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ABSTRACT 
Recently dual-port SDRAM (DPSDRAM) architecture tailored for 
dual-processor based mobile embedded systems has been announced 
where a single memory chip plays the role of the local memories and 
the shared memory for both processors. In order to keep memory 
consistency from simultaneous accesses of both ports, every access to 
the shared memory should be protected by a synchronization 
mechanism, which can result in substantial access latency. We 
propose two optimization techniques by exploiting the 
communication patterns of target application: lock-priority scheme 
and static-copy scheme. Further, by dividing the shared bank into 
multiple blocks, we enable simultaneous accesses to different blocks 
and achieve considerable performance gain. Experiments on a virtual 
prototyping system show a promising result that we achieve about 
20-50% performance gain compared to the base DPSDRAM 
architecture. 

Categories and Subject Descriptors 
C.3 [Computer Systems]: Special-purpose and Application-based 
Systems – Real-time and embedded systems. 

General Terms 
Design. 

Keywords 
Memory architecture, dual-port SDRAM, mobile embedded system 

1. INTRODUCTION 
Mobile embedded systems support diverse multimedia functions like 
audio, video, and even 3D games, which never cease to demand more 
powerful computation capability. The typical architecture is a dual 
processor system that consists of a baseband processor and a 
powerful application processor. The baseband processor handles 
essential call-processing and modem functions while the application 
processor performs computation-intensive applications. Though an 
application processor is typically made of a powerful multi-core 
system-on-chip (SoC), we regard it as a single core processor in this 
paper. 
Figure 1 shows three different dual-processor architectures. One is to 
reuse existing shared media, such as peripheral device bus and 
general purpose I/O ports, for communication. Figure 1(a) depicts an 
existent architecture where two processors communicate with each 
other through LCD bus. Although it provides a cheap solution by 
reusing a peripheral bus, it suffers from low bandwidth. 
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Figure 1. Various communication architectures for dual-processor: (a) 
communication using peripheral bus, (b) the MXC solution [1], and (c) 
the dual-port SDRAM (OneDRAMTM  [6]). 

Dual-port memory architecture is a promising solution to gain 
performance improvement. Many researches have focused on 
efficient inter-processor communications in multi-processor 
environment considering memory architecture optimizations [2][3] 
and multi-port memory [4][5] respectively. Recently, a novel 
architecture, called MXC (Mobile Extreme Convergence), has been 
introduced  [1]. It consists of two processor cores, ARM1136TM and 
StarCoreTM SC140 DSP, in a single chip. The communication 
between two processors is made through on-chip SRAM as depicted 
in Figure 1(b). Once the baseband processor writes a data to the on-
chip SRAM, DMA conveys it to the external SDRAM that is 
accessible for the application processor. The processors share an 
external single-port SDRAM for their own local memory accesses, 
which means that the single-port interface still remains potential 
performance bottleneck. Since all components are implemented in a 
single chip, it solves the problem of increased package count. 
Very recently, a new dual-port SDRAM device (DPSDRAM), 
OneDRAMTM, has been announced by Samsung Electronics [6], 
which consists of one shared bank and two dedicated banks for both 
processors as illustrated in Figure 1(c). Two dedicated banks are 
served as local memory areas for processors. There is a special 
purpose bank (the grey box in the middle) for shared memory space 
for inter-processor communications. Compared with the MXC 
solution, it has two major advantages: (1) it provides larger shared 
space; (2) Contrary to a single chip solution like the MXC, there are 
no constraints on the kinds of processors so as to be easily applicable 
to various mobile embedded systems. Throughout the rest of the 
paper, we will refer the structure of OneDRAMTM to the base 
DPSDRAM architecture. 
To share the same memory area, synchronization overhead should be 
paid. The DPSDRAM provides a hardware semaphore to give 
exclusive access to the shared region. Before accessing the shared 
region, the hardware semaphore should be obtained. Moreover, 
software semaphore is also managed for shared data structure. Since 
the shared space is usually set to non-cacheable, it turns out that the 
synchronization overhead may nullify the performance gain of the 
DPSDRAM architecture. 
To reduce such synchronization overheads, we propose two 
optimization techniques in addition to the base DPSDRAM 
architecture: lock-priority scheme and static-copy scheme. The 
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optimizations are based on the observation that the characteristics of 
communication requirements of two processors are different. A 
typical scenario is that the baseband processor receives a ‘big’ data 
structure, for example a video frame, from the air and transfers it to 
the application processor that will process the data structure. Thus, 
the baseband processor triggers communication infrequently but with 
relatively big data once it happens. On the other hand, the application 
processor deals with relatively small data but frequently. This 
asymmetric duo gives the chance of optimization. 
Whereas OneDRAMTM provides only single lock for the entire 
shared bank, we go further to a more general structure where the 
shared bank is divided into multiple sub-regions with separate 
hardware semaphores. Such architecture allows simultaneous 
accesses to different sub-regions in the bank for both processors and 
subsequently enables efficient and flexible operations as well as finer 
control on the shared bank. OneDRAMTM is a specific instantiation 
of a general DPSDRAM architecture with a single sub-region in the 
shared bank. 

