
Performance Evaluation and Optimization of Dual-Port
SDRAM Architecture for Mobile Embedded Systems

Hoeseok Yang, Sungchan Kim, Hae-woo Park, Jinwoo Kim, and Soonhoi Ha
School of EECS, Seoul National University, Korea

{hyang, sungchan.kim, starlet, jwkim, sha}@iris.snu.ac.kr
ABSTRACT
Recently dual-port SDRAM (DPSDRAM) architecture tailored for
dual-processor based mobile embedded systems has been announced
where a single memory chip plays the role of the local memories and
the shared memory for both processors. In order to keep memory
consistency from simultaneous accesses of both ports, every access to
the shared memory should be protected by a synchronization
mechanism, which can result in substantial access latency. We
propose two optimization techniques by exploiting the
communication patterns of target application: lock-priority scheme
and static-copy scheme. Further, by dividing the shared bank into
multiple blocks, we enable simultaneous accesses to different blocks
and achieve considerable performance gain. Experiments on a virtual
prototyping system show a promising result that we achieve about
20-50% performance gain compared to the base DPSDRAM
architecture.

Categories and Subject Descriptors
C.3 [Computer Systems]: Special-purpose and Application-based
Systems – Real-time and embedded systems.

General Terms
Design.

Keywords
Memory architecture, dual-port SDRAM, mobile embedded system

1. INTRODUCTION
Mobile embedded systems support diverse multimedia functions like
audio, video, and even 3D games, which never cease to demand more
powerful computation capability. The typical architecture is a dual
processor system that consists of a baseband processor and a
powerful application processor. The baseband processor handles
essential call-processing and modem functions while the application
processor performs computation-intensive applications. Though an
application processor is typically made of a powerful multi-core
system-on-chip (SoC), we regard it as a single core processor in this
paper.
Figure 1 shows three different dual-processor architectures. One is to
reuse existing shared media, such as peripheral device bus and
general purpose I/O ports, for communication. Figure 1(a) depicts an
existent architecture where two processors communicate with each
other through LCD bus. Although it provides a cheap solution by
reusing a peripheral bus, it suffers from low bandwidth.

Baseband
Processor Application

Processor

Local
memory

LCD bus

Local
memory

LCD
controller

(a) (b)

Baseband
Processor

Application
Processor

Local memory
for BP
Shared

memory
Local memory

for AP
Dual-port SDRAM

(c)

Baseband
Processor

Application
Processor

External
SDRAM

SRAM

External
Mem. interface

On-chip

DMA

Figure 1. Various communication architectures for dual-processor: (a)
communication using peripheral bus, (b) the MXC solution [1], and (c)
the dual-port SDRAM (OneDRAMTM [6]).

Dual-port memory architecture is a promising solution to gain
performance improvement. Many researches have focused on
efficient inter-processor communications in multi-processor
environment considering memory architecture optimizations [2][3]
and multi-port memory [4][5] respectively. Recently, a novel
architecture, called MXC (Mobile Extreme Convergence), has been
introduced [1]. It consists of two processor cores, ARM1136TM and
StarCoreTM SC140 DSP, in a single chip. The communication
between two processors is made through on-chip SRAM as depicted
in Figure 1(b). Once the baseband processor writes a data to the on-
chip SRAM, DMA conveys it to the external SDRAM that is
accessible for the application processor. The processors share an
external single-port SDRAM for their own local memory accesses,
which means that the single-port interface still remains potential
performance bottleneck. Since all components are implemented in a
single chip, it solves the problem of increased package count.
Very recently, a new dual-port SDRAM device (DPSDRAM),
OneDRAMTM, has been announced by Samsung Electronics [6],
which consists of one shared bank and two dedicated banks for both
processors as illustrated in Figure 1(c). Two dedicated banks are
served as local memory areas for processors. There is a special
purpose bank (the grey box in the middle) for shared memory space
for inter-processor communications. Compared with the MXC
solution, it has two major advantages: (1) it provides larger shared
space; (2) Contrary to a single chip solution like the MXC, there are
no constraints on the kinds of processors so as to be easily applicable
to various mobile embedded systems. Throughout the rest of the
paper, we will refer the structure of OneDRAMTM to the base
DPSDRAM architecture.
To share the same memory area, synchronization overhead should be
paid. The DPSDRAM provides a hardware semaphore to give
exclusive access to the shared region. Before accessing the shared
region, the hardware semaphore should be obtained. Moreover,
software semaphore is also managed for shared data structure. Since
the shared space is usually set to non-cacheable, it turns out that the
synchronization overhead may nullify the performance gain of the
DPSDRAM architecture.
To reduce such synchronization overheads, we propose two
optimization techniques in addition to the base DPSDRAM
architecture: lock-priority scheme and static-copy scheme. The

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CASES’07, Sep. 30–Oct. 5, 2007, Salzburg, Austria.
Copyright 2007 ACM 978-1-59593-826-8/07/0009...$5.00.

