
A Data Protection Unit for NoC-based Architectures

Leandro Fiorin† Gianluca Palermo‡ Slobodan Lukovic† Cristina Silvano‡

†ALaRI - Faculty of Informatics - University of Lugano
Via Buffi 13, 6904, Lugano, Switzerland

‡Politecnico di Milano - Dipartimento di Elettronica e Informazione
Via Ponzio 34/5, 20133, Milano, Italy

{fiorin,lukovics}@alari.ch {gpalermo,silvano}@elet.polimi.it

ABSTRACT
Security is gaining increasing relevance in the development
of embedded devices. Towards a secure system at each level
of design, this paper addresses the security aspects related to
Network-on-Chip (NoC) architectures, foreseen as the com-
munication infrastructure of next-generation embedded de-
vices. In the context of NoC-based Multiprocessor systems,
we focus on the topic, not thoroughly faced yet, of data
protection.

We present the architecture of a Data Protection Unit
(DPU) designed for implementation within the Network In-
terface (NI). The DPU supports the capability to check and
limit the access rights (none, read, write or both) of proces-
sors requesting access to data locations in a shared memory
- in particular distinguishing between the operating roles
(supervisor or user) of processing elements. We explore dif-
ferent alternative implementations and demonstrate how the
DPU unit does not affect the network latency if the mem-
ory request has the appropriate rights. In the experimental
section we show synthesis results for different ASIC imple-
mentations of the Data Protection Unit.

Categories and Subject Descriptors
C.1.2 [Processor Architectures]: Multiple Data Stream
Architectures (Multiprocessors)—Interconnection architec-
tures (e.g., common bus, multiport memory, crossbar switch);
C.1.4 [Processor Architectures]: Parallel Architectures—
Distributed architectures; D.4.6 [Operating Systems]: Se-
curity and Protection—Access controls, Authetication

General Terms
Design, Security

Keywords
Data Protection, Network-on-Chip (NoC), MultiProcessor
System-on-Chip (MPSoC), Security, Embedded Systems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’07, September 30–October 3, 2007, Salzburg, Austria.
Copyright 2007 ACM 978-1-59593-824-4/07/0009 ...$5.00.

1. INTRODUCTION
The level of integration that silicon technology has reached

in the past few years allows the use of advanced design pro-
cesses for enabling applications that were to date infeasible.
In fact, it is now possible to increase the number of cores per
die and the complexity of the interactions among them. The
complexity of new systems brings the challenge of enabling
reliable communication channels between cores; a challenge
that becomes more and more difficult as the number of in-
tegrated cores per design increases. The traditional solu-
tion for inter-core communication will soon become unable
to guarantee sufficient levels of efficiency, both from perfor-
mance and power consumption perspectives. A promising
alternative, Networks-on-Chips (NoCs) [7, 4], has appeared
as a new strategy to connect and manage the communication
between a variety of design elements and intellectual prop-
erty blocks required in complex System-on-Chips (SoCs).

However, the advantages introduced by the use of such a
complex communication infrastructure may introduce new
weaknesses in the system that could be potentially critical
and should be subjected to careful study and evaluation. In-
deed, as computing and communication increasingly pervade
our lives, security and protection of sensitive data emerge
as issues of extreme importance, in particular in the case of
embedded systems, which, due to their intrinsic constraints,
present several unique security challenges [11].

While NoC has been an emerging area of research interest,
security in such systems remains mainly unexplored, even if
security-aware design of communication architectures is be-
coming a necessity in the context of the overall embedded
SoC/device security. In this scenario, this paper presents a
Data Protection Unit (DPU) for NoC-based architectures.
The goal of the proposed module is to contrast forms of
attack such as the buffer overflow [5], aiming at obtaining
unauthorized access to selected blocks of memory. Protec-
tion of memory is particularly relevant for Multiprocessor
systems, where several processing elements may share the
same physical memory. Access restriction is therefore nec-
essary in order to avoid the subtraction of sensitive infor-
mation or the tampering of data and instructions by some
compromised core. The DPU allows performing secure ac-
cesses to memories and/or memory-mapped peripherals. In
general, the proposed DPU consists of a hardware solution
that enables the access to a particular memory space only
if the initiator of the request is authorized to perform that
particular operation. Filtering of the access is done by con-
sidering not only the memory address but also the type of

167

the operation requested (load/store) and the status of the
initiator (user or supervisor mode). The use of the Data
Protection Unit gives the possibility to easily store (or load)
critical data, without requiring time-consuming encryption
(or decryption) and maintaining a fast memory access.