2. DUAL-PORT SDRAM ARCHITECTURE 
2.1 Structural Overview 
The structure of the base DPSDRAM architecture is shown in Figure 
2. The baseband processor and the application processor are 
connected to a DPSDRAM that has two dedicated memory banks for 
the processors and a shared memory bank. In the figure, we explicitly 
draw the hardware semaphore that is included in the memory device. 
To avoid access conflicts, both processors should acquire the 
hardware semaphore prior to shared memory bank access. In the 
figure, solid lines denote data paths while dashed lines stand for 
control paths to convey hardware semaphore commands. Since the 
hardware semaphore resides inside the memory device and address-
mapped, all commands of a processor are passed by the data bus. 
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Figure 2. Structure of the base DPSDRAM architecture. 

2.2 Inter-Processor Communication 
While the hardware semaphore supports physical mutual exclusion, it 
is yet insufficient. We need to provide software semaphore for 
logical mutual exclusion. Since the software semaphores should be 
also shared between processors, they are located in the shared bank. 
Therefore, we have to pay the overhead of grasping a hardware 
semaphore and a software semaphore before accessing a shared data 
structure in the shared bank. It is crucial to minimize such 
synchronization overhead to get the maximum performance benefit 
of the DPSDRAM architecture. 
Figure 3 shows the pseudo code for the shared memory access APIs. 
As shown in the code, several memory accesses for mutual exclusion 
are needed. Even if a processor can acquire all locks immediately, 9 
additional memory accesses are required: 4 for software semaphore 
lock, 3 for software semaphore unlock, 1 for hardware semaphore 
lock, and 1 for hardware semaphore unlock as annotated in the 
pseudo code. The procedure to lock/unlock software semaphore 
consists of locking hardware semaphore, accessing software 
semaphore in the shared memory, and unlocking hardware 
semaphore. Only single access is required to lock/unlock hardware 
semaphore as it guarantees the atomicity. 
Software_semaphore_write(lock, ACQUIRED) needs to access 
shared memory twice for reading and marking software semaphore as 

in use while software_semaphore_write(lock, RELEASED) needs just 
one to make it available. 
Note that the overhead of managing the software semaphore can be 
amortized if a large chuck of data is accessed. Since both the writer 
and the reader processors access the shared bank, the overhead 
becomes doubled for each communication. Consequently, at least 9 
memory accesses are added for the shared memory access. 

software_semaphore_lock(lock){
hardware_semaphore_lock(lock_for_sw_semaphore_area);  // 1 access
software_semaphore_write(lock, ACQUIRED);                    // 2 accesses
hardware_semaphore_unlock(lock_for_sw_semaphore_area);  // 1 access