53

optimizations are based on the observation that the characteristics of
communication requirements of two processors are different. A
typical scenario is that the baseband processor receives a ‘big’ data
structure, for example a video frame, from the air and transfers it to
the application processor that will process the data structure. Thus,
the baseband processor triggers communication infrequently but with
relatively big data once it happens. On the other hand, the application
processor deals with relatively small data but frequently. This
asymmetric duo gives the chance of optimization.
Whereas OneDRAMTM provides only single lock for the entire
shared bank, we go further to a more general structure where the
shared bank is divided into multiple sub-regions with separate
hardware semaphores. Such architecture allows simultaneous
accesses to different sub-regions in the bank for both processors and
subsequently enables efficient and flexible operations as well as finer
control on the shared bank. OneDRAMTM is a specific instantiation
of a general DPSDRAM architecture with a single sub-region in the
shared bank.

2. DUAL-PORT SDRAM ARCHITECTURE
2.1 Structural Overview
The structure of the base DPSDRAM architecture is shown in Figure
2. The baseband processor and the application processor are
connected to a DPSDRAM that has two dedicated memory banks for
the processors and a shared memory bank. In the figure, we explicitly
draw the hardware semaphore that is included in the memory device.
To avoid access conflicts, both processors should acquire the
hardware semaphore prior to shared memory bank access. In the
figure, solid lines denote data paths while dashed lines stand for
control paths to convey hardware semaphore commands. Since the
hardware semaphore resides inside the memory device and address-
mapped, all commands of a processor are passed by the data bus.

Shared Memory

Baseband
Processor

Application
Processor

Hardware
semaphore

Dedicated Memory
(Basedband)

Dedicated Memory
(Application)

Memory
Controller

Memory
Controller

Figure 2. Structure of the base DPSDRAM architecture.

2.2 Inter-Processor Communication
While the hardware semaphore supports physical mutual exclusion, it
is yet insufficient. We need to provide software semaphore for
logical mutual exclusion. Since the software semaphores should be
also shared between processors, they are located in the shared bank.
Therefore, we have to pay the overhead of grasping a hardware
semaphore and a software semaphore before accessing a shared data
structure in the shared bank. It is crucial to minimize such
synchronization overhead to get the maximum performance benefit
of the DPSDRAM architecture.
Figure 3 shows the pseudo code for the shared memory access APIs.
As shown in the code, several memory accesses for mutual exclusion
are needed. Even if a processor can acquire all locks immediately, 9
additional memory accesses are required: 4 for software semaphore
lock, 3 for software semaphore unlock, 1 for hardware semaphore
lock, and 1 for hardware semaphore unlock as annotated in the
pseudo code. The procedure to lock/unlock software semaphore
consists of locking hardware semaphore, accessing software
semaphore in the shared memory, and unlocking hardware
semaphore. Only single access is required to lock/unlock hardware
semaphore as it guarantees the atomicity.
Software_semaphore_write(lock, ACQUIRED) needs to access
shared memory twice for reading and marking software semaphore as

in use while software_semaphore_write(lock, RELEASED) needs just
one to make it available.
Note that the overhead of managing the software semaphore can be
amortized if a large chuck of data is accessed. Since both the writer
and the reader processors access the shared bank, the overhead
becomes doubled for each communication. Consequently, at least 9
memory accesses are added for the shared memory access.

software_semaphore_lock(lock){
hardware_semaphore_lock(lock_for_sw_semaphore_area); // 1 access
software_semaphore_write(lock, ACQUIRED); // 2 accesses
hardware_semaphore_unlock(lock_for_sw_semaphore_area); // 1 access

} // total 4 additional accesses
// for SW semaphore lock

software_semaphore_unlock(lock){
hardware_semaphore_lock(lock_for_sw_semaphore_area); // 1 access
software_semaphore_write(lock, RELEASED); // 1 access
hardware_semaphore_unlock(lock_for_sw_semaphore_area); // 1 access

