
Compiling Code Accelerators for FPGAs
Walid A. Najjar

University of California Riverside, Computer Science & Engineering
Riverside, California

+1.951.827.4406 najjar@cs.ucr.edu

ABSTRACT
This tutorial addresses the challenges and opportunities presented by
compiled FPGA-based code accelerators.

In recent years we have witnessed a fast growth of both size and
speed of FPGAs. These had been initially designed and marketed as
convenient devices for “glue logic.” Later, they became used as fast
prototyping platforms. As their size and speed grew, they have been
used for the short time to market they can afford. Lately, their size
and speed have made them attractive as code accelerator. While the
clock speed achievable on a typical FPGA design is about an order
of magnitude lower than that on a typical CPU, their advantage
comes from two sources: (1) Large degree of instruction and loop
level parallelism. Parallel loops can typically be unrolled by factors
ranging in the 100s. (2) Increased efficiency of hardware execution.
The streaming of the data through a dedicated circuit eliminates a
large number of support operations such as data fetch, address
calculations, index management, loop control, etc. The combined
higher efficiency and parallelism of hardware execution on FPGAs
has been shown to result in speedups ranging from the 10s to the
1,000s over traditional processor on frequently executed code
segments.

However, the main obstacle to wider acceptance of this technology
is programmability. FPGAs are typically programmed using
Hardware Description Languages (HDLs), which poses two
problems: Traditional application developers are typically not HDL
designers, and HDLs are not well suited for algorithm
implementation. Furthermore, the FPGA is an amorphous mass of
logic on which the compiler must create a data-path and schedule
the computation. Such a task requires the harnessing of technologies
developed for parallelizing compilers as well as those developed for
high-level synthesis.

The main challenge that faces HLL to HDL translation is the
paradigm shift from the stored program model to a value-based,
data-driven execution – that is, from temporal to spatial execution.
The task of an FPGA compiler is to generate both the data path and
the sequence of operations (control flow) on that data path. The lack
of architectural structure on the FPGA presents a number of
opportunities for the compiler: (1) The available parallelism,
instruction loop and thread, is very high and limited only by the size
of the FPGA or the I/O bandwidth to the chip. (2) On-chip storage
can be configured at will. (3) Circuit customization allows the
compiler to reduce the circuit size as well as the clock duration.

Optimizing compilers for traditional processors have benefited from
several decades of extensive research that has led to extremely

powerful tools. Similarly, electronic design automation (EDA) tools
have also benefited from several decades of research and
development, leading to powerful tools that can translate VHDL and
Verilog code, and recently SystemC code, into efficient circuits.
However, little work has been done to combine these two
approaches.

The Riverside Optimizing Compiler for Configurable Computing
(ROCCC) is a C to VHDL compiler that targets the automatic
generation of FPGA-based accelerators. ROCCC optimizes and
parallelizes the most frequently executed loops for mapping as
circuits on the FPGA. A host processor then manages the streaming
of data through that circuit. The overall aim of ROCCC is to (1)
bridge the performance gap between compiled and hand-written
code and (2) apply extensive compile-time transformations on
multi-dimensional arrays and non-trivial loop nests. Such
transformations would be too complex for a human programmer to
handle in a reasonable time. The objectives of the ROCCC
optimizations are: (1) maximize the parallelism in the circuit as well
as the clock rate at which it operates (2) minimize the number of
off-chip memory accesses as well as the area of the circuit.

This tutorial will address the issues of compiling a high-level
language to generate FPGA-based code accelerators. It will take a
look at the whole field with a special emphasis on the ROCCC
compiler toolset.
Tutorial outline:

1. FPGA code acceleration – An opportunity
2. Platform models - Why they matter
3. Compiling to FPGAs – The challenges
4. The ROCCC approach
5. The ROCCC toolset
6. Future outlook – Hardware, software and system support

Categories and Subject Descriptors
C.1.3 Computer Systems Organization, PROCESSOR
ARCHITECTURES, Other Architecture Styles, Adaptable
architectures
B.5.1 Hardware, REGISTER-TRANSFER-LEVEL
IMPLEMENTATION, Design, Styles (e.g., parallel, pipeline,
special-purpose).

General Terms
Design.

Copyright is held by the author/owner(s).
CODES+ISSS’07, September 30–October 5, 2007, Salzburg, Austria.
ACM 978-1-59593-824-4/07/0009.

2