}                                                               // total 4 additional accesses
// for SW semaphore lock

software_semaphore_unlock(lock){
hardware_semaphore_lock(lock_for_sw_semaphore_area);  // 1 access 
software_semaphore_write(lock, RELEASED);                    // 1 access
hardware_semaphore_unlock(lock_for_sw_semaphore_area);  // 1 access

}                                                               // total 3 additional accesses
// for SW semaphore unlock

access_shared_data(address_size){
software_semaphore_lock(lock_for_data);                        // 4 accesses for SW semaphore lock
for each shared_block for (address, address+size-1) do {

hardware_semaphore_lock(lock_for_shared_block);       // 1 access for HW semaphore lock
access_shared_block(shared_block);                                 
hardware_semaphore_unlock(lock_for_shared_block);   // 1 access for HW semaphore unlock

}
software_semaphore_unlock(lock_for_data);                   // 3 accesses for SW semaphore unlock

}                                                               // total 9 additional accesses needed
// for a shared memory access

software_semaphore_lock(lock){
hardware_semaphore_lock(lock_for_sw_semaphore_area);  // 1 access
software_semaphore_write(lock, ACQUIRED);                    // 2 accesses
hardware_semaphore_unlock(lock_for_sw_semaphore_area);  // 1 access

}                                                               // total 4 additional accesses
// for SW semaphore lock

software_semaphore_unlock(lock){
hardware_semaphore_lock(lock_for_sw_semaphore_area);  // 1 access 
software_semaphore_write(lock, RELEASED);                    // 1 access
hardware_semaphore_unlock(lock_for_sw_semaphore_area);  // 1 access

}                                                               // total 3 additional accesses
// for SW semaphore unlock

access_shared_data(address_size){
software_semaphore_lock(lock_for_data);                        // 4 accesses for SW semaphore lock
for each shared_block for (address, address+size-1) do {

hardware_semaphore_lock(lock_for_shared_block);       // 1 access for HW semaphore lock
access_shared_block(shared_block);                                 
hardware_semaphore_unlock(lock_for_shared_block);   // 1 access for HW semaphore unlock

}
software_semaphore_unlock(lock_for_data);                   // 3 accesses for SW semaphore unlock

}                                                               // total 9 additional accesses needed
// for a shared memory access

 
Figure 3. Pseudo code for shared memory access. Annotated access 
counts assume that all locks can be obtained with no delay. 

3. ARCHITECTURE OPTIMIZATION 
TECHNIQUES 
In this section, we describe three techniques to reduce 
synchronization overhead by exploiting the communication patterns 
in a typical mobile embedded system. 

3.1 Lock-Priority 
As explained earlier, in mobile embedded systems, the baseband 
processor and the application processor are not symmetric in their 
communication requirements. The baseband processor triggers 
communication infrequently but with relatively big data once it 
happens, while the application processor deals with relatively small 
data but frequently. For the baseband processor, it is important to 
reduce the waiting time for obtaining the hardware lock because there 
are real-time constraints to handle communication with the air. On 
the other hand, for the application processor, the access overhead for 
the hardware lock is the most important factor to the communication 
performance. Since the application processor accesses small portions 
of data frequently, the synchronization overhead for hardware lock is 
accumulated. 
Based on this observation, we propose an optimization technique 
called the lock-priority technique, which gives the right of access to 
the application processor by default. If the baseband processor 
requests the access, the system switches the access privilege to the 
baseband processor immediately. As soon as the baseband processor 
releases the hardware lock, the access privilege is bestowed to the 
application processor automatically. Therefore, the application 
processor needs not send a request for the hardware semaphore when 
it accesses the shared memory bank. It removes the synchronization 
overhead of getting the hardware lock which requires 6 memory 
accesses as illustrated in Figure 3. On the other hand, the baseband 
processor experiences no latency of accessing the shared memory. As 
a result, the proposed lock-priority technique satisfies both 
processors with different wish lists. 
Figure 4 shows the modified architecture with a lock manager in the 
application processor side, which implements the lock-priority 
technique explained above. The lock manager has two control input 
ports from both application and baseband processors, which indicate 
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the access request for the shard memory bank. The operation of the 
lock manager is represented in the form of a finite state machine. 
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Figure 4. Architecture Optimization I: lock-priority. 