} // total 3 additional accesses
// for SW semaphore unlock

access_shared_data(address_size){
software_semaphore_lock(lock_for_data); // 4 accesses for SW semaphore lock
for each shared_block for (address, address+size-1) do {

hardware_semaphore_lock(lock_for_shared_block); // 1 access for HW semaphore lock
access_shared_block(shared_block);
hardware_semaphore_unlock(lock_for_shared_block); // 1 access for HW semaphore unlock

}
software_semaphore_unlock(lock_for_data); // 3 accesses for SW semaphore unlock

} // total 9 additional accesses needed
// for a shared memory access

software_semaphore_lock(lock){
hardware_semaphore_lock(lock_for_sw_semaphore_area); // 1 access
software_semaphore_write(lock, ACQUIRED); // 2 accesses
hardware_semaphore_unlock(lock_for_sw_semaphore_area); // 1 access

} // total 4 additional accesses
// for SW semaphore lock

software_semaphore_unlock(lock){
hardware_semaphore_lock(lock_for_sw_semaphore_area); // 1 access
software_semaphore_write(lock, RELEASED); // 1 access
hardware_semaphore_unlock(lock_for_sw_semaphore_area); // 1 access

} // total 3 additional accesses
// for SW semaphore unlock

access_shared_data(address_size){
software_semaphore_lock(lock_for_data); // 4 accesses for SW semaphore lock
for each shared_block for (address, address+size-1) do {

hardware_semaphore_lock(lock_for_shared_block); // 1 access for HW semaphore lock
access_shared_block(shared_block);
hardware_semaphore_unlock(lock_for_shared_block); // 1 access for HW semaphore unlock

}
software_semaphore_unlock(lock_for_data); // 3 accesses for SW semaphore unlock

} // total 9 additional accesses needed
// for a shared memory access

Figure 3. Pseudo code for shared memory access. Annotated access
counts assume that all locks can be obtained with no delay.

3. ARCHITECTURE OPTIMIZATION
TECHNIQUES
In this section, we describe three techniques to reduce
synchronization overhead by exploiting the communication patterns
in a typical mobile embedded system.

3.1 Lock-Priority
As explained earlier, in mobile embedded systems, the baseband
processor and the application processor are not symmetric in their
communication requirements. The baseband processor triggers
communication infrequently but with relatively big data once it
happens, while the application processor deals with relatively small
data but frequently. For the baseband processor, it is important to
reduce the waiting time for obtaining the hardware lock because there
are real-time constraints to handle communication with the air. On
the other hand, for the application processor, the access overhead for
the hardware lock is the most important factor to the communication
performance. Since the application processor accesses small portions
of data frequently, the synchronization overhead for hardware lock is
accumulated.
Based on this observation, we propose an optimization technique
called the lock-priority technique, which gives the right of access to
the application processor by default. If the baseband processor
requests the access, the system switches the access privilege to the
baseband processor immediately. As soon as the baseband processor
releases the hardware lock, the access privilege is bestowed to the
application processor automatically. Therefore, the application
processor needs not send a request for the hardware semaphore when
it accesses the shared memory bank. It removes the synchronization
overhead of getting the hardware lock which requires 6 memory
accesses as illustrated in Figure 3. On the other hand, the baseband
processor experiences no latency of accessing the shared memory. As
a result, the proposed lock-priority technique satisfies both
processors with different wish lists.
Figure 4 shows the modified architecture with a lock manager in the
application processor side, which implements the lock-priority
technique explained above. The lock manager has two control input
ports from both application and baseband processors, which indicate

54

the access request for the shard memory bank. The operation of the
lock manager is represented in the form of a finite state machine.

Initial

Protected

Frozen

BP_REL==‘1’

BP_REQ==‘1’

SW_SEM_IN==‘1’
&& BP_REQ==‘0’

SW_SEM_OUT==‘1’
&& BP_REQ==‘0’

SW_SEM_OUT==‘1’
&& BP_REQ==‘1’

Shared Memory

Baseband
Processor

Application
Processor

Hardware
semaphore

Dedicated Memory
(Basedband)

Dedicated Memory
(Application)

Memory
Controller

Memory
Controller

Lock
Manager

Figure 4. Architecture Optimization I: lock-priority.

