
Performance Modeling for Early Analysis
 of Multi-Core Systems

Reinaldo Bergamaschi1, Indira Nair1, Gero Dittmann1,
Hiren Patel3, Geert Janssen1, Nagu Dhanwada4, Alper Buyuktosunoglu1,

Emrah Acar5, Gi-Joon Nam5, Guoling Han2, Dorothy Kucar1, Pradip Bose1, John Darringer1
1 IBM T. J. Watson Research Center, Yorktown Heights, NY 10598; 2 Univ. of California, Los Angeles, CA 90095;

3 Virginia Tech, Blacksburg, VA 24060; 4 IBM EDA, East Fishkill, NY 12533, 5 IBM Austin Research, Austin, TX 78758
berga@us.ibm.com

ABSTRACT
Performance analysis of microprocessors is a critical step in
defining the microarchitecture, prior to register-transfer-level
(RTL) design. In complex chip multiprocessor systems, including
multiple cores, caches and busses, this problem is compounded by
complex performance interactions between cores, caches and
interconnections, as well as by tight interdependencies between
performance, power and physical characteristics of the design
(i.e., floorplan). Although there are many point tools for the
analysis of performance, or power, or floorplan of complex
systems-on-chip (SoCs), there are surprisingly few works on an
integrated tool that is capable of analyzing these various system
characteristics simultaneously and allow the user to explore
different design configurations and their effect on performance,
power, size and thermal aspects.
This paper describes an integrated tool for early analysis of
performance, power, physical and thermal characteristics of
multi-core systems. It includes cycle-accurate, transaction-level
SystemC-based performance models of POWER processors and
system components (i.e., caches, buses). Power models, for power
computation, physical models for floorplanning and packaging
models for thermal analysis are also included. The tool allows the
user to build different systems by selecting components from a
library and connecting them together in a visual environment.
Using these models, users can simulate and dynamically analyze
the performance, power and thermal aspects of multi-core
systems.

Categories and Subject Descriptors
C.0 [General]: Modeling of computer architecture, system
architectures, systems specification methodology.

General Terms
Algorithms, Performance, Design, Experimentation.

Keywords
Performance, power and physical analysis, transaction-level
modeling, multi-core systems modeling, early analysis.

1. INTRODUCTION
Advanced microprocessor design methodologies rely heavily on
early performance and power analysis for microarchitecture trade-
offs and tuning. Simulation-based methods using execution-
driven or trace-driven models are commonly used. In order to
obtain a reasonable degree of accuracy, critical for detailed trade-
off analysis, cycle-accurate models of the internal pipelines of the
processors, as well as communication delays between components
are needed. The communication delays between components
include a functional part and a physical part. The functional delay
depends on the specific communication protocols used. The
physical delay is related to the number of cycles needed to
transfer data across the length of the interconnections, which
depends on the relative positioning of the components (i.e.,
floorplan), the technology and buffering capabilities. As
components get larger, the physical delays increase and must be
taken into account in the models.
Several microprocessor performance analysis tools have been
developed over the years for various purposes. These fall in two
main types, trace-driven timing simulators [1] [2] and execution-
driven simulators [3] [4]. Both of these have advantages and
disadvantages regarding simulation speed and the ability to model
certain architectural details, such as branches and speculative
execution, and the ability to execute actual software versus
instruction traces. Power models and tools, which use statistics
generated by performance simulators, have also been developed
 [5] [6].
While these tools have been successfully applied to a variety of
processors and systems, they lack the modularity and
componentization required for quick design exploration.
Moreover, they do not offer an integrated environment for
analyzing performance, power, floorplan and thermal aspects.
This paper presents the models and tools supporting an integrated
approach to early design analysis for multi-core systems, which
were implemented in a tool called SLATE (System-Level
Analysis Tool for Early Exploration). This paper gives an
overview of the system and a detailed description of the
performance models.
This paper is organized in the following way. Section 2 presents
an overview of SLATE and the early design methodology it
supports. Section 3 describes the SystemC-based performance
modeling approach applied to the SLATE components. Section 4
presents the experimental results and Section 5 offers conclusions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CODES+ISSS’07, September 30 – October 3, 2007, Salzburg, Austria.
Copyright 2007 ACM 978-1-59593-824-4/07/0009…$5.00.