The ‘Initial’ state indicates that the hardware lock is given to the 
application processor by default. The application processor is 
allowed to access the shared memory as soon as it requires. If the 
baseband processor requests the hardware lock, the lock manager 
should release the hardware lock of the application processor 
immediately, changing its state to the ‘Frozen’ state in which the 
grant of the shared memory access to the application processor is 
postponed until the baseband processor finishes its transfer and 
releases the lock. 
If the application processor accesses a software semaphore in the 
‘Initial’ state, the lock manager should hold the hardware lock until 
the end of the transaction, moving to the ‘Protected’ state. After the 
baseband processor releases the hardware lock, the lock manager gets 
the lock back automatically to the application processor and returns 
to the ‘Initial’ state again. 

3.2 Static-Copy 
Our second optimization is based on the observation that the 
application processor tends to access the same data several times. A 
good example is a 3D rendering application. After a 3D data set is 
written into the shared memory bank by the baseband processor, the 
application processor accesses the data set multiple times to perform 
3D rendering.  
Then, it is beneficial to copy the data set into the local memory of the 
application processor in order not to pay the synchronization 
overhead of shared memory access. Since the local memory is 
cacheable while the shared memory is not, performance gain 
becomes larger as the access frequency to the same data set increases. 
Thus we propose another technique, called the static-copy technique, 
where the baseband processor transfers the data directly to the local 
memory of the application processor using a customized DMA 
controller that shares data path with the application processor as 
shown in Figure 5(a). 
In the static-copy technique, the shared memory is only used for 
transient buffer and the system behaves as a distributed memory 
system where inter-processor communication is achieved by the “put-
get” mechanism [7]. The application processor notifies the receiving 
location to the baseband processor before communication begins. 
Then, the baseband processor puts the data to the specified location 
without intervention of the application processor. This mechanism is 
particularly useful when the application processor includes a 
hardware logic that needs to access the shared data. Since it is not 
trivial for the hardware logic to manage the hardware semaphores 
and the software semaphores, the hardware logic can access the data 
via the local memory with the proposed static-copy technique. 
The pseudo code of the static-copy is shown in Figure 6. The 
baseband processor acquires the hardware semaphore of the shared 
bank, copies data into the shared bank, and release the hardware 
semaphore. Then, it lets the customized DMA copy the data to local 
memory of the application processor. 
Figure 5(a) displays the static-copy enabled architecture with a 
customized DMA controller at the application processor side. Once 
the baseband processor finishes its transfer to the shared memory, it 

triggers the DMA controller to move the data from the shared bank to 
the local memory of the application processor. 
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Figure 5. Architecture Optimization II: static-copy (a) without the lock 
manager and (b) with the lock manager. 

// API static_copy (src→ via→ dst)
//    dest: destination address
//    src: source address
//    via: shared memory address
//    size: data size
static_copy(dest, src, via, size){

hardware_semaphore_lock(shared_block_via);
memory_copy(via, src, size)
hardware_semaphore_unlock(shared_block_via);
trigger_DMA(dest, via, size);

}

// API static_copy (src→ via→ dst)
//    dest: destination address
//    src: source address
//    via: shared memory address
//    size: data size
static_copy(dest, src, via, size){

hardware_semaphore_lock(shared_block_via);
memory_copy(via, src, size)
hardware_semaphore_unlock(shared_block_via);
trigger_DMA(dest, via, size);

}  
Figure 6. Pseudo code of the static-copy technique. 