The ‘Initial’ state indicates that the hardware lock is given to the
application processor by default. The application processor is
allowed to access the shared memory as soon as it requires. If the
baseband processor requests the hardware lock, the lock manager
should release the hardware lock of the application processor
immediately, changing its state to the ‘Frozen’ state in which the
grant of the shared memory access to the application processor is
postponed until the baseband processor finishes its transfer and
releases the lock.
If the application processor accesses a software semaphore in the
‘Initial’ state, the lock manager should hold the hardware lock until
the end of the transaction, moving to the ‘Protected’ state. After the
baseband processor releases the hardware lock, the lock manager gets
the lock back automatically to the application processor and returns
to the ‘Initial’ state again.

3.2 Static-Copy
Our second optimization is based on the observation that the
application processor tends to access the same data several times. A
good example is a 3D rendering application. After a 3D data set is
written into the shared memory bank by the baseband processor, the
application processor accesses the data set multiple times to perform
3D rendering.
Then, it is beneficial to copy the data set into the local memory of the
application processor in order not to pay the synchronization
overhead of shared memory access. Since the local memory is
cacheable while the shared memory is not, performance gain
becomes larger as the access frequency to the same data set increases.
Thus we propose another technique, called the static-copy technique,
where the baseband processor transfers the data directly to the local
memory of the application processor using a customized DMA
controller that shares data path with the application processor as
shown in Figure 5(a).
In the static-copy technique, the shared memory is only used for
transient buffer and the system behaves as a distributed memory
system where inter-processor communication is achieved by the “put-
get” mechanism [7]. The application processor notifies the receiving
location to the baseband processor before communication begins.
Then, the baseband processor puts the data to the specified location
without intervention of the application processor. This mechanism is
particularly useful when the application processor includes a
hardware logic that needs to access the shared data. Since it is not
trivial for the hardware logic to manage the hardware semaphores
and the software semaphores, the hardware logic can access the data
via the local memory with the proposed static-copy technique.
The pseudo code of the static-copy is shown in Figure 6. The
baseband processor acquires the hardware semaphore of the shared
bank, copies data into the shared bank, and release the hardware
semaphore. Then, it lets the customized DMA copy the data to local
memory of the application processor.
Figure 5(a) displays the static-copy enabled architecture with a
customized DMA controller at the application processor side. Once
the baseband processor finishes its transfer to the shared memory, it

triggers the DMA controller to move the data from the shared bank to
the local memory of the application processor.

Shared Memory

Baseband
Processor

Application
Processor

Hardware
semaphore

Dedicated Memory
(Basedband)

Dedicated Memory
(Application)

Memory
Controller

DMA

Shared Memory

Baseband
Processor

Application
Processor

Hardware
semaphore

Dedicated Memory
(Basedband)

Dedicated Memory
(Application) Customized

DMA (a) (b)

Memory
Controller

Memory
Controller

Memory
Controller

Lock
Manager

Figure 5. Architecture Optimization II: static-copy (a) without the lock
manager and (b) with the lock manager.

// API static_copy (src→ via→ dst)
// dest: destination address
// src: source address
// via: shared memory address
// size: data size
static_copy(dest, src, via, size){

hardware_semaphore_lock(shared_block_via);
memory_copy(via, src, size)
hardware_semaphore_unlock(shared_block_via);
trigger_DMA(dest, via, size);

}

// API static_copy (src→ via→ dst)
// dest: destination address
// src: source address
// via: shared memory address
// size: data size
static_copy(dest, src, via, size){

hardware_semaphore_lock(shared_block_via);
memory_copy(via, src, size)
hardware_semaphore_unlock(shared_block_via);
trigger_DMA(dest, via, size);

}
Figure 6. Pseudo code of the static-copy technique.

The customized DMA controller should be able to manage the
hardware semaphore differently from a normal DMA controller.
Before the baseband processor triggers the DMA, it releases the
hardware lock. Once the DMA is triggered, it acquires the hardware
lock and holds the lock until a transfer is finished. During the DMA
transfer, the baseband processor may not access the associated shared
memory block. Figure 5(b) shows the improved architecture
integrated with the lock manager for the lock-priority technique. The
lock manager takes the role of getting the hardware lock instead of
the DMA. Then a simpler DMA controller can be used in the
architecture.
Since the static-copy technique incurs redundant copy overhead
(from shared memory to local memory), data transfer time becomes
longer than before. However, such overhead of data transfer can be
hidden by overlapping computation time of the application processor
with DMA operation, which will be verified by experiments.

