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ABSTRACT
We address the problem of instruction selection for Multi-Output
Instructions (MOIs), producing more than one result. Such inher-
ently parallel hardware instructions are very common in the area of
Application Specific Instruction Set Processors (ASIPs) and Digi-
tal Signal Processors (DSPs) which are frequently used in System-
on-Chips as programmable cores. In order to provide high-level
programmability, and consequently guarantee widespread accep-
tance, sophisticated compiler support for these programmable cores
is of high importance. Since it is not possible to model Multi-
Output Instructions as trees in the compiler’s Intermediate Rep-
resentation (IR), traditional approaches for code selection are not
sufficient. Extending traditional code-generation approaches for
MOI-selection is essentially a graph covering problem, which is
known to be NP-complete. We present a new heuristic algorithm
incorporated in a retargetable code-generator generator capable of
exploiting arbitrary inherently parallel MOIs. We prove the concept
by integrating the tool into the LCC compiler which has been tar-
geted towards different Instruction Set Architectures based on the
MIPS architecture. Several network applications as well as some
DSP benchmarks were compiled and evaluated to obtain results.

Categories and Subject Descriptors
C.3 [Special Purpose and Application Based Systems]: [Micro-
processor/Microcomputer Systems]

General Terms
Design

Keywords
Compiler/ Architecture Co-Design, Code-Selection, ASIP, ISS

1. INTRODUCTION
Design and development of embedded processors are usually done
under very tight constraints. The processors have to handle high
data rates either in digital signal or network protocol processing,
consume as little power as possible and have to be programmable in
order to guarantee reusability towards different applications. There-
fore, particularly in protocol processing, Application Specific In-
struction Set Processors (ASIPs) are more and more applied as
Intellectual Property-blocks in System-On-Chips, since they offer
a good compromise between efficiency and flexibility. Typically,
ASIPs provide a set of special instructions, tailored to the needs of
their target applications. The predominant feature of these instruc-
tions is inherent parallelism. The instructions comprise several par-
allely executed operations like ADD, MUL, MAC etc. and produce
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multiple results at the same time. Consequently they are referred to
as Multi-Output Instructions (MOIs).

Figure 1: IR-Patterns for Different Instructions

It is exactly this property which makes the difference between
MOIs and other kinds of instructions. Whereas simple instructions
(figure 1(a)) and chained instructions (figure 1(c)) can be repre-
sented as tree patterns in the IR, MOIs will always have a fanout
larger than one (figure1(b)).
In the area of digital signal processing, MOIs are already a nat-
ural way to increase code performance. Prominent examples are
instructions to support access of different memory banks at the
same time. For example in Sony pDSP processor, an instruction
such as PLDXY r1, @a, r2, @b can load variables a and b from
memory into registers r1 and r2 simultaneously. These instructions
can access memory faster by performing loads and stores in par-
allel on partitioned memory banks using parallel data and address
buses. Designers for embedded DSPs prefer such techniques over
more complicated hardware mechanisms. By the encapsulation of
parallel operations in hardware instructions, impressive speedups
can also be obtained for protocol processing without sacrificing
too much flexibility for the implementation of applications [22].
However, the increasing complexity of network protocols makes
it prohibitively difficult to implement them in assembly language.
Sophisticated compiler support is therefore strongly demanded in
order to guarantee fast application development and consequently
consumer acceptance for a processor. This implies the problem of
handling MOIs by a compiler which is currently not possible, since
typical compilers rely on tree parsing [1] during the code selection
phase. If the target processor architecture contains inherently par-
allel instructions, the code produced by tree parsing may strongly
deviate from the optimum. The reason for this is that the scope of
tree parsing is restricted to Data-flow Trees (DFTs). Consequently,
instructions comprising functionality that exceeds the scope of one
DFT cannot be matched by tree parsing, as their associated IR-
patterns features a fan-out larger than one. In order to overcome
this, the scope has to be extended at least to the size of a basic block
which is then represented as a Data-flow Graph (DFG). Unfortu-
nately, pattern matching on DFGs is NP-complete in general [24].
Usual approaches to solve this problem rely on Compiler Known
Functions (CKFs) and Inline Assembly. In both cases, the applica-
tions have to be modified manually which may lead to overhead for
big applications.
Additionally, the extremely heterogeneous landscape of applica-
tion specific architectures demands for highly flexible programming
tools. Such architectures are usually developed in an iterative man-
ner during which the architecture is incrementally refined. Obvi-
ously, compilers have to be easily retargetable in order to support ar-
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bitrary kinds of instruction sets during the processor development.
There exists several code-generator generators (such as Burg [9],
Iburg [8], Olive [23]) which produce code-selector descriptions in
C. Such code-selector descriptions can be very comfortably inte-
grated into existing compiler backends. Basically, such a code-
generator generator accepts a tree grammar as input which mod-
els the instruction set of the underlying target architecture in terms
of IR-patterns. Based on this grammar, C code for instruction se-
lection is produced. Since this tree grammar only comprises tree
patterns, the produced code-selectors lack of capability to exploit
Multi-Output Instructions.
In this paper a new tool is presented that extends the concept of
tree-based code-selector generators towards a graph-based code-
selector generator called Cburg. Cburg extends the concept of the
mentioned traditional tools in the way that the grammar is changed
and a graph-based matching algorithm is produced such that Multi-
Output Instructions can be modeled and matched. Thereby, manual
insertion of inline assembly or CKFs into the application is omitted.
The concept is proven by integrating Cburg into the LCC compiler
[3] which has been targeted for an extended ASIP based on the
MIPS architecture [19].
The remainder of this paper is organized as follows: In the follow-
ing section 2, related work on code selection for embedded proces-
sors is mentioned and our contribution is put into the context. Sec-
tion 3 explains the developed heuristic algorithm to exploit MOIs
during the code selection phase. Subsequently, the retargetable im-
plementation of the algorithm is introduced in section 4 and experi-
mental results are presented in section 5. The paper concludes with
section 6.

