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ABSTRACT
Advances in semiconductor technologies have placed MPSoCs
center stage as a standard architecture for embedded appli-
cations of ever increasing complexity. Because of real-time
constraints, applications are usually statically parallelized and
scheduled onto the target MPSoC so as to obtain predictable
worst-case performance. However, both technology scaling
trends and resource competition among applications have led
to variations in the availability of resources during execu-
tion, thus questioning the dynamic viability of the initial sta-
tic schedules. To eliminate this problem, in this paper we
propose to statically generate a compact schedule with pre-
dictable response to various resource availability constraints.
Such schedules are generated by adhering to a novel band
structure, capable of spawning dynamically a regular reassign-
ment upon resource variations. Through incorporating several
soft constraints into the original scheduling heuristic, the pro-
posed technique can furthermore exploit the inherent timing
slack between dependent tasks, thus retaining the spatial and
temporal locality of the original schedule. The efficacy of the
proposed technique is confirmed by incorporating it into a
widely adopted list scheduling heuristic, and experimentally
verifying it in the context of single processor deallocations.

Categories and Subject Descriptors: C.4 [Performance
of Systems]: –Reliability, availability, and serviceability

General Terms: Reliability

Keywords: Adaptive execution, reconfiguration, multiproces-
sor task scheduling

1. INTRODUCTION
The Multiprocessor System-on-Chip (MPSoC) [1] is rapidly

becoming a standard organization for embedded systems, as
advances in VLSI fabrication technologies continuously aug-
ment the tremendous amount of extant computational power.
The increasing computational power in turn engenders inte-
gration and most importantly the simultaneous execution of
higher number of applications on an MPSoC; illustrative ex-
amples include the various video processing and recoding ap-
plications executed on the Viper2 set-top box [2]. Meanwhile,
the execution environment is becoming more diverse, dynamic
and unpredictable in that the amount of computational re-
sources available to an application may vary due to either
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competing demands from other applications, or the degrada-
tion of hardware reliability. Technology scaling has not only
accentuated the probability of device failures during execu-
tion [3], but also has led to higher temperatures and increased
thermal gradients [4], both of which may cause an over-heated
processor to be temporarily unavailable during execution.

The increasing possibility of resource variations requires a
reconsideration of the critical issue of scheduling the tasks of
an application to the processing elements (PEs) of an MP-
SoC. Traditionally task scheduling can be performed either
statically during compilation, or dynamically at run time. In
general, a detailed comparison shows that three fundamental
reasons account for the attractiveness of static scheduling for
embedded MPSoCs. Firstly, static scheduling is more cost ef-
fective, as dynamic scheduling imposes indispensable overhead
in collecting workload information and scheduling online. Sec-
ondly, the limited application set of a typical embedded sys-
tem allows the extraction of sophisticated application informa-
tion and the use of aggressive static optimization techniques,
both highly desirable for static schedulers in their quest for
global workload balance. Thirdly yet most importantly, most
embedded applications need to impose crucial constraints on
worst case performance, a requirement frequently frustrated
by dynamic schedulers since they can hardly deliver a pre-
dictable worst-case schedule as the scheduling decisions are
highly impacted by run-time events, such as network or mem-
ory contentions.

A number of static scheduling heuristics have been devel-
oped for parallel systems [5], with the applicability of these
heuristics to MPSoCs also being examined recently [6, 7].
Nonetheless, the schedules generated by these heuristics are
typically confined to the case of a fixed number of PEs, thus
limiting their usefulness in a dynamic execution environment,
as a resource variation, especially a PE deallocation, would
typically demand a rearrangement of the complete original
schedule.

Because of the increasing demand for adaptivity in future
MPSoCs, dynamic reconfigurability should be embedded into
static schedules to either withstand a resource reduction or
make use of extra allocated PEs. Traditional scheduling tech-
niques either backup each task [8], or keep additional spare
processors [9] for resource reduction tolerance. However, both
strategies impose significant costs in terms of the originally at-
tainable performance. As resource deallocations are relatively
sparse, the performance of the original schedule is paramount,
thus requiring particular attention to the costs imposed on
the original schedule. The reconfiguration process further-
more should be very fast and highly predictable in order to
minimize the extra reconfiguration overhead and to meet the
real-time constraints associated with most embedded appli-
cations. Unfortunately, none of the previous run-time recon-
figuration techniques are able to meet these goals simultane-
ously. For example, a scheduling algorithm proposed in [10]
achieves reconfiguration through rescheduling on-line and re-
executing tasks upon a processor failure, thus not only impos-
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ing a considerable reconfiguration overhead but also causing
unpredictability in worst case performance.

