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ABSTRACT 
High-end biomedical applications are a good target for specific-
purpose system-on-chip (SoC) implementations. Human heart 
electrocardiogram (ECG) real-time monitoring and analysis is an 
immediate example with a large potential market. Today, the lack 
of scalable hardware platforms limits real-time analysis 
capabilities of most portable ECG analyzers, and prevents the 
upgrade of analysis algorithms for better accuracy. 
Multiprocessor system-on-chip (MPSoC) technology, which is 
becoming main-stream in the domain of high-performance 
microprocessors, is becoming attractive even for power-
constrained portable applications, due to the capability to provide 
scalable computation horsepower at an affordable power cost. 
This paper illustrates one of the first comprehensive HW/SW 
exploration frameworks to fully exploit MPSoC technology to 
improve the quality of real-time ECG analysis. 

Categories and Subject Descriptors 
C.3 [Special-Purpose and Application-Based Systems]: 
Microprocessor/microcomputer applications, Real-time and 
embedded systems 

General Terms 
Performance, Design, Experimentation. 

Keywords 
Multiprocessor System-on-Chip, biomedical, electrocardiogram 
algorithms, real-time analysis, design space exploration. 

1. INTRODUCTION 
Heart disorders remain by far the leading cause of death in the 
world for both women and men of all ethnic backgrounds  [1]. 
ECG monitoring during normal activity using Holter devices has 

become a standard procedure for the detection of diseases such as 
cardiac arrhythmias  [2]. 

Unfortunately, limited processing power and tight power budgets 
of Holter devices have traditionally limited their functionality to 
data acquisition and recording of full ECG traces or abnormal 
events. Record analysis and diagnosis are performed offline at the 
medical center. Remote real-time ECG monitoring through 
dedicated telemedicine links involve transmission of a huge 
amount of life-critical data and a 100% functional always-on 
connection.  

The recent advances in silicon integration technology are paving 
the way for real-time ECG monitoring and analysis, thus allowing 
to promptly react to life-threatening heart malfunctions and to 
relax the requirements on telemedicine links. In particular, 
boosting clock frequencies of monolithic single-core 
microprocessors has clearly reached a point of diminishing returns 
and in the next few years performance gains will mainly come 
from an increase in the number of processor cores per chip. 
Although evidence of this trend is unmistakable in the domain of 
high-end microprocessors  [3],  the need to optimize performance 
per watt is likely to lead even portable devices to deploy multiple 
processor cores operating in parallel at lower clock speeds. 
Scalable chip multiprocessing is therefore emerging as a major 
design paradigm shift to provide scalable computation 
horsepower in a power efficient fashion. On one hand, this trend 
is accelerated by the stringent demands posed by increasingly 
complex software applications, but in turn will force to radically 
revise programming models. 

Heart activity monitoring and analysis provide a promising 
application domain for on-chip multiprocessor systems. It is 
electrically recorded as a set of ECG signals which can reveal a 
number of heart malfunctions  [4]. The most reliable ECG 
analysis technique is the 12-lead ECG, which requires processing 
twelve different signals sensed from the patient’s body and which 
renders a 3D view of the heartbeat. The migration towards 12-
lead ECG is facing computational challenges, especially in 
portable devices, where the need to meet tight computation and 
power budgets results in processing fewer leads. This is a 
limitation to the development of more sophisticated analysis 
algorithms, which are needed to overcome the concerns posed by 
heartbeat analysis: physiological variability of QRS complexes, 
base-line wander, muscle noise, artifacts due to electrode motion 
and patient mobility.  
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Multi-Processor System-on-Chip technology provides a disruptive 
means of overcoming the aforementioned challenges. It consists 
of an energy-efficient and scalable hardware/software (HW/SW) 
platform which can meet computation demands at an affordable 
power cost. In this paper, we introduce a novel MPSoC 
architecture for ECG analysis which improves upon state-of-the-
art mostly for its capability to perform 12-lead real-time analyses 
of input data with high sampling frequencies, leveraging the 
computation horsepower and the functional flexibility provided 
by many concurrent VLIW DSPs. This biomedical chip builds 
upon some of the most advanced industrial components for 
MPSoC design (multi-issue VLIW DSPs, system interconnect 
from STMicroelectronics, and commercial off-the-shelf 
biomedical sensors), which have been composed in a scalable and 
flexible platform. Therefore, we have ensured its reusability for 
future generations of ECG analysis algorithms and its suitability 
for porting of other biomedical applications, in particular those 
collecting input data from wired/wireless sensor networks. 

The specific application domain addressed in this work calls for 
specific design methodologies for which full system modeling 
accuracy is critical, since the resulting architecture needs to be 
highly predictable. Uncontrolled run-time fluctuations of the 
system might lead to incorrect detection of life-threatening events 
in the heartbeat traces. For this purpose, the most daunting 
challenge for system designers perhaps consists of accurately 
predicting the impact of the communication and I/O architectures 
on system performance. Even more critical is the ability to 
capture the interaction between these two sub-systems.  

Finally, our architecture allows to compare existing analysis 
algorithms and to develop new ones, while keeping low-level 
implications of software decisions under control through the 
support of a virtual platform. In this paper, we illustrate the pros 
and cons of deploying more complex analysis techniques than the 
traditional Pan-Tompkins algorithm  [5], from a comprehensive 
hardware and software viewpoint. 

