
Performance and Resource Optimization of NoC Router 

Architecture for Master and Slave IP Cores
1
 

Glenn Leary, Krishna Mehta, Karam S. Chatha 

Arizona State University 

Department of CSE, PO BOX 875406, Tempe, AZ 85287-5406 

{gleary, kbmehta, kchatha}@asu.edu 

 

ABSTRACT 

System-on-Chip architectures incorporate several IP cores with 

well defined master and slave characteristics in terms of on-chip 

communication.  The paper presents a parameterized NoC router 

architecture that can be optimized for performance and resource 

requirement by exploiting the master or slave behavior of the 

cores that are attached to it.  We implemented the proposed router 

architecture for the IBM Coreconnect protocol and mapped it on 

the Xilinx Virtex series FPGA.  We compared the FPGA based 

implementation against industry strength bus design that supports 

the IBM Coreconnect protocol, namely processor local bus (PLB). 

For similar resource requirements, our design demonstrated a 

97.6% increase in throughput and 76.53% decrease in latency in 

comparison to the PLB. We also compared the proposed 

architecture with an existing NoC router design that is oblivious 

to master/slave IP cores. In the case of a router with all shared 

slaves our design resulted in 65.9% reduction in resources, 548% 

increase in throughput and 84.7% reduction in latency.   

Categories and Subject Descriptors 
B.4 [Input/Output Data Communications]: Interconnections 

General Terms 
Performance, Design 

Keywords 
Network-on-Chip, FPGA 

1. INTRODUCTION 
Network-on-Chip (NoC) has emerged as the pre-dominant 

technology to replace bus based architectures for on-chip 

communication in System-on-Chip (SoC) devices. There are 

several factors that have led to the advent of NoC.  Increase in 

interconnect propagation delay relative to gate delay due to 

technology scaling implies that end to end on-chip                         
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communication requires several clock cycles.                                  

Thus, synchronous on-chip communication as assumed by several 

bus based architectures is no longer feasible.  The emergence of 

Globally Asynchronous Locally Synchronous (GALS) design 

methodology based multi-processor SoC devices has also raised 

the need for global asynchronous communication.  Further, the 

requirement for concurrent high performance communication 

cannot be easily addressed by traditional bus based architectures. 

NoC addresses several of the on-chip communication challenges 

of nanoscale technologies by supporting asynchronous packet 

switching based communication. Long signal propagation delays 

are effectively pipelined by introducing multiple routers along the 

path. NoC supports high performance concurrent communication 

as the various routers operate in a decentralized manner. 

NoC can be classified into two broad categories based on their 

topologies. Regular topologies such as mesh, torus or hypercube 

are suitable for processor architectures aimed at general purpose 

computing. Irregular or custom topologies are suitable for 

application specific SoC such as media-processors where the 

various cores demonstrate fairly well defined on-chip 

communication patterns. Irregular NoC have been demonstrated 

to be superior in router (resource) requirements and power 

consumption for application specific SoC in comparison to 

regular architectures [1].  

The paper addresses the router design for an irregular topology 

NoC aimed at application specific SoC architectures.  In the 

application specific SoC certain cores act as masters that initiate 

requests, and several other cores are slaves that respond to 

requests. Such well defined master/slave relationships offer the 

potential for optimizing the architecture of a router based on the 

cores attached to it. The optimizations include customization of 

the router ports for master or slave cores, and reduction in the 

number of arbiters and other controllers based on the exclusive or 

shared nature of the slave with which a master core interacts. We 

discuss router architectures for several configurations from single 

master/multiple slaves to multiple masters with both shared and 

exclusive slaves to a network of such routers. 

We present experimental results that evaluate the performance and 

resource usage of the proposed router architecture by 

implementing the design for the IBM Coreconnect on-chip 

communication protocol and mapping it on the Xilinx Virtex II 

series FPGAs. We compared the proposed design with existing 

processor local bus (PLB) that implements the Coreconnect 

protocol and also against a NoC router architecture that is 

oblivious to master/slave cores.  
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The remainder of this paper is organized as follows.  In Section 2, 

we review previous work related to NoC.  In Section 3, we present 

our novel NoC custom router architecture.  We present the 

experimentation and results in Section 4.  Finally, we summarize 

our contribution and discuss future work in Section 5. 