Pure run-time reconfiguration techniques can only make de-
cisions that are locally-optimal, possibly causing unpredictable
impact on the overall performance. The simultaneous achieve-
ment of the aforementioned set of goals necessitates sophis-
ticated planning to be performed statically, motivating the
introduction of a predictable reconfiguration scheme. In gen-
eral, by making sophisticated planning during static schedul-
ing, the proposed Block & Band (BB) reconfiguration
scheme is able to generate a compact schedule with regular
and predictable response to various resource availability con-
straints. A regular reassignment capability is accomplished
through performing a group transfer of a set of tasks upon a
resource variation during execution, while within each band
the relative position of each task is retained intact. More
crucially, through the introduction of a set of soft constraints
that exploit the flexibility inherent in schedule generation, the
proposed light-weight, highly regular and predictable reconfig-
uration scheme only imposes a negligible impact on the per-
formance of the original schedule.

The rest of the paper is organized as follows. Section 2
describes in detail the proposed reconfiguration scheme, which
is incorporated into a representative scheduling algorithm in
section 3. Section 4 experimentally verifies the efficacy of the
proposed reconfiguration technique in the context of single
processor deallocations, while section 5 offers a set of brief
conclusions.

2. BB RECONFIGURATION SCHEME
This section examines in detail the proposed Block & Band

(BB) reconfiguration scheme with particular emphasis on
its conceptual mechanism. We first introduce the main idea
through the exposition of the canonical case, wherein a pro-
gram consists of multiple tasks with identical execution time
and negligible communication latency. Subsequently, we ana-
lyze in detail two critical issues: the impact of reconfiguration
on inter-task dependences, as well as the application of the
proposed regular reconfiguration technique to arbitrary pro-
grams with diverse task execution time and sizable communi-
cation latency.

As resource variations, due to either resource competition
or unpredictable device failure or thermal stress, are relatively
sparse, the single PE deallocations are the most common type
of resource variation to be encountered during execution, thus
making their handling a crucial aspect of the effectiveness of
the reconfiguration process. We select one of the most rep-
resentative MPSoCs, a chip multiprocessor that consists of
multiple identical processing elements (PEs), as the architec-
ture of our target system. Each PE is assumed to have private
instruction and data caches, while the data sharing and com-
munication among PEs is achieved through the use of a global
memory shared by all PEs.

2.1 Canonical Case
The main idea of BB reconfiguration is to incorporate dy-

namic reconfigurability directly into the static schedules. This
is achieved through imposing a band structure during static
scheduling, together with a group transfer of the whole band
upon a resource variation during execution.

The conceptual mechanism of the proposed static partition
and band-level task transfer can be clarified possibly by con-
sidering a basic example presented in figure 1, wherein 24
tasks of identical execution time are statically scheduled onto
an MPSoC consisting of 4 PEs. Figure 1a presents the initial
scheduling results, with each rectangle labeled with a num-
ber denoting a task and each column representing one PE of
the MPSoC. The band-level partition of the initial schedule is
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Figure 1: BB reconfiguration for the canonical case

presented in figure 1b. As can be seen, the initial schedule is
partitioned into two Basic Reconfiguration (BR) blocks,
which constitute the minimal reconfiguration units. Each BR
block is furthermore divided into two bands, a Left (L) band
and a Right (R) band . To form these two types of parti-
tions, two distinct types of lines are imposed on the original
schedule:

• Block partition line: the straight horizontal line be-
tween two sequential BR blocks.

• Band partition line: the staircase line between the L
and the R band within the same BR block.