2. RELATED WORK
Due to the limitations of tree parsing, several contributions have
been published in the past, dealing with a generalization of tree-
based code selection. In [7], optimal graph-based code selection
is described for regular data path architectures without instruction
level parallelism. However, ASIPs mostly feature irregular Instruc-
tion Set Architectures (ISAs) comprising parallel instructions. Es-
pecially for the domain of signal processing, where it is most nat-
ural to have MOIs, further approaches have been developed for
irregular architectures. Araujo presents a solution to effectively
break up the DFG into expression trees while taking irregular reg-
ister architectures into account [2]. It is shown in [15] that tree
parsing leads to suboptimal results in the presence of MOIs. To
overcome this, a new technique based on the splitting of instruc-
tions into register transfer primitives and recombining these prim-
itives in an optimal manner using integer linear programming is
proposed. Liao solves the same problem by augmenting a binate
covering formulation [16]. Unfortunately, Liao does not provide
results on the applicability of their algorithm. Furthermore, both
approaches [15, 16] feature exponential runtime in the worst case
based on the size of considered DFGs. This might be disadvanta-
geous for large benchmarks. Liem [17] has proposed a graph-based
instruction selection methodology that features a flexible pattern
representation style. This style includes data-flow, control-flow
and mixed data/control-flow informations. In [6], a code selec-
tion methodology is described for complete functions in order to
take control flow into account. A Static Single Assignment (SSA)-
Representation is used as IR and the pattern matching is solved nu-
merically. As the code selection was tested for a Very Long Instruc-
tion Word (VLIW)-processor, instruction level parallelism in terms
of MOIs is not an issue for this approach. The most recent ap-
proach to graph-based code selection is presented in [4]. The paper
targets code selection algorithms for hardware accelerators based
on unate covering. As the authors only consider single connected
IR-patterns, Multi-Output Instructions are not in the paper’s scope.
In contrast, Multi-Output Instructions can also comprise multiple
independent patterns on IR-level.
Summarized, the existing approaches either feature exponential
runtime on the size of considered DFGs or do not consider inher-
ent instruction parallelism producing multiple results. Our contri-
bution within this paper is the presentation of a new tool called

Cburg. Cburg is very similar to well known code-selector genera-
tors like Iburg or Olive. The difference between Cburg and other
tools is firstly the kind of accepted input grammar and secondly,
the produced algorithm to match IR-patterns. In contrast to other
tools, Cburg’s grammar is not restricted to tree patterns and there-
fore capable to model arbitrary inherently parallel instruction pat-
terns. Furthermore, Cburg produces C-code for a graph-based in-
struction selection algorithm based on the received grammar such
that the matching scope for pattern matching is not limited to single
statement trees. The algorithm’s average runtime is linear w.r.t. the
size of input DFGs. This approach results in an easily retargetable
graph-based code-selector which enables compiler designers to pro-
vide quickly new compiler backends for irregular instruction sets.