2. PREVIOUS WORK 
In recent past, several router architectures have been proposed for 

NoC. In the following paragraph, in the interest of space, we 

discuss only a few of the existing architectures. SPIN [2] was one 

of the seminal NoC designs that supported fat-tree topologies. 

Proteo [3] is a VSIA compliant NoC architecture that can be 

configured for ring, star and bus topologies. Xpipes [4] is a 

parameterized router design that can be utilized in irregular 

topologies.  Nostrum [5] is a router design for mesh topologies 

that supports both best effort and guaranteed throughput traffic 

classes by reserving time slots. AEthereal [6] is also a mesh based 

NoC architecture that supports guaranteed throughput traffic by 

utilizing a centralized scheduler. QNoC [7] is another router 

architecture for planar mesh based topologies that also supports 

multiple levels of service classes for on-chip traffic. Wang et al. 

[8] and Banerjee et al. [9] presented power and power 

consumption models for NoC routers aimed at mesh topologies. 

Hu et al. [10] presented an analytical model for buffer 

optimization in application specific NoC. All the existing router 

architectures do not consider if a master or slave core is attached 

to the router. In contrast we present optimizations for a router 

aimed at irregular topologies that optimizes the resources in the 

router on the basis of the communication behavior of the core. An 

important side effect is that the operating frequency of the 

resulting design is also improved because of the reduction in 

critical paths within the router. The optimizations discussed as 

part of the paper are generic and can be applied to other existing 

router architectures. 

 

 

Figure 2. Format of NoC flit 

3. ROUTER ARCHITECTURE 
In the following sections we begin the discussion with a basic 

router supporting the communication between a single master and 

multiple slaves. We then extend the router architecture to support 

multiple masters with several slaves some of which are exclusive 

to certain masters while others are shared by a subset of masters. 

Finally, we consider the design of a router that includes 

connections to other routers with the masters and slaves being 

distributed across the network. In each of these architectures we 

support communication with split transactions. That is, each 

master can issue multiple read and write transactions to the slaves 

without waiting for the responses. We also discuss simplification 

of the routers to consider blocking read and write where a master 

waits for the response before issuing another request. 

3.1 Single Master and Multiple Slaves 
The basic router architecture for a single master (M)/multiple 

slave (S) configuration is shown in Figure 1. The interface blocks 

that connect the masters and slaves to the routers perform the 

function of protocol conversion from the core to the network. For 

example, we implemented the interface for the IBM Coreconnect 

protocol to evaluate the performance of our design.  

Each flit in the network has a control word and payload as shown 

in Figure 2. The control word includes the destination id and 

source id. The payload contains the word associated with the core 

native protocol. In our case we interfaced the NoC with the IBM 

Coreconnect protocol, and therefore the payload consists of 

Coreconnect control word and data. Therefore the width of the 

payload is dependent upon the native protocol of the cores. The 

NoC can easily support communication between cores supporting 

different protocols by inclusion of appropriate interface logic. The 

width of the destination and source identifiers is given by “log2 

N” where N is the total number of cores in the network. 

The master requests are fed to virtual channels or FIFOs. The 

master utilizes multiple virtual channels (VC) to avoid congestion 

due to a slow slave. The VCs are denoted as two FIFOs in Figure 

1. The requests are selected from the VC through a round robin 

priority mechanism and fed to the decoders (D) associated with all 

the slaves. The decoders determine if the request is associated 

with the particular slave based on the destination id within the flit. 

The slave responses are buffered into a single VC. All the 

responses from the slave virtual channel are fed back to the master 

through a crossbar (denoted by the box with “X”) which is 

controlled by the arbiter (A). The arbiter supports a round robin 

priority mechanism. The master and slave VCs, and the master 

arbiter are required as we support split transactions. Since 

multiple slaves can respond at the same clock cycle, the responses 

need to be buffered in the slave virtual channel and also 

arbitrated.  