A noteworthy aspect of the proposed scheme is that the
outlined shape of the L and the R band enables a regular
reassignment capability upon a resource variation. By com-
paring figures 1b and 1c, it can be clearly observed that in
both the initial and the reconfigured schedule, BR blocks, the
minimal reconfiguration units, are executed sequentially in
the same order. However, in each BR block the whole L band
is shifted in a regular manner relative to the R band, that is,
one timing step down and one PE to the right. This allows
all the tasks within each BR block to be completed with one
less PE, albeit with an additional timing step after reconfig-
uration. Crucially, both schedules presented in figures 1b and
1c are able to make full utilization of the available hardware
resource. This significant benefit is directly derived from the
size of each BR block. As can be seen in figure 1b, since each
BR block contains 4 ∗ (4 − 1) = 12 tasks, each BR block can
be completed either in 3 timing steps using 4 PEs as in the
original schedule, or in 4 timing steps using 3 PEs as in the re-
configured schedule. More generally, the impact of block size
on resource utilization can be formally specified as follows:

Block Size constraint: A full utilization of PEs both
before and after reconfiguration requires each BR block
to contain n ∗ (n − m) tasks in order to tolerate a deal-
location of m out of n PEs.

Another important benefit of the proposed technique is its
highly regular task reassignment process, achievable inde-
pendent of the PE being removed. This property can be
easily observed on an illustrative example presented in figure
2b, which uses arrows to indicate the required shifting direc-
tions of all tasks in order to tolerate the deallocation of P2.
As can be seen, the reassignment process displays high regu-
larity in that not only all the tasks within a single band share
an identical timing offset after reconfiguration (temporal reas-
signment), but also task transfers are only performed among
adjacent PEs (spatial reassignment).
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Figure 2: Reassignment directions and timing behav-
ior of inter-task dependences

2.2 Inter-task Dependence Constraints
One fundamental requirement for a reconfiguration tech-

nique is to preserve the partial ordering imposed by inter-task
data and control dependences. In the proposed BB reconfigu-
ration scheme, because the initial schedule is partitioned into
BR blocks and further into multiple bands, the dependences
among tasks can be naturally classified into four categories:
inter-block dependences, intra-band dependences, R2L depen-
dences and L2R dependences. In this subsection we will ana-
lyze in detail the timing behavior of each category.

Because BR blocks are executed sequentially in the same
order both before and after reconfiguration, it is impossible
for any violation of inter-block dependences to take place.
The same property can be observed for intra-band depen-
dences since dependent tasks that lie within the same band re-
tain their original relative position after reconfiguration. This
property can be clearly observed in figure 2c from the relative
timing relationship between tasks 1 and 3 and between tasks
5 and 7.

Because the L bands are shifted downwards relative to the
R bands, the timing slack associated with each R2L depen-
dence will always increase after reconfiguration, while the
timing slack associated with each L2R dependence will always
decrease. Accordingly, R2L dependences can also be natu-
rally preserved, as can be seen between tasks 1 and 5 in figure
2c. However, for L2R dependences, a violation may occur if
the original timing slack proves insufficient. As shown in fig-
ure 2a, while Task 5 is scheduled to be executed after Task
3 initially, these two tasks are scheduled at exactly the same
timing slot after reconfiguration in figure 2c.

The analysis above confirms one of the fundamental advan-
tages of the proposed scheme in that most of the inter-task
dependences can be preserved naturally after reconfiguration.
The only type of inter-task dependences that may be violated
after reconfiguration is the L2R dependences. These potential
violations are quite rare, as an L2R dependence only occurs
if two dependent tasks not only straddle the left to right di-
rection divide between the bands, but also are scheduled on
neither the same nor adjacent PEs. Furthermore, a poten-
tial violation can be easily precluded by imposing a certain
amount of timing slack between the two tasks in an L2R de-
pendence, such as tasks 2 and 6 in figure 2a. This property
can be formalized as the following spatial-temporal (S-T) con-
straint :

S-T constraint: A dependence between a predecessor
task on band i to a task on band i+k (left to right) needs
to have an intervening slack of k timing steps in the
initial schedule to preserve the correct execution order
after reconfiguration.

2.3 Applied to General Task Graphs
The last two subsections have clearly shown the high reg-

ularity of the proposed BB reconfiguration scheme for the
canonical case. While at first sight the canonical case seems to
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Figure 3: New characteristics encountered in recon-
figuring a complicated schedule

be highly idealized, it actually turns out to be a representative
model for the parallel sections of embedded applications with
significant data-level parallelism. This is because a large por-
tion of embedded applications are composed of regular data
processing loops with limited or even no loop-carried depen-
dences [11], which can be easily parallelized into a large num-
ber of tasks with high regularity, as assumed in the canonical
case. However, to further examine the effectiveness of the pro-
posed reconfiguration scheme, in this subsection we extend its
application to arbitrary programs with diverse task execution
time and non-zero communication latency.