209

2. SLATE OVERVIEW
The models, tools and environment implemented in SLATE
support the following early design analysis methodology:
1. Abstract system design structural specification using a

graphical block diagram input of main system components
(i.e., cores, caches, buses, memory controller). Blocks are
represented with relative sizes, and user controls relative
positioning of the blocks.

2. Early floorplan is generated from initial user placement of
major blocks and global interconnections estimated. Global
delays are estimated based on buffering assumptions and
target cycle time.

3. Top-level system performance model is automatically
generated by assembling and linking performance models for
individual components, stored in a library. Global latencies
(from interconnection delays) are passed in as parameters to
the model.

4. Trace-driven system performance simulation is executed,
producing user-defined graphs and statistics, helping the user
analyze bottlenecks and perform architectural trade-offs.

5. Statistics collected from performance simulation are used to
drive power computation and analysis for each component in
the design. The power model is integrated in the performance
model; power is computed on-the-fly during simulation.

6. Power values are back-annotated into the floorplan model as
simulation progresses. The power-annotated floorplan is then
used to drive a thermal analysis tool to generate thermal
plots and analyze hot-spots.

7. Finally, the designer armed with information regarding
performance, power, and thermal characteristics, is able to
change the design configuration (e.g., topology, parameters)
and iterate until an acceptable design point is reached.

The order in which these steps above are performed may change,
depending on the type of analysis desired. All steps can be
automated in the form of scripts and run in batch mode.
The target user of SLATE is the system architect who typically is
an expert on systems analysis and trade-offs, but is not
necessarily an expert in programming or physical design. Hence,
SLATE was designed to make it very simple to enter, configure
and simulate a design, based on pre-defined components stored in
a library. This is accomplished either through a visual
environment (i.e. a block-diagram editor) or through simple
scripts. SLATE library components are designed to have very few
pins (i.e., transaction-level ports in the SystemC specification).
The number of ports of each component is kept very small by
design (usually 1 to 3 ports, except for the bus) to make it easy to
connect components. Section 3.1 gives more details about the
components ports and interfaces.
The library components available to the user are major design
blocks, such as, processor cores, caches, memory controllers and
buses. A component in the library is described by an XML file
which contains: area, aspect ratio, reference to an executable
transaction-level model binary (compiled from its SystemC
model), list of transaction-level model ports and locations. If the
same component is available with different area, aspect ratio or
port positions, a new XML file is created. At an early stage,
accurate areas, and aspect ratios for components may not be

available, but approximate figures, usually derived from previous
designs or designer experience, are sufficient to drive the analysis
and provide valuable feedback to the user.
The user composes the system by dragging-and-dropping
components onto a block-diagram editor and by connecting them
appropriately. The block-diagram editor stores the composed
netlist in OpenAccess (OA [7]) which has native support for
various physical properties, such as area and pin locations. The
image on the block editor displays the components with their
relatives sizes and aspect ratios, thus allowing the designer to
explore different early floorplans for the system. Different
floorplans using the same functional components with different
areas and aspect ratios are likely to exhibit different power
densities, thermal characteristics (i.e., hot spots), and interconnect
delays.