We can now compare the proposed design with a router shown in 

Figure 3 that is oblivious to master and slaves cores connected to 

 

Figure 1. Single master, multiple slaves router design 
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Figure 3. Router design oblivious to master/slave cores 
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it. In comparison to such a router our design eliminates the 

arbiters and crossbars associated with the slaves. As the slaves 

only receive requests from a single master, the arbiters and 

crossbar can be removed. Further, the multiple VCs at each slave 

interface are also replaced by a single virtual channel.  

Finally, if the protocol only supports blocking transactions we 

further optimize the resources in the routers. We can remove the 

VCs in the master and slaves as only one request is outstanding at 

a given time instance. The master arbiter can also be replaced by a 

simple controller that sets the crossbar based on the outstanding 

request. In other words as the master is aware of the expected 

response from a particular slave core it can itself set the crossbar 

and eliminate the need for arbitration. 

3.2 Multiple Masters and Multiple Slaves 
The design for the router with multiple masters and multiple 

slaves is shown in Figure 4. In the figure we distinguish between 

slaves that are shared (SS) between the masters, and exclusive 

slaves (SE) that are not shared between the masters. The router 

design for the exclusive slave is the same as the previous section. 

The master requests are buffered in virtual channels. Each request 

is selected from the virtual channel in a round robin manner and 

fed to only those slaves with whom the master can communicate. 

Similar to the master logic in the previous design, the input to the 

shared slaves must now be arbitrated. Further, the slave arbiters 

are preceded by a decoder to deduce if the incoming request is 

meant for the particular slave. In the figure the decoder/arbiter 

pairs are represented by circles with D/A within them. Also, the 

slave responses are now stored in multiple virtual channels (2 in 

the figure) to overcome congestion due to a busy or slow master. 

Finally, the master arbiters are also replaced by decoder/arbiter 

pairs similar to the slaves. 

In comparison to the router design that is oblivious to master and 

slave cores (shown in Figure 3) the proposed design does not 

include the arbiters and crossbars for exclusive slaves. Similar to 

the previous design this is due to the fact that only a single master 

communicates with the exclusive slaves. The VCs at the exclusive 

slaves are also reduced to a single FIFO. Further, the arbiters at 

the shared slaves and masters only include inputs from the 

communicating masters and slaves, respectively.  In other words a 

shared slave arbiter and crossbar only receive inputs from 

communicating masters and not all the cores on the router. 

Similarly, the master arbiter and crossbar only receive inputs from 

the slaves which whom the master communicates. 

In the case of a protocol that only supports blocking transactions, 

we can eliminate the VCs from the masters and slaves, and the 

arbiters at the masters can be simplified as before. 

3.3 Networked Masters and Slaves 
The design for networked routers that are connected to multiple 

masters and slaves is shown in Figure 5. In comparison to the 

previous design, this router includes output and input ports for 

inter-router communication. The ports are symmetric with respect 

to each other. The design on the output port side consists of a 

decoder/arbiter pair and crossbar. Only those masters (or slave) 

are connected to the output port that performs communication 

with slave (or master) cores which are located along a path from 

the particular port. The output of the crossbar is fed into VCs 

located at the neighboring router. The VCs are dual clocked to 

support asynchronous communication. The write operation is 

synchronous with the clock of the neighboring router while the 

read operate is synchronous to the clock of the local router. The 

VCs of the input port are only connected to those cores that 

communicate with other cores located at the neighboring router. If 

a particular router is connected to multiple neighboring routers, 

then the decoder/arbiter pair of the output port can also receive 

inputs from the VCs associated with the input ports. 

 

Figure 5. Networked router design 

The output port for the router design that is oblivious to masters 

and slaves receives inputs from all cores and input ports of the 

router. Similarly, the input port is connected to all the cores and 

output ports of the router. In our design, in addition to all the 

optimizations specified in the previous two sections (3.1 and 3.2) 

we also optimize the number of connections between cores and 

the input/output ports associated with neighboring router 

communication. 