3. CODE SELECTION ALGORITHM
During code selection each DFT is processed by two phases: the
matcher and the cover phase. The matcher traverses the DFT in
bottom-up manner and applies a tree grammar in order to annotate
at each visited node rules, according costs and resulting nontermi-
nals (NTs) that can be used to match it. The cover algorithm then
traverses the DFT in top-down manner and takes advantage of the
annotated information for the selection of the rule with minimal
costs for each node. For every hardware instruction, rules exist in
the tree grammar of the form:

NT → opcode(op1, . . . opn)| {z }
simple rule

{costs} = {actions}. (1)

In (1), opcode designates the rule’s operator (MUL, ADD,
etc.) which is used as its IR-node name at the same time and
{op1 . . . opn} represent the operands of the rule. Additionally,
rules typically comprise costs and action-sections. As the names
imply, costs are computed in the costs-section and the action-
section contains C code to emit assembly or lowered IR code.
Since this presentation is not sufficient for Multi-Output Instruc-
tions, Cburg’s grammar extends this concept of rules in the way
that rules have the form:

NT1, NT2, · · · → opcode1(op1, ...)| {z }
split rule

, opcode2(op1, . . . )| {z }
split rule

, . . . (2)

In (2), multiple nonterminals NT1, NT2 . . . are produced by a
complex rule. The complex rule comprises several rules as pre-
sented in (1) as well as costs- and action-sections which are not
shown in (2).
Before starting to explain the algorithm, the terminologies which
will be used throughout the remainder of this document are defined.
A

• rule: represents an instruction pattern in the tree grammar,

• simple rule: represents a typical tree pattern like ADD,
MUL, MAC,

• complex rule: consists of several simple rules,

• split rule: is a simple rule that is a member of a complex
rule.

As shown in figure 2, the presented algorithm consists of 5 major
phases: Split Rule Extraction, Pattern Matching, Split Rule Identi-
fication, Candidate Set Selection and Pre-Cover.
First, all complex rules in the tree grammar are analyzed and split
up into their split rules (subsection 3.1). These split rules are used to
find candidate nodes in the IR, representing operations that are part
of some MOI. The labeler (subsection 3.1) annotates simple rules
and all split rules at each candidate node where they match. After
annotating the rules, a split rule map is created which contains split
rules and related IR-nodes. Using this map, candidate node sets
are identified for every complex rule, such that a clear picture exists
about all possible covering solutions. During the subsequent set se-
lection phase (subsection 3.2), the data flow of the different node
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Figure 2: Algorithm Overview

sets is examined in order to eliminate invalid sets. Furthermore,
the remaining sets are evaluated by a new cost metric which has
been introduced to compare the costs of simple and split rules. In
case of overlapping candidate sets, additionally the most valuable
sets have to be selected. This decision is mapped to the problem
of finding the Maximum Weighted Independent Set (MWIS) of a
graph. Finally, the resulting candidate sets for all complex rules are
selected and checked whether every candidate can be really cov-
ered by the associated complex rule (subsection 3.3). At the end,
a normal cover algorithm can process the output of the presented
heuristic, emitting valid assembly code.

3.1 Labeling & Split Rule Identification
In contrast to normal tree-parsers which annotate at each node for
every nonterminal only those rules with minimal costs, the devel-
oped labeler annotates additionally all matched split rules at each
node regardless of their costs and nonterminals. For this, split rules
are extracted from each complex rule and rule numbers are assigned
to them which act as identifiers. Figure 3 gives an example about
this procedure. In the upper half of figure 3, a tree grammar is given
by its simple and complex rules. These rules are annotated at the
nodes of the IR tree in the lower half of figure 3. At nodes 5 and
10 both split rules and simple rules are annotated, each of which is
producing the same nonterminal. For sake of simplicity, costs and
produced nonterminals are not presented within this figure.
After the labeling phase, a split rule map is created that stores node–
split rule combinations. Succeeding phases can use the information
of this map to figure out candidate node sets for every split rule, e.g.
node 5 is a candidate for split rule 11.