3. PERFORMANCE MODELING
BUILDING BLOCKS

Performance models, as opposed to functional models, do not
carry out actual computations, but propagate the delays involved
in the computation, producing, as a result, metrics such as latency
and throughput (but not the final value of the computed data).
Although data computation is not taking place, all side effects
must be fully taken into account. For example, in a cache model,
when a write operation is executed, the corresponding address in
the cache is marked as taken, although, there is no specific data
value stored. Similarly, queues inside a microprocessor need to be
modeled correctly (so that pipelines can be stalled when queues
are full), the correct number of read/write ports in register files
need to be modeled, etc.
SystemC-based transaction-level models (TLM) were used, for
their clear way of separating computation from communication
using channels and interfaces.
SLATE provides a hierarchical library of performance models
which can be easily connected to form complex components,
ranging from simple pipelined execution units, to caches, to
complete cores. At the lowest level, there are two basic types of
components, namely a Computation module and a Delay channel.
These components are used by the model designer to build more
complex cycle-accurate models.
The Computation module is a shell for a generic atomic
processing element which gets executed every clock cycle,
triggered by the positive edge of the clock. This module needs to
be filled in with the proper behavior on a case-by-case basis.
SLATE provides several such modules for microprocessor
building blocks, such as Instruction/Data caches, execution units,
issue queues, etc. The interfaces to/from this module are ports
connecting to Delay channels. All data transfers between
Computation modules go through Delay channels.
Three types of Delay channels have been implemented, namely:
Pipeline, Delayed_Queue, and Async_Fifo. These channels
support the typical TLM interfaces (e.g., write(), can_write(),
read(), can_read()), as well as other dedicated functions.
The Pipeline channel implements the equivalent of a hardware
pipeline with templated data-type and parameterized length and
bandwidth. One data element may be written or read per cycle,
and the pipeline can be stalled. Stalling prevents new data from

210

being written and valid data (and the end of the pipeline) from
being dropped.
The Delayed_Queue channel implements a queue with a
maximum size and delay parameters. One or more data elements
may be written or read per cycle, but once an element is written, it
will only be available for reading after a predefined delay. This
channel cannot be stalled, but can become full and block new data
from being written to. It can also be parameterized to work like a
synchronous fifo.
The Async_Fifo channel implements fifo communication
asynchronously between two components operating at different
frequencies. This is usually needed for system modeling when
cores connect to caches or buses at different frequencies, and
when dynamic frequency scaling is applied on a component by
component basis for power management purposes.
Figure 1 shows an example pseudo-code of how two Computation
modules can be connected using a Pipeline delay channel. The
Computation module has a method Run() which is executed
every clock cycle. At every cycle, it checks if there is new data in
the input pipe (pipe_in.can_read()) to be read and processed. If
processing the data is completed and the output pipe is not full or
stalled, it then writes the new data into the output pipe
(pipe_out.write()). If processing is not completed or it cannot
write, then it must prevent the input pipeline from shifting and
dropping the current data, by stalling the input pipe
(pipe_in.stall()). The model designer must write the code for the
data processing only. The Pipeline channel provides functions for
writing to, reading from, and stalling it, as well as for checking if
it can be read/written, which must be called on the positive edge
of the clock. It has one internal process, triggered on the negative
edge which shifts the pipeline contents if the pipeline is not being
stalled. The basic scheme of performing computation on the
positive edge of the clock and data shifting on the negative edge,
prevents race conditions.
Computation modules and Delay channels are the building blocks
for constructing cycle-accurate models of complex hardware
components.

When connecting larger components, there may be multiple
channels required for different types of communications (e.g.,
different data types, different latencies, etc.). Instead of exporting
multiple internal ports to the boundaries of the larger component,
SLATE uses a channel container to group several individual
channels into one channel object. Each component needs to
declare a single port of the type of the container channel, and
connect to the other component, thus minimizing the number of
ports that need be connected among complex blocks. As
mentioned in Section 2, one of the main usability goals of SLATE
is to make it very simple for designers to connect up larger blocks
to form complex systems. This is achieved by having to connect
only very few ports (usually one or two) per component.
A port in a complex component is of type Channel_Container,
encapsulating one or more Delay channels. The number, type and
parameters of each Delay channel inside a container are specific
to each port. The components use the SystemC elaboration
callbacks to create and connect the internal channels. During
SystemC elaboration, the ports are connected, then during the
before_end_of_elaboration() callback, the internal channels are
created inside the container and connected appropriately. The
component accesses the internal channels using channel
identifiers passed in as parameters to the access functions.
Figure 2 illustrates the channel container approach. The pseudo-
code in Figure 2 shows the left component writing an address and
data values on two different channels, and reading a control value
from a third channel, all inside the channel container and through
the same port. The internal channels may be used for
communication in different directions. By using this container,
only one port-interface-port connection is required between the
two components instead of three. The container approach is more
flexible and generic than simply a vectored port.
By using Computation modules, Delay channels and
Channel_Containers, a range of cycle-accurate models can be
built. The actual timing accuracy of the model may depend on the
level of detail used, but the infrastructure allows for cycle-
accuracy.