In general, the application of the regular BB reconfigura-
tion scheme to a general task graph results in several new
characteristics that are not observed in the canonical case.
These characteristics furthermore impact the BB reconfigu-
ration scheme in two distinct directions by both providing
opportunities in improving the reconfigured schedule, and cre-
ating challenges in compensating extra reconfiguration over-
head.

Idle PE cycles in the initial schedule: As inter-task
dependences and communication overhead may strictly con-
strain the earliest starting time of a task, the initial schedule
may display significant underutilization in certain portions.
This can be clearly observed in figure 3, in which the PE P3
is left idle across the entire timing period of the first BR block.

An under-utilized portion of the initial schedule has at least
one PE with no task to execute, implying no need of adjust-
ing that part of the initial schedule after reconfiguration. As
presented in figure 3, the exploitation of this property allows
a sizable reduction in the length of the reconfigured sched-
ule. More specifically, we propose to extend the original BR
block to contain a head or a tail region, as shown in figure 4.
By mapping the fully parallel portions of the initial schedule
into the body regions and the under-utilized portions into the
head or tail regions, the schedule lengths of the head and tail
regions remain constant after reconfiguration, while only the
bands within the body regions need to be shifted.

Irregularity of partition lines: Because of diverse task
execution time, the heights of the steps on a band partition line
are not necessarily identical, and the original horizontal block
partition lines are not necessarily straight. As can be clearly
observed from figure 3, both types of irregularity may degrade
performance by creating extra timing holes in the reconfigured
schedule.

A detailed examination evinces the reconfiguration penalty
in terms of schedule length associated with each BR block to
be constrained by the maximum height of the steps on the
band partition line. This property can be illustrated more
clearly by considering the case presented in figure 4. Assume
a body region is originally scheduled to commence at time
a and end at time d, and the positions of the intermediate
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two steps on the band partition line are at time b and time c,
respectively. After reconfiguration, the schedule length of the
body region equals

max{(b − a) + (d − a), (c − a) + (d − b), (d − a) + (d − c)}
= (d − a) + max{b − a, c − b, d − c} (1)

Because of this property, during the static scheduling process
the step height on each band partition line should be balanced
through an adjustment of the task starting times. However,
this balancing should be performed without increasing the
length of the initial schedule, thus requiring the static sched-
uler to exploit the timing slacks of non-critical tasks inherent
within the initial schedule.

Variations in inter-processor communication: Because
of the relative spatial movement of the two bands within each
BR block, two dependent tasks originally scheduled on the
same PE may be separated onto two PEs after reconfiguration
and vice versa. As a result, inter-processor communications
displayed in the initial schedule may not appear after recon-
figuration (such as communications between tasks 3 and 5 and
between tasks 7 and 9 in figure 3), while new inter-processor
communications may be created in the reconfigured schedule
(such as communications between tasks 6 and 9). While the
first case can be exploited to further improve the performance
of the reconfigured schedule, it is essential to provide mecha-
nisms for compensating for the extra overhead caused by the
second case.

A detailed examination shows that a new inter-processor
communication can occur either in an R2L dependence (be-
tween tasks 6 and 9 in figure 3) or an L2R dependence across
two BR blocks. However, these two cases display diverse tim-
ing characteristics. In the latter case the relative timing po-
sitions of the L band and the following R band remain con-
stant after reconfiguration, while for an R2L dependence an
additional timing slack is implicitly inserted in the reconfig-
ured schedule, since each L band is shifted downwards rela-
tive to the R band. Consequently, the additional timing slack
can be utilized by the static task scheduler to compensate for
the overhead of a new inter-processor communication. More
specifically, during scheduling if two dependent tasks on the
same PE cannot be grouped into the same band, the next
preference is to group them into the same BR block and to
schedule the predecessor task on the R band.