This paper is organized as follows: Section 2 provides an
overview of the current state of the art of security solu-
tions implemented in NoCs and of academic and industrial
approaches for data protection in embedded systems. Sec-
tion 3 defines the architecture of the proposed Data Pro-
tection Unit. In Section 4, several design alternatives are
proposed and implementation issues are discussed. Finally,
synthesis results for alternative implementations of the DPU
are reported in Section 5, and conclusions and future work
are discussed in Section 6.

2. RELATED WORK
In this section, we outline and discuss the related work

following two complementary aspects of the object of the
research presented in this paper. On the one hand, we
overview academic works addressing security aspects partic-
ularly related to NoCs implementations; on the other hand,
we discuss academic and industrial proposals to implement
memory data protection in systems adopting conventional
busses for on-chip communication.

With regard to academic work addressing security aspects
in NoCs, [9] and [10] present a framework to secure the ex-
change of cryptographic keys within a NoC, addressing in
particular the protection from power/EM attacks of a sys-
tem containing not-secure cores as well as secure ones (de-
fined as hardware IP cores which can execute one or more
security applications). The framework supports authentica-
tion, encryption, key exchange, new user keys and public
key storage, and similar procedures. The proposed method-
ology ensures that no unencrypted key leaves cores on the
NoC and additionally supports IP secure cores running only
trusted software. At the network level, security is based on
symmetric key cryptography, where each secure core has its
own security wrapper storing in a non-volatile memory a
private network key. A key-keeper secure core is responsible
for key distribution on the NoC and keeps encrypted keys for
individual applications, encrypted user private keys or other
users public keys. New keys can be downloaded and stored
in the key-keeper core using encryption techniques and the
functionalities offered by the secure cores in the system.

Diguet et al. [8] propose a first solution to secure a re-
configurable SoC based on NoC. The system is composed
of Secure Network Interfaces (SNIs) and a Secure Configu-
ration Manager (SCM). The SNIs act as filter for the net-
work and handle attack symptoms that may be caused by
denial of service attacks and unauthorized read/write ac-
cesses. The SCM configures system resources and network
interfaces, monitoring the system for possible attacks. A
routing technique based on reversed forward path calcula-
tion is proposed. The technique allows verifying that the
sender of the packet arrived at a specific SNI has the right
to communicate with it.

With respect to the above presented related work, the
subject of our paper can be considered orthogonal and com-
plementary, since we investigate a solution for the specific
problem of data protection in NoCs.

Focusing on related work on memory data protection in
embedded systems, a specific implementation of a protec-

tion unit for data stored in memory is described in [6]. The
proposed module enforces access control rules that specify
how a component can access a device in a particular con-
text. AMBA bus transactions are monitored in order to
discover specifics attacks, such as in the case of theuse of
buffer overflow to steal the cryptographic key employed in
Digital Right Management. A look-up table, indexed by the
concatenation of the master identifier signals and the system
address bus, is employed to store and check right accesses
for the addressed memory location and to stop potential not
allowed initiators.

Considering commercial implementations of on-chip mem-
ory protection units, ARM provides, in systems adopting
the ARM TrustZone technology [3], the possibility to include
a specific module - the AXI TrustZone memory adapter - to
support secure-aware memory blocks. A single memory cell
of up to 2MB can be shared between secure and non-secure
storage area. Transactions on the bus are monitored to de-
tect addressed memory region and security mode in order to
cancel non-secure accesses to secure regions and accesses to
beyond of the maximum address memory size. The module
is configured through the TrustZone Protection Controller,
which manages the secure mode of the various components
of the TrustZone-based system and provides the software
interface to set up the security status of the memory areas.