3.2 Candidate Set Selection
During the candidate selection phase the best candidate node sets
(CS) for all MOIs are identified and evaluated. For this purpose,
the information of the split rule map is applied. A candidate set of a
MOI contains all valid combinations of nodes for this instruction. A
valid node combination designates a set of candidate nodes each of
which is matched by a different split rule of the same complex rule.
Since candidate nodes can also be complete tree patterns like MAC,
only the root nodes are stored inside a candidate set: Root nodes are
those nodes which have no successor node inside their pattern. For
the example given in figure 3, the only node set for complex rule 10
is {5, 10}. The number of node sets is further reduced by checking
data dependencies in the DFG between candidate nodes and elimi-
nating node sets containing dependent nodes. The remaining node
sets are evaluated in order to maximize the benefit of code selection.
The set evaluation takes place in relation to the other available rules
for a certain node. The basis for this evaluation is obviously the
cost metric of the rules. Unfortunately, the typical cost evaluation
of tree patterns is also not sufficient for the evaluation of MOIs. Tra-
ditional cost metrics for rules concern only fixed costs of rules like
the number of emitted instructions. However, applying complex
rules affects several statement trees and therefore, causes different

Figure 3: Labeling

costs in different statement trees at the same time which depend
strongly on the ongoing matching situation. Such costs can be de-
scribed as dynamic or opportunity costs which are orthogonal to the
fixed costs of simple rules.

3.2.1 Cost Computation for Complex Rules
If an IR-node can be matched by a simple rule (rulesmpl) and a
split rule (rulesplit) which are reduced to the same nonterminal,
Cburg compares the costs of the simple rule and the costs of the split
rule to determine the best covering solution for this node. The cost
computation of a complex rule (rulecplx), consists of two parts:
Saved Costs and Duplication Costs:

Saved Costs.
Csaved(CS) designates the difference of fixed costs between a
covering solution with simple rules and a solution with a complex
rule for a certain candidate set:

Csaved(CS) = (
X

nodes∈CS

Cfix(rulesmpl)) − Cfix(rulecplx)

where Cfix describes the fixed costs of arbitrary rules (sim-
ple/complex), producing the same nonterminal.

Duplication Costs.
Cdup(CS) are produced by the appearance of Common Subexpres-
sions (CSEs) inside of a node pattern in the IR that can be covered
by a split rule. Split rule patterns (SRP) can express arbitrary tree
patterns like MAC or other chained instructions, consisting of sev-
eral sub-nodes. The set of sub-nodes can be separated into the root
node (R) and the child nodes (K). In contrast to the root node whose
result represents the result of the SRP, every child node has exactly
one successor inside the pattern of the split rule. If a CSE is covered
by a child node of an SRP its result is not available anymore for suc-
cessor nodes outside the SRP since chained instructions compute
only one result. Therefore, the node has to be duplicated in order
to compute the result and maintain the validity of the produced as-
sembly code. Accordingly, we define

K(CS) = {node | node ∈ {SRP} ∧ node �= R}
CSE(CS) = {node ∈ K(CS) | node is a CSE}
Cdup(CS) =

X
node∈CSE(CS)

(
X

fanout(node)

Cfix(rulesmpl))

133



Here, fanout denotes the number of outgoing edges of a
node ∈ K(CS) emanating the SRP. For each of these edges,
Cfix(rulesmpl) represents the costs of the according simple rule
that produces the required nonterminal for the successor node.

Opportunity Costs .
Copp(CS) of a candidate set are the costs that denominate the
overall cost-difference between the application of a complex rule
and an alternative covering by a set of simple rules for the nodes in
the CS:

Copp(CS) = Csaved(CS) − Cdup(CS).

Split Rule Costs.
Finally, the costs of the split rule are calculated by the average op-
portunity costs of the complex rule’s candidate set:

C(rulesplit) = Cfix(rulesplit) − Caverage opp(CS)

where Cfix(rulesplit) are the fixed costs of the split rule. Further-
more, the average opportunity costs Caverage opp(CS) of a candi-
date set CS are computed as:

Caverage opp(CS) = Copp(CS)/numsplit(CS),

where numsplit(CS) is the number of split rules of a candidate
set.