2.4 Impact Analysis

2.4.1 Impact of variations in task execution time
It can be argued that precise delineation of reconfigurable

schedules in the face of variations in task execution time is
a challenging task. Nonetheless, careful consideration shows
that the effect of variations on task execution time can be
largely minimized. The three fundamental sources of varia-
tions, unpredictable architectural events, competing resource

utilizations, and input dependent computation variation, can
be handled by compilation-based techniques, dedicated re-
source allocation, and appropriate task parallelization. Un-
predictable architectural events, such as branch misprediction
or cache misses, result in variations of short duration, typically
of only tens of cycles. This small variation can be further re-
duced through predicated execution [12] or data prefetching
[13]. Resource competition from other applications, which
may cause a task in execution to be suspended, can be com-
pletely eliminated through adopting a space sharing [14] strat-
egy for computational resources. Finally, as parallel loops are
typically partitioned into a fixed number of tasks, the number
of iterations in each task may be input dependent. This source
of variation can be minimized through fixing task granularity.
Although this loop parallelization strategy creates an input-
dependent number of tasks, the impact on static schedules is
still predictable, as the high similarity of these tasks will lead
to repetitive portions within the schedule.

2.4.2 Impact of underlying memory organization
Because the proposed BB reconfiguration scheme is per-

formed at the processor level, its impact on the behavior of
the architectural components of each PE, such as the private
cache, is negligible. However, as reconfiguration requires tasks
to be shifted among PEs, the memory organization of the tar-
get MPSoC significantly affects the reconfiguration overhead.
Since it is assumed that in the target MPSoC a global mem-
ory is shared by all PEs, task reassignment can be achieved
through remapping the associated address space, thus requir-
ing no real movement of code or data. Moreover, as the
proposed reconfiguration scheme only requires the shifting of
tasks between adjacent PEs in the case of single PE dealloca-
tion, the elimination of extra code/data transfer only requires
local storage to be shared between every two adjacent PEs,
thus being accomplished even in an MPSoC with a distrib-
uted memory architecture.

3. ALGORITHMIC IMPLEMENTATION
In the last section we have presented the conceptual mecha-

nisms underpinning the proposed BB reconfiguration scheme.
It should be noted that the effectiveness of the proposed BB
reconfiguration technique does not impose any requirements
on the class of the underlying static scheduling algorithm. In
this section, we present the implementation of the proposed
BB reconfiguration scheme through applying the reconfigura-
tion constraints to one of the representative classes of schedul-
ing heuristics, namely, list scheduling.

Given a parallel program represented as a weighted directed
acyclic graph (DAG), the scheduling problem can be formal-
ized as the association of a start time and a processor with
each node of the DAG. A typical list scheduling algorithm usu-
ally consists of a task prioritization phase and a processor
assignment phase, and the main difference of the various list
scheduling heuristics is the determination of the scheduling
order (e.g., DCP[15], CPND[16], etc). In our implementation,
the Critical Path Node Dominate (CPND) algorithm [16] is
selected as the baseline algorithm.

In general, the implementation of the proposed reconfigu-
ration scheme requires four additional functions to be added
into the static task scheduling process:

• Precluding potential violations of L2R dependences.

• Exploiting under-utilized portions of the initial schedule.

• Balancing step heights on band partition lines.

• Compensating extra inter-PE communication overhead.

Among these four functions, the first one is an essential
constraint that needs to be obeyed by the initial schedule,
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while the other three are optimization constraints for reducing
the length of the reconfigured schedule.

3.1 Initial Schedule Generation
In our algorithmic implementation, the task prioritization

phase of the baseline algorithm is retained intact, while the
processor assignment phase is slightly modified to eliminate
potential violations of L2R dependences after reconfiguration.
As can be observed from figure 2, the existence of an L2R de-
pendence requires two dependent tasks not only to straddle the
left to right divide, but also to be scheduled on non-adjacent
PEs. In other words, a predecessor task vj scheduled on a PE,
denoted as proc(vj), results in a L2R dependence only if the
descendent task vi is scheduled on a PE Pk which is at least
two PEs to the right of vj , that is, Pk ≤ proc(vj) − 2.