A similar solution is provided by Sonics [2] in its SMART
Interconnect solutions. An on-chip programmable security
”firewall” is employed to protect the system integrity and
the media content passed between on-chip processing blocks
and various I/Os and the memory subsystem. The firewall
is implemented through an optional access protection mech-
anism to designate protection regions within the address
space of specified targets. The mechanism can be dynamic,
with protection region sizes and locations that can be pro-
grammed at run-time. It can also be role-dependent, with
permissions defined as a function not only of which initia-
tor is attempting to access but also which processing role
the initiator is performing at that time. Protection regions
subdivide a targets address space, where each target can
have up to 8 protection regions. Each protection region is
assigned to one of four levels of priority.

This paper faces for the first time the problem of the data
protection on a NoC-based Multiprocessor System-on-Chip
(MPSoC). This work presents a solution for data protec-
tion with a finest granularity (especially with respect to the
ARM TrustZone), which will be more useful for the next gen-
eration of security-enhanced Multiprocessor Systems. The
paper presents an architecture of the Data Protection Unit
that does not affect the network latency and a set of design
alternatives for the reduction of the Area/Energy overhead
for different designs. Briefly, this paper represents a step
over the previous three implementations of data protection.

3. SYSTEM ARCHITECTURE AND DATA
PROTECTION UNIT

In this section, we describe the general characteristics of
the proposed Data Protection Unit (DPU) for architectures
adopting the Networks-on-Chips communication paradigm.

Before discussing the DPU module, we briefly introduce
the system in which it interacts, in particular focusing on
the communication infrastructure. As example, Figure 1(a)
shows an overview of a simplified multiprocessor system,

168

(a) (b)

Figure 1: Simple system with three initiators and
one target showing the two different network archi-
tectures using the DPU coupled (a) with the NI tar-
get and (b) with the NIs master

composed of three processors (µP) and a shared memory
(Mem). A Network-on-Chip connects together the elements
of the system. Without loss of generality, we assume the
elements on the NoC to be memory mapped and packets
created in the NI to be sent using wormhole control flow.
We also assume NIs to be ”secure”, meaning with this term
that no external attacker could modify their configuration
and behavior. In particular, we assume that the NI contains
a register hard-wired or not modifyable by the IPs that uni-
vocally identify the node within the network.

In order to describe the features offered by the DPU and
possible architectures to implement it, we briefly present
now the packet structure used within the NoC. In fact, the
implementation proposed for the DPU depends on the spe-
cific structure of the packet, even if approaches similar to
the one employed can be easily used for different protocols.
We adopt a protocol packet such as the one shown in Figure
2. DestID is used to identify the target of the request (we
assume a table-based routing depending on source and des-
tination addresses); SourceID identifies the initiator of the
transaction and depending on the granularity of the sys-
tem could refer to the identification number of the node in
the NoC, to the single IP in a cluster (assuming more IPs
connected to the NoC through the same NI) or, in future
extensions of the work, to a thread running on a specific IP
core. MemAddr is the memory address to which the initiator
is requesting access, while the Length field is used to com-
municate the length, in number of words, of the information
sent or to be retrieved. L/S encodes which kind of operation
(load, store) the initiator requests at the target memory ad-
dress, while Role determines the particular role (status) of
the processor (user, supervisor) associated with the request.
In case of a load request, the packet is composed of just the
header, while for a store the header is followed by the data
to be written in memory.

It is important to note that in our implementation the
header of the packet structure contains all the information
needed by the network and by the Data Protection Unit
to work correctly. As examples, the size of the source and
destination fields were designed for a network with up to 255
nodes and the role field to only support the supervisor and
user mode of the processor. These values could be easily
extended for more nodes and more roles, increasing the size
of the related field in the packet but without impacting the
general behavior of the DPU architecture.