3.3 Multiple Blocks in the Shared Bank
To maximize the parallelism between consecutive data transfers, we
can divide the shared bank into multiple blocks as shown in Figure 7.
Permitting simultaneous accesses to multiple blocks in the shared
bank, each block needs its own hardware semaphore logic separately.

Shared Memory
0 1 2 3

Baseband
Processor

Application
Processor

Hardware
semaphores

Dedicated Memory
(Basedband)

Dedicated Memory
(Application)

Memory
Controller

Memory
Controller

Figure 7. Architecture Optimization III: dividing the shared bank into
multiple blocks.

Simultaneous accesses make it possible to overlap consecutive
transfers with each other to boost up the data transfer performance.
This is the basic principle of the well-known double-buffering
technique in producer-consumer data transfer: Multiple blocks of the
shared bank behave as simultaneously accessible buffers in the
double-buffering technique. As a result, read operations of the
application processor are overlapped with write operations of the
baseband processor between the successive transfers. In the static-
copy scheme, using multiple blocks by turns as transient buffer, a
series of static-copy transfers can be overlapped as well.

55

4. EXPERIMENTS
Since there is no DPSDRAM architecture system available
commercially yet, we built a virtual prototyping system that is
composed of two ARMv5 ISA compatible instruction set simulators
(ISS), a DPSDRAM model, and other peripheral device models. Our
processor simulators are based on Sim-Panalyzer [8], which is a
derivation of SimpleScalar [9]. Each ISS is implemented using UNIX
pthread and the local memory is modeled as a thread variable. The
shared objects such as hardware semaphore and shared memory are
modeled with shared variables that are protected by mutex. To
synchronize the accesses to shared objects the simulator always
suspends the thread whenever it tries to access the shared objects.
The lock-priority scheme is modeled in the central synchronization
controller. The customized DMA is also modeled by calculating the
delay of DMA operation and by annotating the completion of DMA
transfer to the ISS threads.
For DPSDRAM architectures, we assume that each processor has 16
kilobytes direct-mapped instruction cache and 16 kilobytes 4-way
set-associative data cache. The clock frequencies of the baseband
processor and the application processor were set to 250MHz and
500MHz respectively to model a realistic architecture where the
application processor is faster than the baseband processor. All
memory interfaces of two processors and the DPSDRAM run at
100MHz. We also consider the traditional peripheral bus architecture
in Figure 1(a) for performance comparison. To simulate the
traditional peripheral bus architecture, two off-chip single-port
SDRAMs were modeled additionally and the clock frequency of the
peripheral bus (LCD bus) was set to 20MHz.

4.1 Evaluation of DPSDRAM Architectures
with Various Optimization Techniques
The first experiment is to verify the effectiveness of the base
DPSDRAM architecture and the optimized architectures proposed in
Section 3 over the LCD bus architecture of Figure 1(a). Figure 8
shows the performance comparison of various DPSDRAM
architectures. ‘A’ denotes the base DPSDRAM architecture, while
‘B’, ‘C’, and ‘D’ stand for the extended architecture applying static-
copy, lock-priority, and both to the base DPSDRAM architecture,
respectively. The number following the alphabet means the number
of accesses by the application processor to the same data set.
For the experiment, we extract the actual communication patterns
from the trace data with an existent LCD-bus based architecture for a
3G mobile phone application: the baseband processor typically writes
about 1-10 kilobytes data into the shared memory at once and the
application processor takes the data by 32 bytes per read respectively.
We synthesized a synthetic but practical workload based on this
typical data transfer scenario, and set the total amount of transferred
data to 256 kilobytes.
Since the performance of the LCD bus architecture is inferior to the
base DPSDRAM architecture by about 4 times, we omit it for brevity.
Regarding non-repetitive accesses, compared with the base
architecture, both the static-copy and lock-priority scheme show the
similar performance gain of about 20%. Such performance gains owe
to reduction of read operations’ overhead at the application processor.
In case of the static-copy scheme, the sending time increases due to
DMA operations from the shared bank to the local bank of the
application processor. In the lock-priority scheme 56% of the reading
time of the application processor is consumed by the holding time of
the application processor waiting for the hardware lock available.
The integration of the static-copy and the lock-priority techniques
shows the best performance with 33% reduction compared to the
base DPSDRAM architecture, which is mainly due to the fact that the
delay by ‘application processor holding’ does not appear any longer,
i.e., the application processor need not access the shared bank
because of the static-copy technique.