2. BACKGROUND 
The biomedical application we choose for our design is the ECG, 
which is a diagnosis tool used by medical doctors and nurses to 
check the status of the heart. For the purpose of designing an 
algorithm and code (hence SW), understanding ECG signals is 
firstly done. Each ECG signal is an electrical recording of the 
heart activity taken from many sensors connected on the patient’s 
body. Each ECG signal comes from a connection that is referred 
to- in the biomedical field- as a “lead”. The more the leads the 
larger the information set of data we can get for the heart 
activities. One of the latest techniques for monitoring heart 
activity is the 12-lead ECG, which relies on nine sensors placed 
on the patient’s body (Figure 1-a). Before the 12 lead technique, 
physicians used only three sensors (RA, LA, and LL as shown in 
Figure 1-a) in a method known as the 3-lead ECG, which suffers 
from the lack of information about the whole of the heart. The 12-
lead ECG technique, offers a view of the heart in its three 
dimensional form and can thus detect many more abnormalities. 
The cost for this increased amount of information is higher 
number of computations, more sophisticated monitoring and 
analysis of large data sets, and stringent requirements on the 
underlying portable hardware platform. 

Figure 1-b shows a typical ECG signal for a healthy heart. The 
important peaks on the ECG signal are : P, Q, R, S, and T, each of 

which refers to some heart activity. Figure 1-c shows real 
recorded signals from 12-leads. Many healthcare centers, till now, 
still print these signals on an eyeballing paper; therefore, they 
may be confusing for the doctor’s eyes. On the other hand, when 
using digital recording and filtering we can determine the peaks 
more accurately especially that digital computing becomes 
applicable. 

 

 

 

 
 

Figure 1. 12 lead ECG: (a) Sensors on a human body. (b) The 
QRS complex. (c) Complete 12 lead readout. 
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Most of the available solutions consist of real-time storage of 
acquired data and of later processing via single computers or 
networks of parallel machines. In addition, real-time analysis is 
limited to deciding only whether the heartbeat is normal or 
abnormal. In some cases, monitored heartbeat activity is 
transmitted to a local machine  [6] or to a remote healthcare center 
 [7] for faster reaction to abnormal events. Alternatively, more 
computation efficiency of portable devices for online analysis 
comes at the cost of reduced patient mobility. Moreover, the 
commercial solutions under study  [8] do not look into the 
parallelization of the ECG analysis into multiple cores.  

A point worth mentioning from an implementation viewpoint is 
the performance of biomedical sensors.  Biomedical sensors today 
are built for longer lifetimes than the usual hourly based ones, and 
higher sampling frequencies (up to 10 KHz for ECG). Moreover, 
an unfortunate mismatch exists between sensors nowadays and 
the state-of-the-art heart analysis machines  [9], which cannot  
keep up with the data acquisition rate, and are usually wall-
plugged. The high computation capability made available by the 
MPSoC technology can potentially remove this bottleneck, and 
since MPSoC is relatively smaller in size than wall plugged 
machines, it will add the dimension of mobility for patients. 

3. VIRTUAL PLATFORM 
When we view the target application domain in relation to the 
candidate hardware platforms for it, the following requirements 
become evident:  

 Life-critical application. Contrary to other domains, such as 
multimedia and entertainment, we need to come up with 
accurate system component models already in the early design 
stages, so to limit the degrees of execution unpredictability to 
the minimum. Therefore, transaction-level modelling did not 
seem to us as the best option, but we rather focused on cycle-
accurate modelling and simulation. 

 High task level parallelism. Each individual lead signal can 
be potentially processed in parallel with minimum inter-task 
interaction. Only in the end of the data processing phase, such 
interaction is eventually needed by diagnosis tasks to reveal 
heartbeat abnormalities and to analyze them. Therefore, a 
parallel hardware platform is well suited for this kind of 
algorithms. 

 Communication bandwidth requirements. Regardless of the 
specific ECG analysis algorithm, large amounts of data have to 
be stored in the system memory to keep the records of 
heartbeat activity over a long observation window. This 
involves a continuous flow of data towards the off-chip 
memory. Moreover, incoming new sampled data to be 
processed must be considered as well in order to assess the 
communication bandwidth requirements. From a hardware 
viewpoint, there are two important implications. On one hand, 
processor core-to-off-chip memory communication is 
becoming a major bottleneck in modern MPSoC platforms. 
Optimization of memory access of multiple on-chip computing 
cores to the finite bandwidth of off-chip memory is key point 
to the success of parallel MPSoC architectures. This calls for 
an incremental effort for accurate modelling off-chip memory 
controllers, including their optimization engines and 
interfacing mechanisms. On the other hand, even admitting 
unlimited I/O bandwidth, the communication architecture turns 

out to be the most critical component for system performance. 
In the context of parallel MPSoCs, such performance is in fact 
not computation but rather communication limited. It is, 
therefore, necessary to accurately model this component (we 
chose cycle- and signal-accuracy) in order to assess the 
scalability of the hardware platform at hand, as will be 
discussed later on in the paper. Finally, having independently 
optimized communication and I/O architectures might be 
misleading, since the interaction between specific features of 
the communication protocol and a many-to-one traffic pattern 
might degrade ideal performance of both components  [10]. 
Finally, optimizations at the memory controller might make 
this interaction unpredictable unless an accurate virtual 
platform is set up. 