The input and output port design remains unchanged in the case 

of blocking transactions.  This is due to the fact that multiple 

masters can issue requests to neighboring slaves at the time 

instance. In other words, even though each master blocks on a 

outstanding request, there could be multiple requests being 

processed within the network. Consequently we require the 

decoder/arbiter and VC associated with the output and input 

ports, respectively. 

3.4 NoC Design with Parameterized Blocks 
We designed parameterized component blocks for decoders, 

arbiters, VCs and crossbars in VHDL. For example the decoder 

associated with a master/slave is parameterized on the number of 

inputs and the id of the respective core. The decoder associated 

with a output port is parameterized on a number of ids in addition 

to the number of inputs. Each id specifies the destination core that 

can be reached through the particular output port. The designer 

 

Figure 4. Multiple masters, multiple slaves router design 
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specifies the topology of the network, the master and slave cores 

connected to the NoC, and path of communication routes. We 

utilize this information and the library of parameterized building 

blocks to generate the NoC.  Therefore, the overall design flow 

can generate routers with variable number of input/output ports. 

4. EXPERIMENTAL RESULTS 

4.1 Comparison with PLB 
In the first set of experiments, we compared our router 

architecture with the IBM Coreconnect PLB architecture [11].  

We compared the resource usage by synthesizing the designs on 

the Xilinx Virtex II series FPGAs. The performance in terms of 

latency and acceptance rate was compared by utilizing synthetic 

traffic.  The comparisons with the PLB were performed with 

blocking transfers for both the router as well as the PLB. 

4.1.1 Resource Comparison 
For the resource comparison we generated a design configuration 

consisting of two masters with four slaves.  For our router we 

generated three different designs of this configuration: i) with all 

of the slaves shared, ii) with two shared slaves and two exclusive 

slaves, and iii) with all of the slaves exclusive.  We then 

synthesized the designs using the Xilinx ISE synthesis tool to 

determine the resource requirements as well as the maximum 

operating frequency.  The results are summarized in Table 1. 

Table 1. Resource Comparison with PLB 

Architecture 

Two Masters - Four Slaves 

Frequency 

(MHz) 

# Slices 

(13696) 

NoC -- -- 

All Shared Slaves 220 811 

Two Shared Slaves 240 487 

No Shared Slaves 349 172 

PLB -- -- 

PLB with DCR 169 430 
 

As shown in Table 1, the required resources of our router are 

equivalent to PLB when two of the slaves connected to the router 

are exclusive to masters.  (Table row “Two Shared Slaves.”)  Our 

router has a resource requirement of 487 slices and the PLB 

requires 430 slices.  However, the maximum frequency of our 

router is 42% higher than the PLB with a value of 240 MHz 

compared to 169 MHz for PLB.  If we eliminate the need for 

shared slaves (Table row “No Shared Slaves”) our router shows a 

decrease in resources and increase in frequency.  Here our router 

requires 172 slices, which represents a 60% decrease in resources 

over the PLB.  Also, our router shows a 106.5% increase in 

frequency over the PLB with a value of 349 MHz compared to the 

PLB’s 169 MHz.  On the other hand, if we restrict our router to 

having all shared slaves (Table row “All Shared Slaves”) our 

router requires 811 slices, which represents an increase of 87% in 

resources over the PLB.  However, the frequency of our router 

remains higher with a value of 220 MHz compared with 169 MHz 

for the PLB.  The increased resource requirement shown by our 

router was due to our router supporting split transactions.  

Therefore, the router had additional resources in terms of arbiters, 

decoders and VCs. 

4.1.2 Performance Comparison 
We compared the performance of our routers with PLB by 

injecting a synthetic stream of data traffic.  The synthetic traffic 

was injected into the system at set injection rates in terms of the 

number of requests/responses per clock cycle per node.  The 

traffic was generated with a uniform distribution using a random 

number generation.  We then measured the acceptance rate in 

terms of requests/responses per clock cycle per node (Figure 6).  