0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

14,000,000

A-1 B-1 C-1 D-1 A-2 B-2 C-2 D-2 A-3 B-3 C-3 D-3Time(ns)

application processor holding
application processor reading
baseband processor sending

Figure 8. Performance comparison of DPSDRAM architectures varying
the number of accesses.

Repetitive accesses to the same data set by the application processor
make the static-copy technique more attractive. To verify the
effectiveness of the static-copy scheme, we vary the access counts of
the application processor to the same data set. The base DPSDRAM
and the lock-priority technique show poor scalability as shown in
Figure 8. The base DPSDRAM suffers from significant
synchronization overheads as the number of accesses increases. The
performance gap between the static-copy scheme and the lock-
priority scheme gets wider as the access count increases. In case of
the static-copy, although DMA overhead is added for copying data
from shared bank to local bank, we can utilize the caching effect that
outweighs this copying overhead more as the number of data
accesses increases. It makes the static-copy scheme better scalable
than the lock-priority scheme. Moreover, the synchronization
overhead in the static-copy can be removed by combining with the
lock-priority technique, which leads to further performance gain up
to 53% over the base DPSDRAM architecture.

4.2 Evaluation of Using Multiple Blocks in the
Shared Bank
The second experiment validates the proposed optimization that
divides the shared bank into multiple blocks. Additional performance
gain can be achieved by allowing simultaneous accesses between
difference blocks in the shared bank by using double-buffering.
While the baseband processor puts a data set to one shared block, the
application processor may fetch another data set from the other block
in parallel.

0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

14,000,000

A-1 B-1 C-1 D-1 E-1 F-1 A-2 B-2 C-2 D-2 E-2 F-2 A-3 B-3 C-3 D-3 E-3 F-3Time(ns)

application processor holding
application processor reading
baseband processor sending

Figure 9. Performance comparison of the DPSDRAM architectures
exploiting multiple blocks in the shared bank.

In this sub-section, we refer the base DPSDRAM architecture to the
architecture with four separate blocks in the shared bank without
optimization technique (lock-priority or static-copy), which is labeled
‘A’. We denote the base DPSDRAM with a double-buffering
technique by ‘B’. The architecture ‘C’ and ‘D’ are the optimized

56

architectures by the lock-priority scheme and the static-copy scheme
respectively. The architecture ‘E’ combines the double-buffering
with the static-copy technique while all the techniques (the lock-
priority, static copy, and double-buffering) are incorporated in the
architecture ‘F’. The performance comparison of those architectures
is presented in Figure 9.
The advantage of having multiple blocks in the shared bank appears
clear in the architectures with double-buffering. Just applying
double-buffering technique alone to the base DPSDRAM architecture,
‘B’, shows 17-30% performance gain against the base DPSDRAM
architecture. Although some access conflicts between processors are
eliminated by permitting simultaneous accesses to different blocks,
the performance gain becomes smaller as the number of accesses
increases. By combining the lock-priority scheme and double-
buffering, ‘C’, 25-40% of performance gain is obtained when
compared to the architecture with the double-buffering only and
about 30% performance gain compared to the lock-priority scheme
only. It is noteworthy that despite the poor scalability of the lock-
priority scheme, the architecture with the lock-priority and double-
buffering techniques shows the improved performance close to that
of the architecture with both static-copy and lock-priority without
double-buffering.
It is also advantageous for the static-copy technique to allow double-
buffing by dividing the shared bank. If we use multiple blocks as
transient buffers in the static-copy scheme, we can get similar
performance gain by overlapping the consecutive data transfers. In
the architecture ‘E’, the double-buffering reduces the baseband
processor sending time by about 15% and the overall performance
gain over the architecture with the static-copy only, ‘D’, is about 8%.
The architecture ‘F’ that has the double-buffered static-copy and
lock-priority schemes, however, shows no further performance
improvement since the DMA transfer to the local memory of the
application processor and the data transfer to the shared bank are
overlapped, hiding the gain of the additional lock-priority scheme.