Figure 2: Structure of the packet used within the
NoC

The DPU is a hardware module that enforces access con-
trol rules specifying the way in which a component con-
nected to the NoC can access the blocks in which a memory
can be divided. The division of the memory in blocks is
necessary to allow a separation between sensitive and no-
sensitive data of the different processors. In the basic idea,
the DPU is a module embedded in the Network Interface
of the target memory to protect (or the memory-mapped
peripheral), supplying services similar to those offered by
a classical ”firewall” in data networks. The Network In-
terface receives packets coming from several initiators re-
questing access to the target memory. While processing the
packet, the information contained in the header is passed to
the DPU, which lookups the access rights for the request-
ing packet and checks if the requested operation is allowed,
granting or denying the access of the data to the memory
block. The most relevant part of the DPU is represented
by the lookup table. In hardware this element is commonly
implemented by combining a typical Content Addressable
Memory (CAM) [12], used in fully associative memory and
data networks routers, and a RAM storing the access rights
(load, store, both or none). It is important to note that
coupling the DPU to the NI guarantees that no additional
latency is associated with the access right check since the
protocol conversion and the DPU access are performed in
parallel.

4. IMPLEMENTATION OF THE DPU
In this section, we present several alternative implementa-

tions of the DPU architecture, describing their advantages
and disadvantages. We show two implementations, as de-
scribed before, realized at the NI of the target memory (see
Figure 1(a)) and we compare them with two implementa-
tions of the DPU distributed at the NIs master, i.e. the
NI of the initiators of the network transaction (see Figure
1(b)). To distinguish them in the following discussions, we
named T0 and T1 the DPU architectures embedded in the
targets’ NI and I0 and I1 those in the initiators’ NI.

4.1 Basic architecture at the target (T0)
The first architecture proposed for the DPU is shown in

detail in Figure 3. Each entry in the lookup table is indexed
by the concatenation of the SourceID with the Role and the
requested memory address MemAddr. In our implementa-
tion we assume 4KB as the size of the smallest memory block
to be managed for the access rights. This means that all the
data within the same block of 4KB have the same right. We
use Ternary Content Addressable Memory (TCAM) [12] to
compact the table, grouping ranges of keys in one entry.
TCAM, in addition to logic 1 or logic 0, allows to store a
dont care (X) value in those positions in which either a 1
or a 0 matches the entry key. A ternary symbol is encoded

169

RoleL/SMemAddrSourceIDDestID Length Opt.

63605958481680

Mux

8 20

CAM TCAM RAM

3

2

Adder
>=

match

upper_bound 20

enable

0x03 0x00XXX

0x03 0x00XXX

0xA1 0x02XXX

0xA1 0x02XXX

0x2D 0x01XXX

0x15 0x04XXX

0x15 0x04XXX

0x2D 0x03XXX

10

10

11

10

10

11

10

10

0

1

0

1

0

0

1

0

Figure 3: DPU basic architecture at the Network
Interface target (T0)

adding to a CAM cell the storage for a mask bit, set to logic
1 to not consider the value store in the CAM, and at the
(approximated) cost of an additional memory cell.

In order to minimize the overhead, we use TCAM only
for those bits looking up the requested memory address
(MemAddr), while CAM cells for the other fields of the entry
key. In fact, for efficiency, only allowed accesses are recorded
in the table and we believe to be more convenient to add an
entry line to specify the access right of an initiator, instead
of maintaining the fixed overhead due to a global TCAM.
On the other hand, the use of the TCAM for the MemAddr
bits allows to lookup all the requests to the same memory
block. Moreover, it allows us to check that the length of the
data requested to be loaded or stored does not exceed the
block boundaries. In fact, the address space of the memory
blocks it is delimitated by the starting address stored in the
CAM and by the sum of the values in the CAM and those
in the mask bits.

As shown in Figure 3, we modified the common TCAM
architecture in order to provide as output also the upper
bound address of the memory block. Once the packet header
is received, the length of the data sent or requested is added
to the MemAddr and compared to the value provided by our
modified TCAM to determine if boundaries are respected.
The RAM is used to store the access rights related to the
particular entry key in the CAM/TCAM and to provide
them in case of successful match. Two bits are used to
encode the load/store permission, with bits set to logic ’1’
for allowed accesses.

To summarize, a match between the packet information
and the values stored in the CAM, a data dimension within
the boundaries of the memory block, and a requested oper-
ation complying with those allowed, assure to the initiator
the access to the desired addresses in memory. In the case
of overlapping of different blocks and equal access rights of
the initiator to the two (or more) memory blocks, the block
with lower starting address is considered.