3.2.2 Benefit Optimization
After the candidate validation, the candidate sets cannot be further
reduced and the remaining nodes have to be covered by the accord-
ing complex rules. Nevertheless, it might happen that intersections
between candidate sets occur. This is the case when a node is a
candidate for several MOIs and consequently is listed in several
candidate sets. We call such nodes shared nodes. Since nodes can
only be covered by one rule, the covering decision for shared nodes
has to ensure that the benefit in terms of costs is maximized.
The problem of finding an optimal solution for the covering of
shared nodes can be reduced to the problem of finding a Maximum
Weighted Independent Set (MWIS) in a weighted undirected graph
G = (V, E, W ) without loops and multiple edges. In G, V des-
ignates the set of vertices, E the set of edges and W is the vertex
weighting function.
An independent set in a graph is a collection of vertices that are
mutually non-adjacent. The problem of finding an independent
set of maximum cardinality is one of the fundamental combinato-
rial problems and known to be NP -complete even when all nodes
have uniform weights [10]. Due to this, we applied a heuristic
called GWMIN2 [21]. Generally, GWMIN2 belongs to the class of
minimum-degree greedy algorithms that construct an independent
set by selecting some vertex of minimum degree, removing it and
its neighbors from the graph and iterating on the remaining graph
until it is empty. Such algorithms run in linear time in the number
of vertices and edges. GWMIN2 selects in each iteration a vertex
v, such that

W (v)P
w∈N+

G
(v)

W (w)
, ∀u ∈ V (3)

is maximized. In [21] it is proven that the resulting independent set
has at least a weight of

X
v∈V

W (v)2P
u∈N+

G
(v)

W (u)
.

The notation NG(v) designates the neighborhood of a vertex v in
G and N+

G (v) the set {v} ∪ NG(v).

Application of MWISP for Benefit Maximization.
For the benefit maximization in the presence of overlapping MOIs,
a graph G = (V, E, W ) is constructed. In G, every vertex
v ∈ V represents a complex rule and the associated weight W (v)

is equal to its benefit. Basically, the benefit of a MOI is com-
puted as the negated sum over all costs of comprised split rules:
(−1)

P
Crulesplit(CS). In between two vertices of G an edge

exists, if and only if the associated MOIs have one or more candi-
date IR-nodes in common. The algorithm now simply selects those
non-adjacent vertices with the highest weight (benefit) in a greedy
manner and eliminates them including their edges form the graph
G.

3.3 Pre-Cover Phase
In the last phase of the algorithm, the node selection has to be
evaluated and pre-covered before the original cover phase starts,
since split rules do not necessarily offer minimal costs for every
producible nonterminal at a candidate node. Consequently, due to
different nonterminal requirements of subsequent IR-nodes, a can-
didate node might not be covered by a split rule although the split
rule has minimal costs regarding its produced nonterminal. In this
case, it must be ensured that all other nodes of the same candidate
set are also not covered by their split rules. This is achieved by
pre-covering the IR. During this, the cover phase of a tree pattern
matcher is simulated and in case a candidate node is not covered by
a split rule, all nodes of the according candidate set are re-matched
by simple rules.

(a) After select sets

(b) Pre-cover

(c) Recover simple rules

Figure 4: Pre-Covering Nodes

Figure 4(a) shows an example of such a situation. It presents a
set of IR-trees which are already labeled, and also a selected set
of candidate nodes which are marked by their associated split rules
11 and 12 of figure 3. In Figure 4(b), split rule 12 is not used for
covering, since the succeeding rule consumes a nonterminal that is
cheaper produced by simple rule 2. However split rule 11 is used for
covering at the same time. To solve this antagonism, the split rules
are eliminated and all candidate nodes are re-matched by simple
rules as presented in figure 4(c). Now, the IR-trees can be traversed
by the cover phase and the assembly code is emitted.

3.4 Complexity Analysis
The basis of the code selection algorithm introduced in section 3,
relies on a depth-first traversal of a DFG = (V, E) in O(V + E)
time in the labelling phase. Additional cost computations in order
to maximize the benefit of code selection are applied at each node.
These computations can be split into two parts: the computation
of Csaved and Copp. Whereas the former can be computed linearly
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dependent on the number of candidate nodes for all MOIs, the latter
computation takes

O(
X

CS⊆V,
V ∈DF G

X
CSE⊂CS

|Adj(CSE(CS))|)

time. In worst case, this might evolve to an exponential runtime,
if every node v ∈ V is a CSE and at the same time covered by a
split rule. Furthermore, in case of overlapping MOI patterns – the
MWISP is solved by a greedy heuristic that runs in linear time, de-
pendent on the amount of overlapped MOIs. The final pre-cover
phase visits all nodes in every candidate set once. Thereby its com-
plexity can be expressed as

O(
X

CS⊆V,
V ∈DF G

|CS|)

which also equals a linear runtime. Overall, the worst case runtime
is exponential on the number of CSEs covered by split rules, but it
is linear on the size of considered DFGs.