We also measured the average latency in terms of clock cycles for 

the packets being injected into the system (Figure 7). 

As shown in Figure 6, the acceptance rate of our router 

dramatically improves as the number of shared slaves is reduced.  

In the following discussion the throughput numbers in Gbps are 

presented by considering a data payload of 64 bits/flit and the 

frequency numbers shown in the figures. The PLB shows an 

acceptance rate of .151 (requests/responses per clock cycle per 

node, 1.635 Gbps) prior to congestion 

(“PLB_2M_4S_all_shared” curve in Figure 6).  Our router with 

all shared slaves shows an acceptance rate of .205 

(requests/responses per clock cycle per node, 2.79 Gbps) prior to 

congestion (“2M_4S_all_shared” curve in Figure 6), representing 

an 70.6% increase in performance over the PLB.  If we reduce the 

number of shared slaves in our router to two and set the remaining 

two slaves as exclusive slaves (“2M_4S_2excl_2shared” curve in 

Figure 6), the acceptance rate increases to .21 (requests/responses 

per clock cycle per node, 3.23 Gbps), which represents a 97.6% 

increase over the PLB.  Furthermore, if all of the slaves are 

exclusive (“2M_4S_4excl_0shared” curve in Figure 6), the 

acceptance rate again increases to a value of .219 

(requests/responses per clock cycle per node, 4.89 Gbps), 

representing a performance increase of 199.1% over the PLB. 

Figure 7 shows the effect that the reduction in the number of 

shared slaves has on the latency of the router.  The PLB 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.2 0.4 0.6 0.8 1 1.2
Injection (req/resp per clk cycle per node)

A
c
c
e
p
ta
n
c
e
 (
re
q
/r
e
s
p
 p
e
r 
c
lk
 c
y
c
le
 p
e
r 
n
o
d
e
)

2m_4s_4excl_0shared (349 MHz)

2m_4s_2excl_2shared (240 MHz)

2m_4s_all_shared (213 MHz)

PLB_2m_4s_all_shared (169 MHz)

 

Figure 6. Acceptance Rate Comparison with PLB 
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Figure 7. Latency Comparison with PLB 
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configuration (“PLB_2M_4S_all_shared” curve in Figure 7) 

shows a latency of 15 clock cycles prior to congestion.  The router 

with a configuration of all shared slaves (“2M_4S_all_shared” 

curve in Figure 7) shows a latency of 12 clock cycles, 

representing a 20% decrease in the latency.  If the number of 

shared slaves is reduced to two with the remaining two slaves 

being exclusive (“2M_4S_2excl_2shared” curve in Figure 7) the 

latency drops to a value of 11 clock cycles, showing a 26.66% 

decrease in latency over the PLB.  If all of the slaves are 

configured as exclusive (“2M_4S_4excl_0shared” curve in Figure 

7) the latency drops to a value of 10 clock cycles, representing a 

decrease in latency of 33.33% over the PLB.  However, the PLB 

is congesting at a much lower injection rate, .16 

(requests/responses per clock cycle per node), compared with the 

routers, which are congesting at .25 (requests/responses per clock 

cycle per node).  Also, if the differing frequencies are taken into 

account the decrease in latency in terms of nanoseconds (ns) is 

much more dramatic.  With the PLB showing a latency of 88.65 

ns while the router configurations demonstrate latencies of 23.45 

ns for all shared slaves, 20.8 ns for 2 shared slaves, and 14.325 ns 

for all exclusive slaves.  This represents decreases in latency of 

73.54%, 76.53%, and 83.84% respectively. 

4.2 Comparison with Existing Router 
In our second set of experiments we compared our router 

architecture with a NoC router architecture which is oblivious to 

master/slave cores [9]. The resource usage comparison was 

performed by synthesizing the design. The performance 

comparison was performed with synthetic streams and also a 

JPEG benchmark. 