 

 
Figure 2. Methodology used for high-end biomedical 

application HW/SW co-design (applied for ECG analysis). 
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 Computation and communication parallelism. Storage of 
processing results and the next computation round should be 
handled in parallel for efficient execution. Therefore, the 
deployment of DMA engines is highly attractive in this case. 
However, two conflicting requirements should be taken into 
account. On one hand, storage data size needs to be kept to the 
minimum to extend the observation window (given the finite 
memory size), while on the other hand  sufficiently long data 
transfers are required to amortize the cost of DMA transfer 
programming. 

In a step further to implement the HW/SW co-design based on the 
above analysis, we are pushed to found a guiding (flow of logical 
steps) methodology that we refer to in order to keep on optimizing 
the life-critical biomedical algorithm, SW and HW. This type of 
methodology was induced throughout the work of the design and 
implementation, which we present in a flow of steps and their 
inter-relations for HW/SW co-design for high-end biomedical 
applications. This methodology is summarized in the flowchart 
presented in Figure 2, where we divide the work into three main 
layers: biomedical layer, SW layer, and HW layer. The starting 
point is always the right choice of an application (problem) that 
has medical significance (heart diagnosis via ECG analysis in our 
case). In the first layer, the biomedical specifications for the 
problem must be set pedantically in order to design an algorithm 
that suits the life-critical application as discussed in the first point 
of the aforementioned analysis of this section. At this stage and at 
every stage, we need to keep in mind and thus in the design flow 
the relationship with and the effects on other layers and stages. 
Hence, we find a major need to look at whether the biomedical 
problem can be partitioned (e.g. period analysis and peak analysis 
for ECG signals). This defines one sort of parallelism that is 
reflected in the SW code in a later stage. Then the SW design 
requires defining parameters needed to respect in the analysis 
(e.g. real-time limits in seconds in our case and also power 
consumption as the device should be wearable and self powered). 
After defining these specs, a look at the algorithm from a SW 
parallelization viewpoint is essential since it shall affect both time 
and power consumption spec results in the simulation stage 
further in the HW layer. Once the parallelism is defined, the 
parallelized code is generated. A note worth mentioning is that it 
is possible to parallelize some loops without the need to 
parallelise the biomedical algorithm itself to minimize time-
consumption. At this stage we have a block of functional code but 
not yet optimized to best suit the HW computation and 
communication requirements. This code and its dependencies 
(e.g. the data chunks and their specs as number of samples and 
length of recording) inspire the HW designer to define the HW 
needs for accurate modelling. The result is an un-optimized HW 
with interface mechanisms that is ready to load the SW to go 
further to the HW/SW co-simulation stage. Since this is a life-
critical application, it calls upon cycle and signal accurate co-
simulation. The results of the co-simulation are the major 
outcome to test and compare with specs in above stages in higher 
layers. For a life-critical application, like real-time ECG analysis, 
a step back to compare with the high layer (biomedical) standards 
and specs is a must.  This may affect the optimization of the 
algorithm, SW, and HW, respectively. When the HW/SW co-
simulation results are pedantically investigated and accepted, we 
get the optimised HW and its relative SW in a stage guiding the 
optimized physical solution. 

Based on all the above analyses, we came up with a virtual 
platform with mixed modelling abstractions so to trade-off 
accuracy with simulation time. The MPSIM modelling and 
simulation environment  [11] was chosen as the starting point for 
an intensive extension and customization effort for the target 
application domain and to meet its requirements. 

We chose SystemC as the reference description language and 
simulation engine, due to its ability to perform efficient HW/SW 
co-design. The entire on-chip HW/SW architecture was modelled 
with clock-cycle accuracy extended to the chip boundaries. While 
retaining this level of accuracy, processor cores were modelled at 
the level of their instruction set, while only the on-chip bus was 
modelled with signal accuracy due to its criticality. As an effect, 
we were able to achieve simulation speeds up to 200 Kcycles/sec 
on a P4@3.5GHz. 

The virtual platform was augmented to support non-functional 
metrics, such as power dissipation and breakdown. Industry-
provided and technology-homogenous 0.13µm power models of 
all system components were deployed for power analysis 
 [12] [13].  