4. RETARGETABLE CODE SELECTION
WITHIN CBURG

Apart from efficient code selection in the presence of MOIs, retar-
getable compilation is the second aspect that this paper targets. Re-
targetable compilation for high-level languages like C/C++ is one
of the major challenges in ASIP architecture exploration. Nonethe-
less, iterative architecture exploration approaches demand for very
flexible software development tools, in order to explore many archi-
tecture design alternatives within short time. In this context, many
design platforms including retargetable compilers have been de-
veloped in the past [11, 12, 20, 14]. As presented in figure 5(a),
design flow iterations comprise usually the compilation, simula-
tion and profiling of C/C++ applications for a certain virtual ar-
chitecture prototype. Based on the profiling results, bottlenecks
are identified, the instruction pipeline is fine-tuned and customized
instructions are added to stepwise improve the architecture’s effi-
ciency. The new instructions are declared to the compiler in order
to evaluate their benefit for the targeted applications during the next
compilation-simulation cycle. Whereas simple instructions can be
declared within the tree grammar of the code selector, MOIs are
typically implemented as CKFs or inline assembly as they cannot
be targeted by the compiler. This implies the manual modification
of the application and the compiler, respectively which leads to high
overhead for large applications. Since usually only the bottlenecks
itself are implemented through MOIs, further utilization of the de-
veloped MOIs stays unexplored and reusability towards different
applications cannot be ensured.
To support a maximum of different compilation frameworks and to
overcome the compiler-related limitations within architecture ex-
ploration, the described code selection algorithm has been incorpo-
rated into a retargetable code-generator generator called Cburg.
Cburg is based on Olive [23] which takes a configuration file as
input and produces a set of data structures and code-generation
functions for a certain target ISA. However, in contrast to Olive,
Cburg’s code selection algorithm works on DFGs rather on DFTs
as described in section 3.
Cburg’s configuration file is very similar to Olive. The file contains
the description of the target ISA in terms of IR-patterns as well as
a set of functions, necessary to access the compiler’s IR. The IR-
patterns represent the grammar that is used to identify patterns in
the compiler’s IR and map them to adequate assembly language or
lowered IR. Rules inside this grammar have the form of both, rule 2
and rule 1 (see section 3). The generated data structures and func-
tions provide the complete methodology based on the described al-
gorithm.
Compiler designers can use these to comfortably implement a
code selection algorithm for arbitrary target machines with MOIs.
Thereby it is possible to declare every kind of hardware instruc-
tion to the compiler and the necessity to manually modify source
applications or the compiler itself is omitted (figure 5(b)).

Figure 5: Traditional vs. New Design Flow

5. EXPERIMENTAL RESULTS
In order to evaluate the quality of the proposed code selection
methodology to facilitate a more efficient instruction set design,
Cburg has been integrated into the Little C Compiler (LCC) [3]. As
the target architecture, the MIPS architecture [19] has been used.
Based on the MIPS ISA, new MOIs have been developed. The
nomenclature of each MOI mirrors through the concatenation of
instruction names, the parallel operations inside the MOI. For ex-
ample, an instruction ”lwlw” describes the simultaneous execution
of two ”lw” which is a simple load in the MIPS ISA. The bench-
mark suite comprises typical symmetric encryption algorithms as
the Data Encryption Standard (3DES), and the Advanced Encryp-
tion Standard (AES) [5]. and an internet protocol stack that com-
prises an IPv6-layer including authentication, encryption as well
as an Ethernet layer. Additionally, an Adaptive Differential Pulse
Code Modulation (ADPCM) DSP-application taken from the DSP-
Stone benchmark suite [18] has been examined. To develop new
MOIs, all benchmarks have been profiled with a fine-grained pro-
filer [13] to identify execution hot spots and promising candidate
instructions. Several MOIs have been developed giving special
attention to the symmetric encryption algorithms, i.e. AES and
3DES. Since symmetric encryption is one of the major bottlenecks
of IPv6 processing [?], it was also expected that such MOIs will
affect the overall performance of the protocol stack, too. From
the profiling results, it turned out that shift (sll/srl), xor and load
(lw) operations are most frequently used in the encryption algo-
rithms. Consequently, the developed MOIs are based on these in-
structions. First, all MOIs have been applied separately. Later 3 and
more MOIs have been combined. Table 1 provides an overview
of the obtained experimental results. The best results have been
achieved with the MOIs ”lwsll” (+16.96% speedup/−13.99% code
size) for 3DES and ”lwxor” (+12.83% speedup/ −9.96% code
size) for AES, respectively. Overall performance improvements of
+24.07% (3DES), +21.76% (AES) and +17.21% (IP stack) were
possible. Obviously, the MOIs did not lead to notable improve-
ments for the ADPCM benchmark, since its operator usage signifi-
cantly differs from those of encryption and protocol processing.