4.2.1 Resource Comparison 
We compared the resource usage for router designs with 2 masters 

and 3 slaves. For our router we also generated three 

configurations: i) two shared slaves with one exclusive slave, ii) 

with one shared slave and two exclusive slaves, and iii) with all 

exclusive slaves.  We synthesized all of the configurations using 

the Xilinx ISE synthesis tool to determine the total number of 

slices required by each configuration along with the maximum 

operating frequency for each.  The results are summarized in 

Table 2. 

Table 2. Resource Comparison with Existing Router 

Architecture 

Two Masters - Three Slaves 

Frequency 

(MHz) 

# Slices 

(13696) 

NoC -- -- 

All Shared Slaves 238 477 

Two Shared Slaves 241 401 

One Shared Slave 328 246 

No Shared Slaves 337 234 

Oblivious NoC -- -- 

Five Ports 76 1176 
 

As shown in Table 2 our router performs better in resource 

requirements as well as maximum frequency in every 

configuration over the pre-existing NoC router.  The pre-existing 

router displayed a resource requirement of 1176 slices (Table row 

“Five Ports”).  While our router with all shared slaves (Table row 

“All Shared Slaves”), showed a resource requirement of 477 

slices, representing a 59% decrease in resource requirements over 

the pre-existing router.  Our router also demonstrated a maximum 

frequency of 238 MHz, representing a 213% increase over the 

pre-existing router’s maximum frequency of 76 MHz.  As the 

number of shared slaves was reduced, our router demonstrated a 

further decrease in the required resources and an increase in the 

maximum frequency.  With one shared slave (Table row “One 

Shared Slave”), the required resources reduces to 246 slices, 

representing an 89% reduction in resources compared with the 

pre-existing router.  The frequency shown was 328 MHz, 

representing a 331.57% increase over the pre-existing router.  

This trend continues as the number of shared slaves is reduced to 

zero (Table row “No Shared Slaves”).  With all of the slaves as 

exclusive our router shows a resource requirement of 234 slices 

and a frequency of 337 MHz.  This represents a 90% decrease in 

resources and a 343% increase in frequency compared with the 

pre-existing router architecture. 

4.2.2 Performance Comparison 
We utilized a similar experimental set-up with synthetic data 

traffic as that utilized for the PLB comparison. However, we used 

split transactions instead of blocking transactions.  We also 

performed the comparison using similar traffic patterns on 

equivalent configurations on both routers.  The first configuration 

was 2 masters and 3 slaves with all of the slaves shared.  The 

second configuration was 2 masters and 3 slaves with all of the 

slaves exclusive.  The results for acceptance rate and latency are 

shown in Figures 8 and 9, respectively. 
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Figure 8. Performance Comparison with Existing NoC 

As shown in Figure 8, our router performs better than the 

oblivious router in both configurations.  The throughput numbers 

in Gbps are presented by considering a data payload of 64 bits/flit 

and the frequencies shown in the figures.  For the 2 masters and 3 

slaves with all of the slaves shared, the oblivious router shows an 

acceptance rate of .1084 (requests/responses per clock cycle per 

node, .504 Gbps) prior to congestion (“Oblivious NoC 

(2m_3s_all_shared)” curve in Figure 8).  For the same 

configuration our router shows an acceptance rate of .215 

(requests/responses per clock cycle per node, 3.28 Gbps) prior to 

congestion (“2m_3s_all_shared” curve in Figure 8).  This 

represents an increase in performance of 548% over the oblivious 

router architecture.  For the router configuration in which all of 

the slaves are exclusive the oblivious router shows an acceptance 

rate of .153 (requests/responses per clock cycle per node, .712 

Gbps) prior to congestion (“Oblivious NoC (2m_3s_3excl)” curve 

in Figure 8).  Our router architecture shows an acceptance rate of 

.221 (requests/responses per clock cycle per node, 4.78 Gbps) 

prior to congestion (“2m_3s_3excl_0shared” curve in Figure 8).  