4. MPSOC ARCHITECTURE 
In order to process filtered ECG data in real-time, we choose to 
deploy a parallel MPSoC architecture.  The key point of these 
systems is to break up functions into parallel operations, thus 
speeding up execution and allowing individual cores to run at a 
lower frequency with respect to traditional monolithic processor 
cores. Technology today allows the integration of tens of cores 
onto the same silicon die, and we therefore designed a parallel 
system with up to 13 masters and 16 slaves Figure 3.  Since we 
are targeting a platform of practical interest, we choose advanced 
industrial components  [12]. The processing elements are multi-
issue VLIW DSP cores from STMicroelectronics, featuring 32kB 
instruction and data caches and with maximum clock speed of 
400MHz. These cores have 4 execution units and rely on a highly 
optimized cross-compiler in order to exploit the parallelism. They 
try to combine the flexibility of programmable cores and the 
computation efficiency of DSP cores. This way, the platform can 
be used for applications other than the 12-lead ECG, so to make it 
cost-effective. Each processor core has its own private memory 
(up to 512KB), which is accessible through the bus, and can 
access an on-chip shared memory (8KB are enough for our target 
application) for storing computation results, prior to swapping to 
the off-chip memory. Other relevant slave components are a 
semaphore slave, implementing the test-and-set operation in 
hardware and used for synchronization purposes by the processors 
or for accessing critical sections, and an interrupt slave, which 
distributes interrupt signals to the processors. Interrupts to a 
certain processor are generated by writing to a specific location 
mapped to this slave core. The STBus interconnect from 
STMicroelectronics  [14] was instantiated as the system 
communication backbone. STBus can be instantiated as both: 
shared-bus or crossbar (partial or full), thus allowing efficient 
interconnect design and providing flexible support for design 
space exploration and for platform scalability. In our first 
implementation, we target a shared bus to reduce system 
complexity (Figure 3) and assess whether application 
requirements can already be met or not with this configuration. 
We then explore also a crossbar-based system  (Figure 4). 

220



The inherent increased parallelism exposed by a crossbar 
topology allows decreasing contention on shared communication 
resources, thus reducing overall execution time.  In our 
implementation, only the instantiation of a 3x6 crossbar was 
interesting for the experiments. 

 

 
Figure 3. Single bus architecture with STBus interconnect. 

 

 
Figure 4. Crossbar architecture with STBus interconnect . 
 

We put a private memory on each branch of the crossbar, which 
can be accessed by the associated processor core or by a DMA 
engine for off-chip to on-chip data transfers. Finally, we have a 
critical component for system performance which is the memory 
controller. It allows efficient access to the external 64MB 
SDRAM off-chip memory. A DMA engine is embedded in the 
memory controller tile, featuring multiple programming channels. 
The controller tile has two ports on the system interconnect, one 
slave port for control and one master port for data transfers. The 
overall controller is optimized to perform long DMA-driven data 
transfers and can reach the maximum speed of 600MB/s. 
Embedding the DMA engine in the controller has the additional 
benefit of minimizing overall bus traffic with respect to traditional 
standalone solutions. Our implementation is particularly suitable 
for I/O intensive applications such as the one we are targeting in 
this work.  

Each processor core programs the DMA engine to periodically 
transfer input data chunks onto their private on-chip memories. 
Moved data corresponds to 5 seconds of data acquisition at the 
sensors: 10kB at 1000Hz sampling frequency, transferred on 
average in 319279 clock cycles (DMA programming plus actual 
data transfer) on a shared bus with 12 processors. The consumed 

bus bandwidth is about 6Mbyte/sec, which is negligible for an 
STBus interconnect, whose maximum theoretical bandwidth with 
1 wait state memories exceeds 400Mbyte/sec. Then each 
processor performs computation independently, and accesses its 
own private memory for cache line refills. Different solutions can 
be explored, such as processing more leads onto the same 
processor, thus impacting the final execution time. Output data, 
amounting to 64 byte, are written to the on-chip shared memory, 
but their contribution to the consumed bus bandwidth is 
negligible. In principle, when the shared memory is filled beyond 
a certain level, its content can be swapped by the DMA engine to 
the off-chip SDRAM, where the records of 8 hours of 
computation can be stored. 

In the above description, weOff-Chip 
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configurations. In fact, fewer cores can be easily instantiated if 
needed but this is a fist un-optimized HW design as discussed in 
Section 3. This architectural template is very scalable and allows 
for further future increase in the number of processors. This will 
allow to run in real time even more accurate ECG analyses for the 
highest sampling frequency available in sensors. 

STBus 

5. SOFTWARE ARCHITECTURE
The software architecture is fully distributed and aDSP 1 
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RTEMS operating system  [15] runs on top of each processor 
core. Kernel images reside in the private memory of each core. A 
middleware support for inter-processor communication was 
ported to the system, and a special purpose library was used for 
DMA programming  [16]. Next, we will devote our attention the 
algorithm for ECG monitoring and analysis. Off-Chip 

SDRAM 

5.1 Algorithms/ Software Description 
A few algorithms have been developed for detection of heart 

 a basic 

of nowadays and long-lived 

solutions. An overview of the three algorithms follows. 

abnormalities. Most of the solutions available try to locate the 
QRS interval (see Figure 1-b) in order to estimate the heart period 
by calculating the distance of two consecutive R peaks. In spite of 
their lightweight complexity, such algorithms do not provide 
enough confidence in analyzing highly irregular heartbeats, 
associated with specific patients and/or arrhythmias. Moreover, 
even when they work fine in defining the QRS interval, the other 
peaks (which represent other heart activities) will still be obscure 
for the doctors/nurses looking at the algorithm results.  