4.3 Evaluation with 3D Rendering Application
In order to assess the proposed optimization techniques by an
industrial strength application, we consider a 3D rendering
application, which is a part of in-house mobile phone software
development suit. In the example, the baseband processor provides
the application processor with tens or hundreds kilobytes of data that
are to be rendered and texture-mapped at once. On the contrary, the
application processor performs 3D rendering task that requires
frequent reading of tens of bytes. We observed that most of data
transfers except for a few control data are unidirectional and the
application processor accesses the same data repetitively, which
makes the static-copy scheme efficient. Furthermore, there are some
time constraints, for example the number of frames to be rendered in
one second, which stresses the importance of improving the speed of
data transfer. We extracted memory access traces of which total
amount of transferred data is about 2 megabytes from both processors.

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

30,000,000

35,000,000

40,000,000

BASE BASE+L BASE+L+STime(ns)

application processor holding
application processor reading
baseband processor sending

Figure 10. Performance comparison of the DPSDRAM architectures in
3D rendering examples.

Figure 10 shows the data transfer time according to three
communication architectures. ‘BASE’ denotes the base DPSDRAM
architecture while ‘+S’ and ‘+L’ mean the static-copy and lock-
priority techniques respectively. The LCD bus architecture works
about 6 times slower than the base DPSDRAM architecture even
though it does not appear in the graph. Further performance
improvements can be obtained with the lock-priority and static-copy.
In case of the architecture with the lock-priority only, there is about
20% performance improvement compared with the base DPSDRAM
architecture. Considering both the lock-priority and the static-copy
achieves additional improvement to about 50%.

5. CONCLUSION
In this paper, we have evaluated a dual-port SDRAM architecture for
mobile embedded systems. To minimize the non-negligible
synchronization overhead, we proposed three optimization
techniques: static-copy, lock-priority, and multiple shared blocks.
Both lock-priority and static-copy techniques reduce the
synchronization overhead by exploiting typical communication
patterns of mobile embedded systems.
The effectiveness of the DPSDRAM architecture has been evaluated
by extensive experiments. The base DPSDRAM architecture was
about 4 times faster than the traditional peripheral bus (LCD bus)
architecture. Furthermore, by combining the three optimization
techniques, the performance was improved by 20-50% over the base
DPSDRAM architecture.

6. ACKNOWLEDGMENTS
This work was supported by BK21 project, SystemIC 2010 project
funded by Korean MOCIE, and Creative Research Initiative
sponsored by KOSEF research program(R17-2007-086-01001-0).
This work was also partly sponsored by ETRI SoC Industry
Promotion Center, Human Resource Development Project for IT-SoC
Architect. The ICT and ISRC at Seoul National University and IDEC
provide research facilities for this study.

7. REFERENCES
[1] MXC300-30: 3G Single Core Modem Platform, Freescale

Semiconductor [Online]. Available: http://www.freescale.com.
[2] T. V. Meeuwen, A. Vandecappelle, A. V. Zelst, F. Catthoor, and D.

Verkest, "System-level interconnect architecture exploration for custom
memory organizations," in Proceedings of International Symposium on
System Synthesis, pp. 13-18, Sep. 2001.

[3] F. Gharsalli, D Lyonnard, S Meftali, F Rousseau, A. A. Jerraya,
"Unifying memory and processor wrapper architecture in multiprocessor
SoC design," in Proceedings of International Symposium on System
Synthesis, pp. 26-31, Oct. 2002.

[4] K. Patel, E. Macii, and M. Poncino, "Synthesis of partitioned shared
memory architectures for energy-efficient multi-processor SoC," in
Proceedings of the conference on Design Automation and Test in
Europe, pp. 10700-10701, Feb. 2004.

[5] Integrated Device Technology, "Dual port memory simplifies wireless
base station design," Application Note, AN-409, Jan. 2004.

[6] Samsung Electronics Inc, “Fusion Memory Solution OneDRAM™,”
[Online]. Available:
http://www.samsung.com/PressCenter/PressRelease/PressRelease.asp?se
q=20061213_0000306480

[7] K. Hayashi, T. Doi, T. Horie, Y. Koyanagi, O. Shiraki, N. Imamura, T.
Shimizu, H. Ishihata, and T. Shindo, "AP1000+: Architectural support
of PUT/GET interface for parallelizing compiler," in Proceedings of
International Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 196-207, Oct. 1994.

[8] The SimpleScalar-Arm Power Modeling Project [Online], Available:
http://www.eecs.umich.edu/~panalyzer.

[9] SimpleScalar LLC [Online], Available: http://www.simplescalar.com

57