6. CONCLUSION
The presented code-generator generator Cburg, offers a new
methodology to exploit MOIs during architecture explorations. In-
stead of handcoding error prone inline assembly or CKFs, system
designers can model all developed instructions in one grammar file
which is fed into the compiler’s code-selector. As a consequence,
compiled applications comprise automatically all customized in-
structions without any manual modification. Thereby the benefit of
newly added MOIs can be faster evaluated. Furthermore, the evalu-
ation is not restricted to isolated code fragments. Instead, the whole
application is examined at once which leads to much more accurate
results regarding usability and achieved code quality. Shorter de-
sign cycles and time-to-market periods are the consequence.
The general problem of code selection for MOIs relies on the fact,
that at each IR-node, locally, a decision has to be made which af-
fects the global result of the pattern matching process. The de-
scribed formulas of subsection 3.2.1 provide Cburg with a powerful
cost metric that is able to evaluate the quality of local decisions for
the global result by taking so called opportunity costs of complex
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Results of Benchmarks
3DES AES IP Stack ADPCM

complex (603 lines of C code) (881 lines of C code) (3906 lines of C code) (743 lines of C code)
instructions Speedup Code Size Speedup Code Size Speedup Code Size Speedup Code Size

srlsll +13.19% -10.98% +1.03% -1.17% +9.14% -12.34% +0.10% -0.15%
srlsrl +3.77% -3.35% +0.00% -0.08% +3.74% -4.88% +0.04% -0.05%
sllsll +7.64% -6.58% +0.69% -0.64% +5.09% -6.70% +0.04% -0.05%
lwlw +7.64% -6.66% +8.60% -7.58% +2.65% -4.97% +3.40% -3.62%
lwsll +16.96% -13.99% +1.03% -1.00% +6.22% -8.10% +0.29% -0.50%
lwxor +7.54% -6.22% +12.83% -9.96% +4.10% -5.71% +0.00% -0.00%
xorsll +7.54% -6.22% +0.69% -0.86% +3.75% -4.90% +0.00% -0.00%
xorsrl +7.54% -6.22% +8.25% -6.63% +3.72% -4.85% +0.00% -0.00%
xorsll, xorsrl +7.54% -6.22% +8.25% -6.83% +3.75% -4.90% +0.00% -0.00%
lwsll, lwxor +16.96% -13.99% +13.07% -10.71% +6.59% -9.01% +0.29% -0.50%
srlsrl, sllsll +7.54% -9.89% +1.03% -0.89% +8.83% -12.44% +0.08% -0.10%
srlsrl, sllsll, srlsll +13.29% -11.42% +1.38% -1.47% +9.34% -12.69% +0.14% -0.20%
srlsrl, sllsll, srlsll,
xorsll, xorsrl +17.06% -14.53% +8.60% -7.35% +11.73% -15.79% +0.14% -0.20%
srlsrl, sllsll, srlsll,
lwsll, lwxor +24.06% -20.74% +14.10% -11.68% +14.68% -20.03% +0.33% -0.55%
srlsrl, sllsll, srlsll,
lwlw +20.83% -17.88% +13.41% -11.60% +11.98% -17.66% +2.57% -2.23%

srlsrl, sllsll, srlsll,
xorsll, xorsrl, lwsll,
lwxor, lwlw, mvmv +24.07% -21.18% +21.67% -18.35% +17.12% -21.89% +3.62% -3.97%

Table 1: Overview of Experimental Results

rules into account. It is the basis for the process of code selec-
tion within Cburg, because only by the computation of opportunity
costs, it is possible to make fair matching decisions between simple
and complex rules.
In future, Cburg will be integrated into more Compilers to verify its
reusability towards different IRs and backends. Furthermore, the
hardware effort that is associated with each MOI has to be exam-
ined in order to evaluate the obtained speedup of the executables
properly. And finally, an interesting open issue is the exploitation
of the most valuable set of MOIs to support a certain set of applica-
tions. At this state, the presented sets of MOIs have been manually
figured out, based on dynamic results obtained at runtime. In con-
trast to this, static analyses of the compiler could be used to find a
solution for the ”best” MOI sets..