At the biomedical layer, a choice for the algorithm is
block for the success. We start looking at the most widely used 
algorithm for heart beat detection in healthcare centers is the Pan 
Tompkins algorithm  [5]. The Pan Tompkins solution is built to 
detect the QRS interval only, and its low complexity makes it 
suitable for porting on a large number of low-end portable 
devices. The disadvantages are of course many, e.g. lack of 100% 
success, confusing peaks and thus diseases, lack of full analysis of 
all heart activities, and oftentimes a lack of sufficient informative 
content provided to medical doctors. 

In a step to overcome the limitations 
solutions, and relying on the performance accelerations 
guaranteed by MPSoC platforms, we came up with more 
computation demanding analysis (biomedical) algorithms than the 
traditional QRS detection technique, and pointed out their pros 
and cons from a comprehensive hardware-software 
implementation viewpoint. In what follows we refer to our two 
biomedical algorithms as the: ACF-based and FFT-based 
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5.2 Pan Tompkins Algorithm 
The Pan-Tompkins algorithm detects only the QRS co

 [17]
mplex of 

the ECG signal via three detection steps:  linear digital filtering, 
 rule algorithms. The 

, and S peaks and waves are needed in the Pan 

ional ECG analysis starts from a reference point 

the 

non-linear transformations, and decision
technique consists of an analog filter, a band-pass filtering stage, 
derivative, squaring, and windowing stage. The algorithm was 
originally made to run on a Z80 (Zilog) or an NSC800 (National 
Semiconductor) microprocessor. Hence, it runs relatively fast in 
today’s platforms. However, it may fail in giving correct results. 
The processing is done in integer arithmetic so that the algorithm 
operates in real-time  [5] without consuming significant power.  
The algorithm detects QRS complexes using slope, amplitude and 
width information. 

First, an analog filter is used to band limit the ECG signal at 
50Hz. Then, an A/D converter samples the signal at Fs=200Hz. 
Since only the Q, R
Tompkins algorithm, then there is no harm in filtering the P and T 
waves. Therefore, after the A/D conversion, the signal passes 
through band-pass filter and high-pass filter stages to remove 
high-frequency noise, P-waves, T-waves, and other artifacts. The 
resultant signal is then passed through a local peak detection 
algorithm which identifies and marks all the peaks found in the 
signal. This algorithm uses a set of thresholds in order to be able 
to select candidate QRS complexes. These thresholds are adaptive 
and thus are modified based on the amplitude of the new peak 
found. However, the first thresholds and the relations between 
them are defined by the SW implementer, i.e. suffer from human 
subjectivity and depend on the SW developer’s experience in 
QRS complexes, which usually is not very thorough. The filtered 
signal is then sent to the non-linear transformation stage, where 
the derivative of the signal is calculated. The derivative contains 
information about the slope of the QRS. The squaring process 
intensifies the slope of the frequency response of the 
differentiated signal to help detect false peaks like the T-waves. A 
moving window integrator obtains information about the width of 
the QRS complex. This result is then passed through the same 
local peak detection and threshold setting algorithms as the 
original band-pass filtered signal to identify QRS slope 
information. All the candidate QRS peaks found in both filtered 
and transformed waveforms are then compared. Only those 
appearing in both processed waveforms are classified to be valid 
QRS complexes. The output is a stream of pulses indicating the 
locations of the QRS complexes. Such an algorithm not only 
relies on slope information, but also on the amplitude and width 
information of the QRS complex. In the Pan Tompkins algorithm, 
the human factor plays a role in the choice of thresholds and the 
relations therein. 

5.3 Analysis via the ACF–Based Algorithm  
In principle, tradit
in the heart cycle (the R-peak is commonly used as the reference 
point). As a consequence, accurate detection of the R-peak of 
QRS complex is a prerequisite for the reliable functionality of 
ECG analyzers  [12]. However, as an effect of ECG signal high 
variability, R-peak detection might be inaccurate. For instance, in 
the R on T phenomena, a T peak may be wrongly taken for an R 
peak, and then the R-T interval will be considered as an R-R 
interval, and the period will be wrong. Hence, other QRS 
parameters will be consequently inaccurate. As a result, 
traditional techniques may fail in detecting some serious heart 
disorders such as the R-on-T phenomenon (associated with 

premature ventricular complexes) . Our approach takes a 
different perspective: instead of looking for the R-peaks and then 
detecting the period, we detect the period first (via 
autocorrelation) and then look for the peaks. We use an 
autocorrelation function to calculate the heartbeat period without 
looking for peaks. Then, we can restrict our analysis to a time 
window equal to the period and detect all peaks. Although 
potentially more accurate, our algorithm incurs a higher 
computational complexity: 3.5 million multiplications, which 
have been reduced to 1.75 million through a number of code (SW-
layer) optimizations. 

 

 

 

 
Figure 5. ACF-based algorithm for Heart period analysis. 

 

The er 
f Lags (L) to minimize the computation for our specific 
plication as discussed below.  

where, Ry is the autocorrelation function, y is the filtered signal 
under study, n is the index of the signal y, and k is the numbe
lags of the autocorrelation (L has ance 

 
of the derivative can give the period as shown in Figure 5. The 

(b) 

(c) 

 autocorrelation we use as shown in (1) has a certain numb
o
ap

[ ] [ ] [ ]
n

R k y n y n ky
n

=∞
= × −∑
=−∞

 (1) 

r of 
 an effect on the perform

due to the high number of multiplications). We run the 
experiments for n = 1250, 5000 and 50,000 relative to the 
sampling frequencies of 250, 1000, and 10,000Hz, respectively.  