Figure 1: Basic performance modeling components in Slate (Computation module and Pipeline Delay Channel)

SC_MODULE(Computation)
{

pipeline_in_port<T> pipe_in;
pipeline_out_port<T> pipe_out;
SC_HAS_PROCESS(Computation);
…..
Computation () {

SC_METHOD (Run);
sensitive << clock.pos;

}

Run () {

if (pipe_in.can_read()) {
inData = pipe_in.read();
process(inData);

}

// when processing is complete,
// write it out, otherwise stall
// input pipeline

if ((processing_complete()) &&
(pipe_out.can_write()) {
pipe.out.write(outData);

}
else {

pipe_in.stall();
}

}
}

pipe_out

pipe_in

class Pipeline:
public sc_module,virtual sc_interface

{
Pipeline () {

SC_THREAD (Shift);
sensitive << clock.neg;

}
Shift() {

if (!stall) {
shift_contents();

}
}
// Other member functions are called by
// the connected Computation modules
// on the positive edge of the clock.
can_write();
write();
can_read();
read();
stall();

}

SC_MODULE(Computation)
{

pipeline_in_port<T> pipe_in;
pipeline_out_port<T> pipe_out;
SC_HAS_PROCESS(Computation);
…..
Computation () {

SC_METHOD (Run);
sensitive << clock.pos;

}

Run () {

if (pipe_in.can_read()) {
inData = pipe_in.read();
process(inData);

}

// when processing is complete,
// write it out, otherwise stall
// input pipeline

if ((processing_complete()) &&
(pipe_out.can_write()) {
pipe.out.write(outData);

}
else {

pipe_in.stall();
}

}
}

SC_MODULE(Computation)
{

pipeline_in_port<T> pipe_in;
pipeline_out_port<T> pipe_out;
SC_HAS_PROCESS(Computation);
…..
Computation () {

SC_METHOD (Run);
sensitive << clock.pos;

}

Run () {

if (pipe_in.can_read()) {
inData = pipe_in.read();
process(inData);

}

// when processing is complete,
// write it out, otherwise stall
// input pipeline

if ((processing_complete()) &&
(pipe_out.can_write()) {
pipe.out.write(outData);

}
else {

pipe_in.stall();
}

}
}

pipe_out

pipe_in

class Pipeline:
public sc_module,virtual sc_interface

{
Pipeline () {

SC_THREAD (Shift);
sensitive << clock.neg;

}
Shift() {

if (!stall) {
shift_contents();

}
}
// Other member functions are called by
// the connected Computation modules
// on the positive edge of the clock.
can_write();
write();
can_read();
read();
stall();

}

SC_MODULE(Computation)
{

pipeline_in_port<T> pipe_in;
pipeline_out_port<T> pipe_out;
SC_HAS_PROCESS(Computation);
…..
Computation () {

SC_METHOD (Run);
sensitive << clock.pos;

}

Run () {

if (pipe_in.can_read()) {
inData = pipe_in.read();
process(inData);

}

// when processing is complete,
// write it out, otherwise stall
// input pipeline

if ((processing_complete()) &&
(pipe_out.can_write()) {
pipe.out.write(outData);

}
else {

pipe_in.stall();
}

}
}

211

3.1 Component and System Modeling
To validate the approach we built several models based on the
POWER family of processors and systems. All models are cycle-
accurate performance models running instruction traces. SLATE’s
current components include: Core processor models, L1 and L2
cache models, bus model and a memory controller model. A wide
range of parameters on the core, cache and memory models are
supported. This section presents details on one core model and on
the multi-core system used for validation and experiments.