4.2 Modified architecture at the target (T1)
An alternative implementation to the one previously de-

scribed is shown in Figure 4. In this case, the RAM of the
lookup table stores the access rights for the two different
possible roles of the initiator (Role 0 - load/store; Role 1 -
load/store). While increasing the number of memory cells
associated to the RAM, this solution, as we will show in
the next subsection, can halve the number of necessary en-
try lines and approximately the overhead associated to the

RoleL/SMemAddrSourceIDDestID Length Opt.

63605958481680

Mux

8 20

CAM TCAM RAM

3

4

Adder
>=

match

upper_bound 20

enable

0x03 0x00XXX

0xA1 0x02XXX

0xA1 0x01XXX

0x2D 0x01XXX

0x15 0x04XXX

0x2D 0x03XXX

0x3B 0x03XXX

0x3B 0x01XXX

10 10

11 10

01 01

10 00

11 10

10 00

11 11

10 10

Figure 4: DPU modified architecture at the Net-
work interface target (T1)

DPU implementation, in particular in the worst-case sce-
nario (all the initiators wanting to access with both roles
all of the memory blocks). For duality, if we consider an
implementation of the DPU with a fixed number of entry
lines for the lookup table, the second proposed architecture
could double the number of allowed configurations, when
compared with the previous one. However, advantages will
be reduced for configurations in which a relevant number of
initiators access with only one role to the memory blocks.
Obviously, in configurations in which all the initiators access
to the memory in the hypothesized way, the architecture T1
will be more costly then T0.

4.3 Architectures at the initiator (I0, I1)
We also explore the case in which the data protection unit

is distributed and located in the Network Interfaces of the
initiators. Figure 1(b) shows an overview of the distributed
architecture. In this case, the number of lines in the lookup
table depends on the number of targets to which the initiator
can send packets and on the number of blocks in each target
memory. Access control is performed at the same time than
address conversion into network ID, making possible to have
an overhead smaller that the one in the equivalent architec-
tures at the target. In fact, it is not necessary to include in
the lookup table DestID (dual of SourceID at the initiator),
being the lookup done directly on the address coming from
the processing unit.

As already done for the architecture at the target, we
explore the two implementations including in one case the
Role bit in the lookup table and in the other in the RAM.
As shown in particular in the next section, adopting a dis-
tributed architecture reduces the overhead associated to the
protection unit. In fact, if compared to the architectures at
the target, the lookup table is of smaller dimensions. More-
over, checking the access rights at the initiator’s NI avoids
having in the NoC the waste of bandwidth caused by the
packets that would be rejected at destination, as it is in the
case of the architecture at the target. However, locating the
DPU at the initiator has practical drawbacks due to the in-
creased difficulty of programming a distributed protection
unit, in particular in the case of frequently changing scenar-
ios and applications.

4.4 Interaction with the OS
We included in the Data Protection Unit the possibility

to distinguish the role of the initiator during the memory
request. This feature is useful for a more detailed identifica-

170

0

0,2

0,4

0,6

0,8

1

1,2

1,4

4 blocks 8 blocks 16 blocks 4 blocks 8 blocks 16 blocks 4 blocks 8 blocks 16 blocks

2 Initiators 4 Initiators 8 Initiators

A
re

a
(m

m
2
)

T0

T1

(a) DPU on the NI Target

0

0,2

0,4

0,6

0,8

1

1,2

1,4

4 blocks 8 blocks 16 blocks 4 blocks 8 blocks 16 blocks 4 blocks 8 blocks 16 blocks

2 Targets 4 Targets 8 Targets

A
re

a
(m

m
2
)

I0

I1

(b) DPU on the NI Initiator

Figure 5: DPU area overhead for several configurations in terms of number of initiators, targets and memory
blocks, type of architectures and network position.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

4 blocks 8 blocks 16 blocks 4 blocks 8 blocks 16 blocks 4 blocks 8 blocks 16 blocks

2 Initiators 4 Initiators 8 Initiators

E
n

er
g

y
(n

J
)

T0

T1

(a) DPU on the NI Target

0

0,2

0,4

0,6

0,8

1

1,2

1,4

4 blocks 8 blocks 16 blocks 4 blocks 8 blocks 16 blocks 4 blocks 8 blocks 16 blocks

2 Targets 4 Targets 8 Targets

E
n

er
g

y
(n

J
)

I0

I1

(b) DPU on the NI Initiator

Figure 6: DPU energy for access for several configurations in terms of number of initiators, targets and
memory blocks, type of architectures and network position.

tion of the initiator, especially when it operates as a hetero-
geneous software entity. In a complex architecture running
an Operating System (OS), the role of the initiator can be
associated to the software mode (supervisor or user) of the
processor.