7. ACKNOWLEDGEMENT
This work was partially supported by the IT R&D program of
MIC/IITA[2007- S001-01, Components/Module technology for
Ubiquitous Terminals], the ITRC(Inofrmation Technology Re-
search Center) support program supervised by the IITA(Institute
of Information Technology Assessment) (IITA-2005-C1090- 0502-
0031), Nano IP/SoC promotion group of Seoul R&BD Program
in 2007, Ministry of Information and Communication, Korea
(A1100-0501-0004), and Korea Ministry of Science and Technol-
ogy (M103BY010004-05B2501-00411).

8. REFERENCES
[1] A. V. Aho, M. Ganapathi, and S. W. K. Tjiang. Code Generation Using Tree

Pattern Matching and Dynamic Programing. ACM Transactions on
Programming Languages and Systems., 11(4):491–516, Oct. 1989.

[2] G. Araujo, S. Malik, and M. Lee. Using Register Transfer Paths in Code
Generation for Heterogeneous Memory Register Architectures . In Proc. of the
Design Automation Conference (DAC), pages 591–596, June 1996.

[3] C. Fraser and D. Hanson. A Retargetable C Compiler : Design and
Implementation. Benjamin/Cummings Publishing Co., 1994.

[4] N. Clark, A. Hormiri, S. Mahlke, and S. Yehia. Scalable Subgraph Mapping for
Acyclic Computation Accelerators. In Proc. of the Conference on Compilers,
Architectures and Synthesis for Embedded Systems (CASES), Oct. 2006.

[5] C. Devine. http://xyssl.org, 2007.
[6] E. Eckstein, O. Koening, and B. Scholz. Code Instruction Selection Based on

SSA Graphs. In Proc. of the Workshop on Software and Compilers for
Embedded Systems (SCOPES), pages 49–65, Oct. 2003.

[7] M. A. Ertl. Optimal Code Selection in DAGs . In ”Principles of Programming
Languages (POPL ’99)”, 1999.

[8] C. W. Fraser, D. R. Hanson, and T. A. Proebsting. Engineering Efficient Code
Generators Using Tree Matching and Dynamic Programming. Technical Report
TR-386-92, 1992.

[9] C. W. Fraser, R. R. Henry, and T. A. Proebsting. BURG–fast optimal instruction
selection and tree parsing. Technical Report CS-TR-1991-1066, 1991.

[10] M. R. Garey and D. S. Johnson. A Guide to the Theory of NP-Completeness. W.
H. Freeman & CO, New York, 1990. ISBN:0716710455.

[11] A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt, and A. Nicolau.
EXPRESSION: A Language for Architecture Exploration through
Compiler/Simulator Retargetability. In Proc. of the Conference on Design,
Automation & Test in Europe (DATE), Mar. 1999.

[12] A. Hoffmann, H. Meyr, and R. Leupers. Architecture Exploration for Embedded
Processors With Lisa. Kluwer Academic Publishers, Jan. 2003. ISBN
1-4020-7338-0.

[13] K. Karuri, M. A. A. Faruque, S. Kraemer, R. Leupers, G. Ascheid., and
H. Meyr. Fine-grained Application Source Code Profiling for ASIP Design . In
Proc. of the Design Automation Conference (DAC), pages 329–334, 2005.

[14] K. Keutzer and H. M. et. al. Building ASIPs: The Mescal Methodology.
Springer, June 2005. ISBN: 0-387-26057-9.

[15] R. Leupers and P. Marwedel. Instruction Selection for Embedded DSPs with
Complex Instructions. In Proc. of the European Conference on Design
Automation (EDAC), Sept 1996.

[16] S. Liao, S. Devadas, K. Keutzer, and S. Tjiang. Instruction Selection Using
Binate Covering for Code Size Optimization. In Proc. of the Int. Conf. on
Computer Aided Design (ICCAD), pages 393–399, 1995.

[17] C. Liem, T. May, and P. Paulin. Instruction-set Matching and Selection for DSP
and ASIP Code Generation. In Proc. of the European Design and Test
Conference (ED & TC), pages 31–37, 1994.
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