In order to minimize errors and execution time we use the 
derivative of the ECG filtered signal since if a function is periodic 
then its derivative is periodic. Hence, the autocorrelation function

(a) 
R 

P

Q 

R 

T

S

R’ 

U 
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advantage of taking the derivative, and thus adding some 
overhead to the code, is that the fluctuations taking place in the 
signal and especially those around the peaks would be reduced to 
a near-zero-value. In order to be able to analyze ECG data in real-
time and to be reactive in transmitting alarm signals to healthcare 
centers (in less than 1 minute), a minimum amount of acquired 
data has to be processed at a time without losing the validity of 
the results. For the heart beat period, we need at least 4 seconds of 
ECG data in order for the ACF to give correct results  [18].  

Our proposed ECG-analysis algorithm was conceived to be 
parallel and hence scalable from the ground up, so to be able to 
extend it to any number of leads for analysis for future 
generations of biomedical devices. 

5.4 Analysis via the FFT-Based Algorithm 
At this step, we are still investigating algorithm optimization 
before going to the HW design. Looking for a less demanding 

the 

hm will be now highlighted. 

orithms, and 

 
Figure 6.  Period detection using the ACF-based direct 

method to calculate the autocorrelation coefficients for a 
patient. 

t 

 

analysis method from a computation viewpoint, while still 
retaining higher accuracy than the Pan Tompkins, we revert to 
FFT algorithm to minimize the number of computations needed to 
estimate the autocorrelation coefficients. In our implementation of 
the FFT algorithm, data are read from the ECG signal with a 
specified sampling frequency into a buffer with a limited buffer 
capacity of 4 seconds. Then, we differentiate the resultant signal 
so as to enhance its shape. Only the first quarter of the 
differentiated samples will be used as an input into the FFT block. 
This technique allows us to save time and unnecessary 
calculations while still getting to similar results. The 
differentiated data need to be reordered so that they are correctly 
used as an input to the FFT block.  We perform decimal to binary 
conversion of the indices of the elements in this array, then 
reverse the bits of the binary representation of those indices, then 
perform binary to decimal conversion of the result to get the 
reordered indices. By correctly applying the butterfly method of 
the FFT and using the twiddle factors at every stage, FFT data are 
calculated. The algorithm uses two ‘For’ loops, the outer loop 
loops log (N/4) times (which represents the number of stages in 
the butterfly diagram), where N is the number of samples 
increased to the nearest power-of-2 value. The other loop loops 
N/4 samples, since at every stage; N/4 FFT values are calculated. 
We finally get the FFT data in the last stage. Although the FFT-
based algorithm results are faster to compute, we observe a loss in 
the quality of the output autocorrelation plot in the end, i.e. the 
autocorrelation function coefficients (which is the final plot in 
both FFT-based and ACF-based algorithms) are not as accurate as 
the ones described in our ACF-based Algorithm, hence we win on 
computations and lose on accuracy. 

5.5 MPSoC Pros for ECG Analysis 
The distinctive features of the above algorithms with respect to 
the traditional Pan Tompkins algorit
We aim at proving user-perceived practical advantages of 
deploying more computation-demanding alg
therefore the advantages that MPSoC technology can bring to the 
ECG domain in view of its scalable and energy efficient 
computation horsepower. A detailed comparison between analysis 
algorithms is beyond the scope of this paper.  

The biomedical advantages that both our algorithms (ACF-based 
and FFT-based) have with respect to traditional solutions are 
mainly: (1) eliminating failure in calculating the heart period 

since we use a time based autocorrelation instead of using human-
chosen thresholds, (2) ability to learn about all the heart activities 
since even if the Pan Tompkins gave a good detection, it already 
filters out the P and T waves, (3) ability to detect more diseases, 
(4) increased accuracy by increased sampling frequency, and (5) 
better scalability and parallelism.  

Hence, both the ACF-based algorithm and the FFT-based 
algorithm share the aforementioned advantages over the Pan 
Tompkins; however, we also can look at the medical implications 
when comparing the ACF-based algorithm with the FFT-based 
algorithm. In this respect, the FFT-based algorithm gives a faster 
result than the ACF-based algorithm, but it may not be as 
accurate, since the peak of the autocorrelation coefficients is 
surrounded by many similar peaks which are shown in Figure 6 
and Figure 7.  

 

Easier to detect 
the largest peak 

 

 
Figure 7.  Period detection using FFT-based algorithm to 

calculate the autocorrelation coefficients for the same patien
in Figure 6. 

Close peaks, making 
decision very difficult 
for the SW to detect 
the largest peak 
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Pe d 

(same period) as with the  to calculate the ACF but 
e had a little difference between the data resulting from the two 

or our specific 

leveraging 
be deployed. Our work is a first step in 

rforming this same operation on different cases, we deduce
that the peaks resulting from the FFT method yielded same results 

direct method
w
methods; the second peaks for the FFT-based method (Figure 7) 
were lower in amplitude relative to the maximum at the origin 
than those for the direct method (Figure 6), which will require 
more difficult thresholds choice for the FFT case. 