In our approach, this information is supposed to be prop-
agated from the processor to a particular register in the Net-
work Interface or, if adopting an interface to the processor
similar to the one suggested by the OCP/IP specifications
[1], special signals to be driven only if the processor is in
a secure mode. The first hypothesis can be easily satisfied
by considering the possibility to have a memory mapped
register on the NI close to the processor and the possibility
to execute a couple of functions executable only in super-
visor mode. In this case, the memory mapped register will
be used to store the status (role) of the software execution
(user or supervisor mode) while the two functions, both im-
plementing a simple store operation, will be used to change
the status within this role-register. In fact, passing from
supervisor to user mode the last function call in supervisor
mode will set the role-register on user, while passing from
user to supervisor the first call to be executed will be the
function used to set the role-register to supervisor.

The role-register within the network interface can be also
used in the same way to store information about the exe-
cution of secure services, drivers or kernels with respect to
normal OS or applications, as in [3].

5. SYNTHESIS RESULTS
In this section, we present the synthesis results for the

four different implementations (T0, T1, I0, I1) of the DPU
architecture presented in Section 3 obtained by using the
0.13µm HCMOS9GPHS STMicroelectronics technology li-
brary. In the second part, we also show two case studies
for the whole system architecture to underline the overhead
associated with the data protection, comparing different im-
plementations of the DPU (T1 and I1).

The graphs in Figures 5 and 6 show area (in mm2) and
energy (in nJ) associated with different combinations of
initiators/memory blocks/architectures (T0, T1) and tar-
gets/memory blocks/architectures (I0, I1). All the synthe-
sis were performed for a given clock frequency of 500MHz
and timing constraints are met for all the configurations ex-
plored. As already introduced, the graphs show results in
the worst case scenario, corresponding to implementations
of the DPU allowing covering all possible combinations of

171

Table 1: Area and energy overhead due to the Data
Protection Unit for the whole system, considering
two different target architectures of the network and
two different DPU implementations.

Area [mm2] Energy [pJ]

Arch1 T1 0.268 36.5
I1 0.221 117.4

Arch2 T1 0.540 508.6
I1 0.443 59.9

parameters. In case of T0 (I0), this would be equivalent of
having a number of entries in the lookup table equal to the
product of the number of initiators (targets) with the num-
ber of memory blocks and roles. In case of T1 (I1), being
the role directly encoded in the RAM, for a given combi-
nation of parameters the maximum number of lines in the
lookup table is half than in the dual architecture, while the
dimension of the RAM doubles.

Table 1 shows area and energy overhead due to the pro-
posed data protection mechanism, applied to all the memory
elements of the system. We consider two different target ar-
chitectures:

• Arch1 considers 2 initiators and 8 target-memories
each one partitioned into 4 memory blocks;

• Arch2 considers 8 initiators and 1 target-memory par-
titioned into 16 memory blocks.

In the column Area of Table 1, we show the sum of the
area of all the DPUs distributed on the different NIs, while
column Energy represents the cost for access to the DPU for
each memory request. As the table shows, we obtain always
a smaller area in the I1 architecture, due to the relevant in-
fluence in the dimension of T1 given by the look up of also
the SourceID bits. In particular, T1 results to be in both
Arch1 and Arch2 about 21% bigger than I1. However, if
we consider the energy aspects of the architectures, we can
observe that adopting the T1 architecture in Arch1 allows
saving about 70% of the energy consumed in the case of con-
sidering the I1 architecture. This result is obtained because
the DPUs implemented at the targets NI in T1 are smaller
than those implemented at the initiators NI in I1 and conse-
quently the energy to perform the look up is smaller. When
considering Arch2, the opposite holds, being the DPU im-
plemented at the target in T1 sensibly bigger than those at
the initiators in I1. Compared to common NI implementa-
tions [13], the overhead associated with the DPU is quite
significant and represents one of the main drawback of this
implementation. In fact, considering for instance a T1 con-
figuration with 16 entry lines for the lookup table, the area
occupied by the DPU is about the 21.5% of the total area.

