.
[11] on,

}

[12] Power
:

01-406.

[14]

/stbus.htm
gn:

t Roadmap for Research and Development, Springer,

ted Shared Memory Architecture, In Proceedings of
, Nice,

[17]

[18] Benini, L., Bechara, M.,
ltiprocessor

ical Monitoring and

6.
[19] the

(Hz)

[6] Hung, K., Zhang, Y. T., and Tai, B. Wearable Medical
Devices for Tele-Home Healthcare, In Proceedings of the 26
Annual International Conference o
Francisco, CA, USA, September 1-5, 2004.
Jun, D., and Hong-Hai, Z., Mobile ECG detector through
GPRS/Internet, In Proceedings of the 17th IEEE Symposium
Computer-Based Medical Systems (CBMS’04

[8] FreescaleTM semiconductor, Personal Electrocardiogram (E
Monitor, http://www.freescale.com/
Harland, C., Clark,T., and Prance, R. High resolution
ambulatory electrocardiographic monitoring using wrist-
mounted electric potential sensors, M
Technology, Vol. 14, 2003, 923-928.

 Medardoni, S., Ruggiero, M., Bertozzi, D., Benini, L., Str
G., Pistritto, C., Capturing the interaction of the
communication, memory and I/O subs

2200

centric industrial MPSoC platforms, In Proceedings of the
Design, Automation & Test in Europe Conference &
Exhibition, 2007 (DATE '07), Nice, France, 16-20 April 20

 Loghi, M., Angiolini, F., Bertozzi, D., Benini, L., and Zafal
R. Analyzing On-Chip Communication in a {MPSoC
Environment, In Proceedings of Design and Test in Europe

Critical samp
bus, (2) full crossbar, and (3) pa

7. CONCLUSION
Conference (DATE), February 2004, 752-757.

 Loghi, M., Poncino, M., and Benini, L. Cycle-Accurate
Analysis for Multiprocessor Systems-on-a-Chip, GLSVLSI04
Great Lake Symposium on VLSI, April 2004, 4

te
summarized as follows: larger time margin to run diagnosis
algorithms, energy efficienc
and which is left for future work in this paper), improved scalability
to challenging higher sampling frequencies and to more accurate
ECG analysis algorithms. At the same time, this work goes through
an application-specific design methodology for the ECG domain,
which envisions full system modeling accuracy, high HW/SW
parallelism exploitation, and computation and communication
parallelism. Finally, the paper illustrates, for practical case studies,
the advantages of deploying more computation-demanding analysis
algorithms for the quality of ECG analysis.

8. REFERENCES
[1] Fuster, V., Epidemic of Cardiovascular Disease and Stroke:

The Three Main Challenges, Circulatio

[13] Bona, A., Zaccaria, V., and Zafalon, R. System level power
modeling and simulation of high-end industrial network-on-
chip'', In Proceedings of Design and Test in Europe
Conference (DATE), February 2004, 318-323.

 STBus Interconnect, STMicroelectronics: STBus main
features,
www.st.com/stonline/products/technologies/soc

[15] Bouyssounouse, B., Sifakis, J., Embedded Systems Desi
The Artis
2006.

[16] Poletti, F., Poggiali, A., and Marchal, P., Flexible
Hardware/Software Support for Message Passing on a
Distribu

March 1999, 1132-1137.
[2] Jovanov, E., Gelabert, P., Adhami, R., Wheelock, B., Adams,

R., Real Time Holter Monitoring of Biomedical Signals, In
Proceedings of the DSP Technology and Education
Conference (DSPS'99), Au

Design and Test in Europe Conference (DATE’05)
France, April 16-20, 2005, 736-741.

 Aaron Segal: EKG tutorial, EMT-P, 1997,
http://www.drsegal.com/medstud/ecg/

 Al Khatib, I., Poletti, F., Bertozzi, D.,
[3] Oklobdzija, V., and Krishnamurthy, R., High-Performance

Energy-Efficient Microprocessor Design (Series on Integrate
Circuits and Systems), Springer; 1 edition August 9, Khalifeh, H., Jantsch, A., Nabiev, R., A Mu

System-on-Chip for Real-Time Biomed
[4] Fuster, V. Epidemic of Cardiovascular Disease and Stroke:

The Three Main Challenges, Circulation, Vol. 99, Issue 9,
March 1999, 1132-1137.

Analysis: Architectural Design Space Exploration, In
Proceedings of 43rd Design Automation Conference
(DAC’06), San Francisco, California, USA, July, 24-28, 200

 ARM DAI 0033A Note 33: Fixed Point Arithmetic on
ARM, September 1996.

[5] Pan, J. and Tompkins, W., A Real-Time QRS Detection
Algorithm, IEEE Transactions on Biomedical Engineering,
Vol. BME-32, No. 3, March 1985.

226

http://www.st.com/stonline/products/technologies/soc/stbus.htm
http://www.st.com/stonline/products/technologies/soc/stbus.htm
http://www.st.com/stonline/products/technologies/soc/stbus.htm

	1. INTRODUCTION
	2. BACKGROUND
	3. VIRTUAL PLATFORM
	4. MPSOC ARCHITECTURE
	

	5. SOFTWARE ARCHITECTURE
	5.1 Algorithms/ Software Description
	5.2 Pan Tompkins Algorithm
	5.3 Analysis via the ACF–Based Algorithm
	5.4 Analysis via the FFT-Based Algorithm
	5.5 MPSoC Pros for ECG Analysis
	5.6 Summing Up

	6. HW/SW DESIGN SPACE EXPLORATION
	6.1 Processor Cores
	6.2 Code Exploration
	6.3 Exploration of Computation Resources
	6.4 Required Level of Hardware Parallelism
	6.5 Scalability

	7. CONCLUSION
	8. REFERENCES