3.1.1 Core Model
The core model described in this section is a pipeline-accurate
performance model, based on the POWER4 processor which is a
single-thread, out-of-order execution, in-order completion micro-
architecture [1] [8]. The behavior of the units inside the core (e.g.,
Decode, Dispatch, Issue queues) is modeled at a high level using
Computation modules which execute every clock cycle. The
execution delays of each unit are modeled by cycle accurate
Pipeline channels, as illustrated in Figure 3(a). The pipeline
latencies and bandwidths are parameterized to capture the delays
and bit-widths of each unit. The behavior of each unit is described
at a high level but it contains all relevant architectural features for

Figure 3: (a) Internal organization of core model (not all connections shown),
(b) internal organization of 4-core system model (not all connections shown)

(a)

(b)

BUS

CC2

L2 0CORE 0 CC1

CC2

L2 1CC1

CC2

L2 3CC1

CC2

L2 2CC1

Memory
Controller CC2

CORE 2 CORE 3

CORE 1

4-core CMP System Model

Channel_Container

port interface

Core Model

issue queues execution units

to L2

pipeline
channel

Trace files

to L2

I-Fetch I-Cache Branch
Prediction

Decode

D
ispatch

CRQ

FXQ0

FXQ1

FPQ0

FPQ1

BRQ

CRL

FXU0

FXU1

FPU0

FPU1

BXU

LSU

Completion

D-Cache

sc_port< channel_container >

(a)

(b)

BUS

CC2

L2 0CORE 0 CC1

CC2

L2 1CC1

CC2

L2 3CC1

CC2

L2 2CC1

Memory
Controller CC2

CORE 2 CORE 3

CORE 1

4-core CMP System Model

Channel_Container

port interface

BUS

CC2

L2 0CORE 0 CC1

CC2

L2 1CC1

CC2

L2 3CC1

CC2

L2 2CC1

Memory
Controller CC2

CORE 2 CORE 3

CORE 1

4-core CMP System Model

Channel_Container

port interface

Core Model

issue queues execution units

to L2

pipeline
channel

Trace files

to L2

I-Fetch I-Cache Branch
Prediction

Decode

D
ispatch

CRQ

FXQ0

FXQ1

FPQ0

FPQ1

BRQ

CRL

FXU0

FXU1

FPU0

FPU1

BXU

LSU

Completion

D-Cache

sc_port< channel_container >Core Model

issue queues execution units

to L2

pipeline
channel

Trace files

to L2

I-Fetch I-Cache Branch
Prediction

Decode

D
ispatch

CRQ

FXQ0

FXQ1

FPQ0

FPQ1

BRQ

CRL

FXU0

FXU1

FPU0

FPU1

BXU

LSU

Completion

D-Cache

sc_port< channel_container >

Figure 2: Example of a Channel_Container with 3 internal channels, connecting two complex components.

SC_MODULE(Component)
{

sc_port< channel_container<T> > p;
…..
…..
// transmit address
p->put (“Address_Pipe”, addr);
…..
// receive acknowledgement
ack = p->get (“Ack_Pipe”)
…..
// transmit data
p->put (“Data_Pipe”, data);
…..

}

SC_MODULE(Component)
{

sc_port< channel_container<T> > p;
…..
…..
// read address
addr = p->get (“Address_Pipe”);
…..
// send acknowledgement
p->put (“Ack_Pipe”, ack)
…..
// receive data
data = p->get (“Data_Pipe”);
…..

}

Address_Pipe

Ack_Pipe

Data_Pipep p

SC_MODULE(Component)
{

sc_port< channel_container<T> > p;
…..
…..
// transmit address
p->put (“Address_Pipe”, addr);
…..
// receive acknowledgement
ack = p->get (“Ack_Pipe”)
…..
// transmit data
p->put (“Data_Pipe”, data);
…..