From a computation viewpoint, both the ACF direct method and 
the FFT method are clearly more demanding with respect to the 
Pan-Tompkins. The relative decrease of complexity that the FFT 
method is able to provide in the computation f
algorithm and SW design (in SW layer, i.e. dependencies and 
specs) of the autocorrelation function is well documented in 
Figure 8, where the effect of input data (N) on the number of 
algorithm multiplications is illustrated. 

5.6 Summing Up 
The biomedical algorithm and SW analysis carried out so far 
proves the improvements to abnormalities detection that heartbeat 
analyzers can enjoy, provided that new platforms 
MPSoC technology can 
the direction of a full exploitation of MPSoC technology for this 
purpose, covering design methodologies and HW/SW 
architectures. In order to better highlight the potential 
performance achievable with our architecture and design flow, we 
coded and mapped the most computation-demanding ACF-based 
algorithm on the MPSoC platform. With respect to this algorithm, 
we illustrate HW/SW design space exploration in Section 6, 
trying to move from algorithm-specific insights to general 
purpose indications for platform tuning. 

 

 
Figure 8. Number of multiplications for the direct ACF 

method  and the FFT method for our biomedical algorithm. 

6. HW/SW DESIGN SPACE EXPLORATION 
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 first analysis was done to profile the execution of the code 
he SW layer and to determine the best coding solution in terms of
nergy, execution time, and precision (in the HW layer).

Furthermore, we have explored the design space searching for the
best platform configuration for the 12-lead ECG data analysis. 
Alternative system configurations have been devised for different 
levels of residual battery lifetime, trading off power with accuracy. 

6.1 Processor Cores 
Our platform tuning effort was structured in three steps. First, we

time and precision. Second
hardware platform configuration for the application at hand. Third, 
we analyzed the scalability of the platform to support future 
applications featuring a more aggressive parallelism. In doing this, 
we tried to remove the communication bottleneck for the given 
number of processor cores, hence came up with a platform 
configuration which is again computation-limited. 

6.2 Code Exploration 
We ran two different code implementations: (a) o

exponent of 22. Figure 9 shows 
implementations from time (execution time) and energy (relative) 
points of view. The ST220 processor core runs at 200MHz. We 
have performed the analysis for 3, 6 and 12 leads; furthermore we 
process each lead on a separate core. 

We found that the precision of the results obtained with fixed point 
code, by using 64 bit integer data types representation, almost 
matches the results obtained with fl
number of input data traces. On the contrary, the time needed to 
process data, and also the energy required, decreases up to 5 times. 
This is mainly due to the fact that, like many commercial DSPs, our 
processor cores do not have a dedicated floating point unit. 
Therefore, floating point computations are emulated by means of a 
C SW-library linked at compile time. Figure 9 also shows that even 
with 12 concurrent processors, the bus is not saturated, since we 
observe negligible effects on the stretching of task execution times. 
In contrast, adding more processors determines a linear increase in 
energy dissipation. 
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Figure 9. Comparison between d rent code implementations 
for the analysis of the 3-lead, 6-lead and 12-lead ECG. Data 

analysis for each lead is computed on a separate processor core. 

We then compared RM7TDMI general 
purpose processor core with that of our ST220 DSP cores, in order 

y the 

specific biomedical application, and de-emphasize system level 

iffe

Sampling frequency of input data was 250Hz. System operating 
frequency is 200 MHz. 

6.3 Exploration of Computation Resources 
the performance of an A

to assess the increased computation efficiency provided b
chosen VLIW DSPs when put at work with the computation kernel 
of our specific ACF application. In order to have a safe comparison, 
we set similar dimensions of the cache memory (32KB). Execution 
statistics are taken for processing one ECG-Lead at 250Hz sampling 
frequency. We count execution cycles to make up for the different 
clock frequencies. We adopt this single-core architecture in the first 
un-optimized HW/SW co simulation iteration, since our first aim is 
to investigate the computation efficiency of the two cores for our 
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interaction effects such as synchronization mismatches or 
contention latency for bus access. In Figure 10, we can observe that 
the ST220 DSP proves more effective both in execution time and 
energy consumption, as expected. In detail, the ARM core is 9 times 
slower than the ST220 in terms of execution time, and it consumes 
more than twice the energy incurred by the DSP. These results can 
be explained based on three considerations from the SW and HW 
layers:  

• The ST220 has better software development tools, which result 
in a smaller executable code.  

• The ST220 is a VLIW DSP core, therefore it is able to 

tric turns out to be 2.9 

theoretically achieve the maximum performance of 4 
instructions per cycle (i.e., 1 bundle). 

• A metric which is related to both previous considerations is the 
static instructions per-cycle, which depends on the compiler 
efficiency and on the multi-pipeline execution path of the 
ST220. For our application, this me
instructions-per-bundle for ST220. 
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Figure 10. Comparing ARM7TDMI with ST200 DSP 

performances, when proces  1 Lead at 250Hz sampling 
frequency.