The S-T constraint presented in Section 2.2 indicates that
the prevention of a potential dependence violation between
tasks vj and vi only requires an extra timing slack Tex to be
imposed in the case of Pk ≤ proc(vj)− 2. According to Equa-
tion (1), ideally the value of Tex should equal the maximum
height of the steps on the band partition line. However, in this
phase the generation of the initial schedule has not been com-
pleted yet, implying that neither the BR blocks nor the L/R
bands have been formed. As a result, the existence of an L2R
dependence needs to be estimated. In our implementation Tex

is estimated based on the assumption that the task execution
time forms a normal distribution with mean Tμ and variance
T 2

σ : we set Tex = Tμ + Tσ to approximate the relative delay
of the L band after reconfiguration.

In sum, the modified processor assignment phase still sched-
ules each task in the pre-computed priority order to minimize
its start time, with the scheduling of a task vi formalized as
follows:

STmin(vi) = min
k

{ST (vi, Pk)} (2a)

ST (vi, Pk) ≥ max
vj∈pred(vi)

{FT (vj) + c(eji) + Tex(Pk , proc(vj))}
(2b)

Tex(Pk, Pj) =

�
Tμ + Tσ if k ≤ j − 2,

0 otherwise.
(2c)

As can be seen in Equation (2a), the earliest start time,
STmin(vi), is calculated by in turn placing the task vi on every
PE Pk. Equation (2b) shows that the start time of vi on Pk is
constrained by the last incoming communication, with c(eji)
denoting the communication overhead between the tasks vj

and vi, and FT (vj) the finish time of task vj . Furthermore, it
is clear that the only modification to the baseline algorithm
is presented in Equation (2c), which adds an extra timing slack
of Tμ + Tσ to the calculation of the start time ST (vi, Pk) if vi

is planned to be scheduled at least two processors to the right
of vj . However, most of the time this increase in data ready
time will not delay the start time of task vi. This is because
Equation (2a) selects the minimal start time of vi among all
the PEs, resulting in vi being scheduled onto another PE Pl

that satisfies the condition of Pl > proc(vj) − 2. The impact
of this extra timing slack can be further reduced by scheduling
the first task of the critical path on the rightmost PE, thus
minimizing the occurrence possibility of L2R dependences on
the critical path.

3.2 Reconfiguration Incorporation
After generating the initial schedule, two additional phases

are appended to the baseline algorithm to incorporate recon-
figurability. One is a schedule partition phase, employing
the remaining three constraints to guide the partition of the
initial schedule into BR blocks and L/R bands. The other is
a reassignment optimization phase, wherein the semantic
correctness of the reconfigured schedule is verified.

The schedule partition phase forms BR blocks and L/R
bands in the following three steps.

1. Identify the fully parallel regions of the initial schedule.

2. Determine the band and block partition lines.

3. Balance the step height on each band partition line.

The positions of the fully parallel regions in the initial sched-
ule determine the total number of BR blocks as well as the
position of the body region of each BR block, thus strongly im-
pacting the length of the reconfigured schedule. An extreme
case that may occur is that the initial schedule may have no
fully parallel regions, implying that no change of initial sched-
ule is needed in the case of a single processor deallocation.

If a search of the initial schedule identifies at least one fully
parallel region, the band and block partition lines of each BR
block will subsequently be determined. The goal of this step is
to minimize the occurrence possibility of extra inter-processor
communications. Consequently, each pair of dependent tasks
tightly scheduled on the same PE is placed into the same band
or into two consecutive R (or L) bands as much as possible.

Once the band partition lines have been determined, the
next step is to balance the step height. To retain the length
of the initial schedule intact, only the tasks whose latest start
time, STmax, exceeds the current start time ST can be de-
layed. The latest start time, STmax, of a task vj is calculated
as follows:

STmax(vj ) = w(vj) + max
vi∈succ(vj)

{c(eji) + STmax(vi)} (3)

wherein w(vj) and c(eji) denote the execution time of task vj

and the communication cost between tasks vj and vi, respec-
tively.

The schedule partition phase determines the shape of each
band, enabling the timing offset needed by each band after
reconfiguration to be calculated. The primary goal of the
reassignment optimization phase is to minimize the timing
offset needed by each band after reconfiguration. The only
requirement is to ensure that each task in the reconfigured
schedule has all the necessary incoming communications ready
on time. More specifically, the new initiation time of each task
is verified in the same scheduling order generated in the task
prioritization phase. The start time of a task vi after recon-
figuration, denoted as STnew(vi), should satisfy the following
inequality:

STnew(vi) ≥ max
j

{FT (vj , procnew(vj)) + c(eji)} (4)

with c(eji) denoting the communication overhead between the
tasks vj and vi, and FT (vj , procnew(vj)) the finish time of
node vj , which is reassigned to PE procnew(vj) after recon-
figuration. If an unnecessary timing hole is detected and the
whole band can be commenced earlier without causing any re-
source conflict, a reduction in the timing offset of the specific
band and all the subsequent bands will be performed.