It is important to note that exists the possibility to have
systems where not all the targets need data protection. In
these architectures, if we adopt a T1 configuration for the
target to protect we do not need to pay any energy overhead
for the accesses to non protected memories, since we do not
have any access to the DPU. On the other hand, if we adopt
the I1 configuration, we have to pay the access to the DPU
for each network transaction. This is due to the fact that
the protocol translation in the NI initiator and the DPU
access is done in parallel to hide the latency overhead.

6. CONCLUSIONS AND FUTURE WORKS
In this paper we presented a novel solution for data protec-

tion in Multiprocessor System-on-Chip architectures based
on NoC. We proposed a hardware module coupled with the
network interface that gives the possibility to perform secure
accesses to memories and memory-mapped peripherals. The
paper also presented four different implementations of the
Data Protection Unit, showing advantages and disadvan-
tages of each solution with respect to the system architec-
ture.

A deeper interaction with the Operating System is the
main future work of the paper. In fact, our objective is the
possibility to secure the memory access not only referring
to the initiator but, with finest granularity, to the threads
running on the processor. This could enable the possibility
to perform the migration of the threads across the network
together with their associated access rights.

7. ACKNOWLEDGMENTS
This work has been carried out under the MEDEA+ Lo-

MoSA+ Project and is partially funded by KTI - The Swiss
Innovation Promotion Agency - Project Nr. 7945.1 NMPP-
NM.

8. REFERENCES
[1] Open Core Protocol Specification 2.2.

[2] SonicsMX SMART Interconnect Datasheet.
http://www.sonicsinc.com.

[3] T. Alves and D. Felton. TrustZone: Integrated Hardware
and Software Security, White Paper. ARM, 2004.

[4] L. Benini and G. De Micheli. Networks on Chips: A New
SoC Paradigm. IEEE Computer, 2002.

[5] E. Chien and P. Szoe. Blended Attacks Exploits,
Vulnerabilities and Buffer Overflow Techniques in
Computer Viruses. Symantec White Paper, Sept. 2002.

[6] J. Coburn, S. Ravi, A. Raghunathan, and S. Chakradhar.
SECA: Security-Enhanced Communication Architecture. In
Proceedings of the 2005 International Conference on
CASES, 2005.

[7] W. J. Dally and B. Towles. Route packets, not wires:
on-chip inteconnection networks. In Proceedings of DAC
’01, pages 684–689, New York, NY, USA, 2001. ACM Press.

[8] J. P. Diguet, S. Evain, R. Vaslin, G. Gogniat, and E. Juin.
NoC-centric security of reconfigurable soc. In Proceedings
of the First International Symposium on Networks-on-Chip
(NOCS’07), May 7-9 2007.

[9] C. H. Gebotys and R. J. Gebotys. A framework for security
on NoC technologies. In Proceedings of the Annual
Symposium on VLSI, pages 113–117. IEEE Computer
Society, Feb. 20-21 2003.

[10] C. H. Gebotys and Y. Zhang. Security wrappers and power
analysis for SoC technology. In First IEEE/ACM/IFIP
International Conference on CODES+ISSS, pages
162–167, Oct. 1-3 2003.

[11] P. Kocher, R. Lee, G. McGraw, A. Raghunathan, and
S. Ravi. Security as a New Dimension in Embedded System
Design. In Proceedings of DAC 2004, Jun. 7-11 2004.

[12] K. Pagiantzis and A. Sheikholeslami. Content-Addressable
Memory (CAM) Circuits and Architectures: A Tutorial
and Survey. IEEE Journal of Solid-State Circuits, 41(3),
March 2006.

[13] A. Radulescu, J. Dielissen, S. G. Pestana, O. Gangwal,
E. Rijpkema, P. Wielage, and K. Goossens. An Efficient
On-Chip NI Offering Guaranteed Services, Shared-Memory
Abstraction, and Flexible Network Configuration. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 24(1), January 2005.

172