6.4 
Ba ce 
we can retain a multi-DSP architecture processing a fixed point 
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ng the required 4 seconds for real-time computation of 
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Required Level of Hardware Parallelism 
sed on these findings HW/SW optimization is investigated, hen

coding implementation of the ACF algorithm as an effective 
solution for ECG analysis. Now the problem of finding 
minimum number of DSP cores to activate for the application at 
hand arises. 

We found that when sampling ECG data from biomedical sensors at 
250 Hz, 1 DSP core is enough to meet the real-time requirements of 
the ACF SW-method (12 leads analysis): 0,2 seconds are taken, 
largely meeti
input data frames. Interestingly, even increasing the 1 KHz 
sampling frequency, and therefore increasing the computation 
workload of processor cores, 1 DSP is still able to complete the 12-
lead analysis in slightly more than 3 seconds. This leaves about 1 
second left to run diagnosis algorithms online (as a partition of the 
main algorithm). The increased sampling frequency led to a 15x 
increment of execution time and to a 90% increase in overall system 
energy. By increasing the number of processor cores in both cases, 
we got good scalability results (relative to execution time) up to 6 
cores, with diminishing returns with increased parallelism. 
Unfortunately, the energy increases, since the power overhead of 
having more cores running is not offset by execution time savings. 
This was expected, for the deployed processor cores are not general 
purpose processors and are therefore more power-consuming. 
However, more processor cores can be used if the 1 second margin 
is not satisfactory, or if the platform is augmented with dynamic 

voltage and frequency scaling (DVFS) support (this is work in 
progress). This latter solution would make the multiprocessor 
solution efficient not only from a performance perspective, but even 
from an energy viewpoint. The large slacks that are available in the 
current implementation make application of DVFS very promising. 

Interestingly, using multiple cores to decrease execution time and 
have more margins for online diagnosis incurs a higher energy cost 
for the 250 Hz case than the 1000 Hz case, as illustrated in Figure 
11. This is due to the fact that the increased workload in the 1 KHz
case justifies an increased hardware parallelism. 

er
gy

 
   

   
 R

el Re
la

tiv
e

En
er

gy

(a)

1 2 4 6 12
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5

Number of DSPs
 (b) 

1

1.2

1.4

1.6

1 2 4 6 12
0

0.2

0.4

0.6

0.8

Number of DSPs
 

igure 11.  Energy scalability for: (a) the 250Hz, and (b) the 
1000 Hz case. 

6.5 Scalability 
O o 
meet the demand for high uencies that are raised by 

 analysis and by the evolution 
or technology. 

der a fully parallel 12-lead 

h the underlying parallel communication 

F

ne main advantage of chip multiprocessing lies in its capability t
er sampling freq

the need to perform higher accuracy
of state-of-the-art sens

In order to prove this, we conducted some experiments  [18] and 
measured the maximum sampling frequency at which our MPSoC 
platform can be operated while still meeting real-time requirements 
of the ACF application. We consi
application spread over 12 processors. The resulting 2.2 KHz 
frequency indicates poor scalability. The reason for this is mainly 
the interconnect performance, which does not scale any more. In 
fact, bus busy (the number of bus busy cycles over the total 
execution time) at the critical frequency of 2200Hz is almost 100% 
(99.95%), i.e., the bus is fully saturated. This is due to the fact that 
the amount of data being transferred across the bus increases 
linearly with the sampling frequency. In order to make the platform 
performance more scalable, we revert to a full-crossbar solution for 
the communication architecture. The benefits are clearly observed in 
Figure 12, where the maximum analyzable frequency (with respect 
to real-time constraints) amounts now to 4000Hz, i.e. nearly twice 
as much as the performance with a shared bus. Moreover, we 
observe that average bus transaction latencies at the critical 
frequency are still very close to the minimum latencies, thus 
indicating that the crossbar is very lightly loaded. Another 
informative metric is the bus efficiency (number of cycles during 
which the bus transfers useful data over the bus busy cycles), which 
amounts to 71.83%. 

This very good performance is an effect of the lack of contention on 
the crossbar branches, which is in turn due to the high performance 
of the memory controller and to the matching of the application 
traffic patterns wit
architecture. As a consequence, with a full crossbar the system 
performance is no more interconnect-limited but computation-
limited. Since the computation workload of the system grows in a 
polynomial manner with the sampling frequency, it rapidly 
increases task execution times and reduces the available slack time 
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with respect to the deadline. We observe that the performance with 
an optimized partial crossbar closely matches that of a full-crossbar 
(less than 2% average difference) but with almost 3 times less 
hardware resources.  

 

 
Figure 12. ling Frequencies for 3 architectures: (1) shared 

rtial crossbar. 

 

This paper illustrates the potential advantages that MPSoC 
chnology can bring to real-time ECG analysis. They can be 
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summarized as follows: larger time margin to run diagnosis 
algorithms, energy efficienc
and which is left for future work in this paper), improved scalability 
to challenging higher sampling frequencies and to more accurate 
ECG analysis algorithms. At the same time, this work goes through 
an application-specific design methodology for the ECG domain, 
which envisions full system modeling accuracy, high HW/SW 
parallelism exploitation, and computation and communication 
parallelism. Finally, the paper illustrates, for practical case studies, 
the advantages of deploying more computation-demanding analysis 
algorithms for the quality of ECG analysis. 
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