}

SC_MODULE(Component)
{

sc_port< channel_container<T> > p;
…..
…..
// read address
addr = p->get (“Address_Pipe”);
…..
// send acknowledgement
p->put (“Ack_Pipe”, ack)
…..
// receive data
data = p->get (“Data_Pipe”);
…..

}

Address_Pipe

Ack_Pipe

Data_Pipep p

212

accurate performance modeling. Features such as limited-size
queues, instruction grouping, register renaming, load/store
queues, pipeline bypassing, correct number of read/write ports on
register files, etc., are modeled accurately according to the
architectural specification [8].
The core model includes internal L1 Instruction and Data caches,
which communicate with an external L2 cache using a single port
of Channel_Container type. This channel encapsulates six
pipelines for read and write transfers between the L1 Instruction
and Data caches and the L2 cache.
For a given family of microprocessors, evolving from one
processor to the next involves changing certain algorithms (i.e.,
branch prediction, instruction grouping), changing the parameters
to many units (i.e., L1 cache size and associativity, pipeline
latencies), and changing the number of units used (i.e., use two
floating-point execution units, instead of one). SLATE allows
these changes to be made very quickly to a given model in order
to explore different micro-architectures. SLATE also includes
models for multi-threaded cores, such as POWER5 [9].

3.1.2 Multi-Core System Model
Using the POWER4 core model described in Section 3.1.1, we
built a multi-core system consisting of four cores, four private L2
caches connected to a bus and a memory controller, as shown in
Figure 3(b). This model is representative of chip multi-processor
(CMP) systems built in the last few years.
Each core receives as input an application trace (e.g., bzip2 from
SPEC CINT2000 benchmarks [10]) and processes its instructions.
Whenever there is an L1 cache miss, the core model initiates a
transaction on the L2 model (for accessing a given address for
load or store). If the L2 cache has valid data for the given address,
it is a hit and it sends a transaction back to the core model. Each
of these transactions incurs multi-cycle delays captured in the
pipeline channels. If the L2 does not contain valid data at the
given address, then it is a miss, and it sends a transaction to the
bus requesting the status of the given address. The bus then
queries all other L2’s in the system for the given address and it
determines if it needs to retrieve the contents or invalidate them,
depending on whether the operation requested was a load or store.
If no L2 owns the given address, the bus passes the request to the
memory controller, which then either retrieves the data/instruction
or stores it in the memory model. This sequence of transactions
may be initiated by any core, thus the bus model must be able to
handle and arbitrate correctly among multiple requests. The
proprietary coherence protocol in the bus is modeled cycle-
accurately. An accurate bus model is important in a multi-core
system to simulate coherency and contention to memory
precisely, as these factors may affect overall performance
significantly.
The bus is connected to the L2 caches and memory controller
using Channel_Container ports encapsulating Delay channels that
can be configured to be either synchronous or asynchronous
queues/fifos. The ability to use different communication schemes
allows additional architectural exploration capabilities.
The core, cache and bus models also compute the dynamic and
static power dissipated by the modules as the simulation
progresses. The power model used for the core is based on [5].
Performance simulation produces several statistics on the usage of
the units inside the core (e.g., how many cycles the fixed point
execution unit was active, or the cache miss rate).

These statistics are converted into switching factors which are
then inserted into parameterized power formulas associated with
each unit, resulting in the unit’s average power. The process is
repeated for all units inside the cores and for all other models, in
order to compute the system power. The power formulas are
either estimated or generated by detailed logic and circuit-level
simulations of previous versions of the units (from a previous
generation, properly scaled for technology changes).
The outputs of the system simulation are several metrics related to
the performance and power of the system. For performance, the
main metrics are: Cycles-per-Instruction (CPI) or its inverse
Instructions-per-Cycle (IPC) and Instructions-per-Second (a
measure of throughput), for a single core as well as for the whole
system. SLATE also provides detailed metrics and statistics for
helping the designer identify performance bottlenecks, such as
cache miss rates, pipeline stalls, issue queue occupancy, number
of architectural/physical registers used, and many others.