This represents an increase in performance of 571%. 
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Figure 9. Latency Comparison with Existing NoC 

Figure 9 shows the comparison between the routers in terms of 

latency.  As shown in Figure 9, the latency of our router is lower 

than the pre-existing oblivious one.  The pre-existing oblivious 

router with all slaves shared (“Oblivious NoC 

(2m_3s_all_shared)” curve in Figure 9) demonstrates a latency of 

12 clock cycles prior to congestion.  Our router demonstrates a 

latency of 6 clock cycles (“2m_3s_all_shared” curve in Figure 9).  

This represents a decrease in latency of 50%.  However, if the 

differing frequencies are taken into account this decrease is much 

more dramatic.  The oblivious router shows a latency of 165 ns 

while our router shows a latency of 25.2 ns.  This represents a 

decrease in latency of 84.7%.  For the configuration in which all 

of the slaves are exclusive the pre-existing oblivious router shows 

a latency of 8 clock cycles prior to congestion (“Oblivious NoC 

(2m_3s_3ecl)” curve in Figure 9).  Our router shows a latency of 

6 clock cycles (“2m_3s_3excl_0shared” curve in Figure 9).  This 

represents a 25% decrease in latency.  However, if the frequencies 

of the routers are taken into account our router performs much 

better.  In this case the oblivious router has a latency of 110 ns 

and our router has a latency of 17.76 ns.  This represents an 

83.85% decrease in latency. 

Table 3. JPEG Performance Comparison 

 

One Hop Latency 

(clk cycles) 

Two Hop Latency 

(clk cycles) 

Master/Slave Aware NoC 3 (16.17ns) 6 (32.39 ns) 

Master Slave Oblivious NoC 8 (105.46 ns) 16 (210.04 ns) 
 

4.2.3 Comparison for JPEG 
We also compared the performance of the two designs by 

considering a JPEG benchmark from Opencores.org [12] that had 

2 masters and 7 slaves (primarily memory banks). We considered 

a NoC design with 3 routers that were configured as follows: R1 

(M1, S1, S2, S6, R2), R2 (M1, S2, S4, R1, R3) and R3 (S3, S5) 

where “R”, “M” and “S” denote router, master and slave, 

respectively. The parenthesized list for each router denotes its 

connectivity. Table 3 summarizes the latency comparisons for 

traffic traces that go through one hop and two hops (maximum 

number of hops for our design). The comparisons are in 

nanoseconds due to the different operating frequencies of the two 

designs. The percentage reductions in one and two hop latencies 

of our router design over the existing design were 84.66% and 

85.4%, respectively. The large reductions are primarily due to the 

higher operating frequency of our design.  The resource 

requirements for our router design were 1187 slices as opposed to 

3052 slices for the existing design (61.1% reduction). 

5. CONCLUSION 
The paper presented a parameterized NoC router architecture that 

exploits the master/slave communication behavior of the SoC 

cores to optimize the resources. Besides the reduction in the area 

requirements, the optimizations also lead to substantial increase in 

operating frequencies and consequently performance. We 

evaluated the router design by extensive experimentation with 

both an industrial strength bus design based on IBM Coreconnect 

protocol (PLB), and an existing router design that does not 

consider the optimizations.  Our design demonstrated a 97.6% 

increase in throughput and 76.53% decrease in latency in 

comparison to the PLB while utilizing comparable resources (for 

2 masters, 2 exclusive slaves and 2 shared slaves). In comparison 

to an existing NoC router architecture that is oblivious to 

master/slave cores connected, our design resulted in 65.9% 

reduction in resources.  As well as a 548% increase in throughput 

and 84.7% decrease in latency for all shared slaves and 571% 

increase in throughput and 83.85% decrease in latency for all 

exclusive slaves.  Finally for the JPEG design our design obtained 

a reduction of 85.03% and 61.1% in average latency and resource 

requirements, respectively. Future work will address automated 

generation of irregular NoC topologies that are sensitive to 

master/slave behavior of the cores, and support for differentiated 

traffic classes offering multiple Quality-of-Service levels. 
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