4. EXPERIMENTAL RESULTS
To evaluate the proposed reconfiguration scheme, both the

base-line CPND algorithm [16] and our own modifications pre-
sented in the last section are implemented in C++. The ap-
plication set under test is composed of typically parallel al-
gorithms, such as LU decomposition, Laplace equation solver,
and Gaussian elimination. The DAG representations of these
task graphs can be found in [15]. We furthermore use TGFF
[17] to generate 100 random task graphs in order to represent
a large spectrum of parallelized embedded applications. For
these task graphs, the number of tasks is varied from 20 to 100,
with the ratio of the upper to lower bound of the execution
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Figure 5: Impact of reconfiguration on the initial
schedule

time distribution set to 10. The frequency of inter-task depen-
dences is controlled through varying the value of the average
out-degree (the average number of edges per node), while the
communication overhead is controlled through varying the av-
erage communication-to-computation ratio (ccr). In addition,
in the process of generating the initial schedule, the number
of PEs considered in our experiments is varied from 3 to 8.

The simulation results are presented in figure 5, normalized
to the schedule length of the baseline algorithm generated for
3 PEs. As the primary performance consideration of the pro-
posed reconfiguration scheme is to retain the performance of
the initial schedule intact, we first evaluate the effectiveness of
our algorithmic implementation through comparing the length
of the initial schedule generated by the baseline (the left one in
each group of bars in figure 5) and the modified algorithm (the
middle one in each group of bars in figure 5). As can be seen,
for all the cases the overhead of schedule length introduced by
the proposed reconfiguration scheme is negligible, only within
4%. A more detailed examination shows that this overhead
wanes slightly as the number of PEs increases. This is because
the prevention of L2U dependences limits the choices of PEs
for the modified algorithm, while the baseline algorithm can
make more use of an additional PE if the total number of PEs
is small. As the number of PEs increases, however, the base-
line algorithm reaches the maximum amount of parallelism,
while the modified algorithm enjoys an increased number of
choices in spatial assignment.

The effectiveness of our algorithmic implementation can also
be seen by comparing the length of the initial schedule (the
middle one in each group of bars in figure 5) and the recon-
figured schedule (the right one in each group of bars in fig-
ure 5) generated by the modified algorithm. Here it needs
to be noted that while the initial schedule is generated for n
(3 ≤ n ≤ 8) PEs, the reconfigured schedule presented in the
same column is generated by reconfiguring the initial schedule
for n − 1, i.e. one less, PEs. As can be seen, the reconfigura-
tion overhead imposed on the initial schedule ranges from 12%
to 41%. Nonetheless, our reconfiguration scheme is still quite
effective, because the reconfigured schedule for n (4 ≤ n ≤ 8)
PEs is of similar length as the initial schedule for n − 1 PEs.
Moreover, the reconfiguration overhead decreases significantly
as the number of PEs increases, since using more PEs results
in a larger part of under-utilized portions in the initial sched-
ule that do not need to be reconfigured in the case of a single
PE deallocation.

5. CONCLUSIONS
We have presented an effective technique that allows recon-

figurability to be incorporated into static schedules in order to
withstand processor deallocations at runtime due to either re-
source competition or unpredictable device failure or thermal

stress. Through statically partitioning the initial schedule into
multiple bands, a regular reassignment capability is embedded
into the static schedule to perform a group transfer of a set of
dependent tasks to a new PE upon execution-driven resource
variation. Furthermore, through the incorporation of several
soft constraints into the scheduling process, the proposed tech-
nique can exploit the inherent timing slack between dependent
tasks, thus minimizing the performance overhead introduced
by reconfiguration. This advantage has been clearly confirmed
by the experimental results, which show that only less than 4%
of overhead is imposed on the length of the initial schedule to
accomplish the highly regular and predictable reconfiguration
scheme for the toleration of single processor deallocations.
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