4. EXPERIMENTAL RESULTS
In order to measure the accuracy of SLATE’s core model, we
created a system including one core (Power4-like, as described in
Section 3.1.1), L2 cache, bus and memory controller, and
executed the SPEC CINT2000 benchmarks, and measure the core
IPC (instructions-per-cycle), which is an accepted measure of
micro-architecture performance. We then compared the results
against the IPC numbers given by a production-level performance
simulator used internally in IBM on all POWER architecture
designs [1]. For 8 out of 12 benchmarks, SLATE produced IPC
numbers within 11% of the production simulator results. On
average for all 12 benchmarks SLATE results were within 16% of
the production simulator results, which is acceptable for an early
analysis system.
In order to evaluate SLATE’s simulation performance, we created
3 systems using 1 core, 2 cores and 4 cores, respectively. In all
cases, each core was connected to a private L2 cache, which was
connected to a bus and a memory controller. Realistic parameters
and delays were used in all cases. We ran the 12 SPEC CINT2000
benchmarks on all 3 systems, using the same benchmark on all
cores, and measured IPC, as well as various simulation
performance metrics such as peak memory, simulation-cycles per
second, and instructions per second.
SLATE’s raw simulation performance for the 1-core system,
including cycle-accurate performance analysis and power
computation, was on average 55k simulation cycles per second
for SPEC CINT2000 benchmarks, on a 2.4GHz X86-based Linux
workstation. In this version of SLATE, no effort was made to
optimize the simulation speed, and the freely available SystemC

Figure 4: Cycles-per-second comparison: 1-core,
2-core and 4-core systems

Normalized Cycles per Second

0.00

0.25

0.50

0.75

1.00

BZIP2
CRAFTY

EON
GAP

GCC GZIP
MCF

PARSER
PERLBMK

TWOLF
VORTEX

VPR

1 Core 2 Cores 4 Cores

runtime environment was used with GCC com piler.

213

To evaluate SLATE’s scalability, we compared the peak memory
and simulation performance of the 1-core, 2-core and 4-core
systems. The complexity of the 2-core and 4-core models is
approximately 2x and 4x the complexity of the 1-core model.
Thus, it is expected that simulation performance for multi-
programmed workloads degrades linearly with the model
complexity. This was observed in practice. Figure 4 shows that
cycles-per-second for 2-core and 4-core models were roughly ½
and ¼ of the 1-core values. We have simulated systems with up
to 8 cores in acceptable run times. This linear behavior holds true
in SLATE when simulating multi-programmed workloads on
CMP models. It may not be the case for multi-threaded
applications where there is significant data sharing.
In the absence of any bus contention to memory and coherency
updates, the IPC values on any core on the 3 systems should be
the same for the same benchmark. However, due to contention
and coherency delays, the IPC values may vary slightly (usually
degrading) from the 1-core to 2-core, to 4-core systems. Figure 5
shows the normalized IPCs for the various benchmarks on the 1-
core, 2-core and 4-core systems, where it can be seen that small
IPC degradation (<10% in most cases) occurs on most
benchmarks. Memory-bound benchmarks, such as MCF, are
likely to show larger IPC degradation on the 4-core system, due to
more memory accesses and more contention on the bus. Note that
total instructions-per-second will follow the same variation as IPC
and not vary significantly among the 3 systems (when considering
the sum of the instructions executed on all cores).
Memory usage is an important consideration in performance
models which may simulate for billions of instructions. It is
critical that memory allocation depends on the model size and
characteristics only and not on the simulation time. On a 1-core
system the peak memory consumption in SLATE was about
44MB. Figure 6 shows the normalized memory consumption for
the various benchmarks on the 1-core, 2-core and 4-core systems.

As expected, peak memory grew linearly with the model
complexity (just under 2x and 4x for the 2-core and 4-core
systems).

5. CONCLUSIONS
This paper presents an overview of SLATE, a tool for early
analysis of performance, power, physical and thermal aspects of
multi-core systems. It allows designers to assemble, configure and
simulate multi-core systems with memory hierarchy and buses.
The components are modeled in SystemC using cycle-accurate
transaction-level abstractions and include detailed performance
and power models.
SLATE relies on two basic performance modeling building blocks
for building complex components, namely, the Computation
module and Delay channels. Different types of Delay channels are
provided in support of different communication schemes. In order
to minimize the number of ports of complex components, a
special Channel_Container was developed to encapsulate any
number of Delay channels, which can then be connected using a
single component port.
Internally to the tool, the SystemC performance models are linked
to a structural netlist representing the block diagram/floorplan of
the design which is stored in OpenAccess (OA). This OA netlist,
properly annotated with performance and power values, serves as
input to integrated physical and thermal analysis tools.
SLATE provides a unique framework and tools supporting early
design analysis of multi-core systems.

Acknowledgements
Authors would like to thank Ravi Nair and Kyle Nesbit for
writing the original SystemC implementation of the core module.

6. REFERENCES
[1] S.R. Kunkel, R.J. Eickemeyer, M.H. Lipasti, T.J. Mullins, B.

O’Krafka, H. Rosenberg, S.P. VanderWiel, P.L. Vitale, and L.D.
Whitley, “A performance methodology for commercial servers”.
IBM Journal of Research & Development, Vol.44, No.6,
November, 2000.

[2] M. Moudgill, J.-D. Wellman and J. Moreno, “Environment for
PowerPC microarchitecture exploration”. IEEE Micro, Vol.19,
No.3, pp.15-25, 1999.

[3] M. Reily and J. Edmondson, “Performance simulation of an Alpha
microprocessor”. IEEE Computer, Vol.31, No.5, pp.50-58, 1998.

[4] T. Austin, E. Larson and D. Ernst, “SimpleScalar: an infrastructure
for computer system modeling”. IEEE Computer, Vol.35, No.2,
pp.59-67, February, 2002.

[5] D. Brooks, P. Bose, V. Srinivasan, M.K. Gschwind, P. Emma, and
M. Rosenfield, “New methodology for early-stage
microarchitecture-level power-performance analysis of
microprocessors”. IBM Journal of Research & Development,
Vol.47, No.5/6, September/November, 2003.

[6] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a framework for
architectural-level power analysis and optimization”. In
Proceedings of the 27th annual international symposium on
Computer architecture (ISCA 2000), Vancouver, 2000.

[7] Open Access Initiative, www.si2.org.
[8] J. Tendler, J.S. Dodson, J.S. Fields Jr., H. Le, and B. Sinharoy,

“POWER4 system microarchitecture”. IBM Journal of Research &
Development, Vol.46, No.1, January, 2002.

[9] B. Sinharoy, R.N. Kalla, J.M. Tendler, R.J. Eickemeyer, and J.B.
Joyner, “POWER5 system microarchitecture”. IBM Journal of
Research & Development, Vol.49, No.4/5, July/September 2005.

[10] SPEC Standard Performance Evaluation Corporation,
www.spec.org.

Figure 5: Core IPC comparison: 1-core, 2-core
and 4-core systems

Normalized Core IPC

0.75
0.80

0.85

0.90

0.95
1.00

BZIP2
CRAFTY

EON GAP GCC GZIP
MCF

PARSER
PERLBMK

TWOLF
VORTEX

VPR

1 Core 2 Cores 4 Cores

Normalized Peak Memory

0.0

1.0

2.0

3.0

4.0

BZIP2
CRAFTY

EON GAP GCC GZIP
MCF

PARSER
PERLBMK

TWOLF
VORTEX

VPR

1 Core 2 Cores 4 Cores

Figure 6: Peak memory comparison: 1-core, 2-core
 and 4-core systems

214