The customized DMA controller should be able to manage the 
hardware semaphore differently from a normal DMA controller. 
Before the baseband processor triggers the DMA, it releases the 
hardware lock. Once the DMA is triggered, it acquires the hardware 
lock and holds the lock until a transfer is finished. During the DMA 
transfer, the baseband processor may not access the associated shared 
memory block. Figure 5(b) shows the improved architecture 
integrated with the lock manager for the lock-priority technique. The 
lock manager takes the role of getting the hardware lock instead of 
the DMA. Then a simpler DMA controller can be used in the 
architecture. 
Since the static-copy technique incurs redundant copy overhead 
(from shared memory to local memory), data transfer time becomes 
longer than before. However, such overhead of data transfer can be 
hidden by overlapping computation time of the application processor 
with DMA operation, which will be verified by experiments. 

3.3 Multiple Blocks in the Shared Bank 
To maximize the parallelism between consecutive data transfers, we 
can divide the shared bank into multiple blocks as shown in Figure 7. 
Permitting simultaneous accesses to multiple blocks in the shared 
bank, each block needs its own hardware semaphore logic separately. 
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Figure 7. Architecture Optimization III: dividing the shared bank into 
multiple blocks. 

Simultaneous accesses make it possible to overlap consecutive 
transfers with each other to boost up the data transfer performance. 
This is the basic principle of the well-known double-buffering 
technique in producer-consumer data transfer: Multiple blocks of the 
shared bank behave as simultaneously accessible buffers in the 
double-buffering technique. As a result, read operations of the 
application processor are overlapped with write operations of the 
baseband processor between the successive transfers. In the static-
copy scheme, using multiple blocks by turns as transient buffer, a 
series of static-copy transfers can be overlapped as well. 
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4. EXPERIMENTS 
Since there is no DPSDRAM architecture system available 
commercially yet, we built a virtual prototyping system that is 
composed of two ARMv5 ISA compatible instruction set simulators 
(ISS), a DPSDRAM model, and other peripheral device models. Our 
processor simulators are based on Sim-Panalyzer [8], which is a 
derivation of SimpleScalar [9]. Each ISS is implemented using UNIX 
pthread and the local memory is modeled as a thread variable. The 
shared objects such as hardware semaphore and shared memory are 
modeled with shared variables that are protected by mutex. To 
synchronize the accesses to shared objects the simulator always 
suspends the thread whenever it tries to access the shared objects. 
The lock-priority scheme is modeled in the central synchronization 
controller. The customized DMA is also modeled by calculating the 
delay of DMA operation and by annotating the completion of DMA 
transfer to the ISS threads. 
For DPSDRAM architectures, we assume that each processor has 16 
kilobytes direct-mapped instruction cache and 16 kilobytes 4-way 
set-associative data cache. The clock frequencies of the baseband 
processor and the application processor were set to 250MHz and 
500MHz respectively to model a realistic architecture where the 
application processor is faster than the baseband processor. All 
memory interfaces of two processors and the DPSDRAM run at 
100MHz. We also consider the traditional peripheral bus architecture 
in Figure 1(a) for performance comparison. To simulate the 
traditional peripheral bus architecture, two off-chip single-port 
SDRAMs were modeled additionally and the clock frequency of the 
peripheral bus (LCD bus) was set to 20MHz. 

4.1 Evaluation of DPSDRAM Architectures 
with Various Optimization Techniques 
The first experiment is to verify the effectiveness of the base 
DPSDRAM architecture and the optimized architectures proposed in 
Section 3 over the LCD bus architecture of Figure 1(a). Figure 8 
shows the performance comparison of various DPSDRAM 
architectures. ‘A’ denotes the base DPSDRAM architecture, while 
‘B’, ‘C’, and ‘D’ stand for the extended architecture applying static-
copy, lock-priority, and both to the base DPSDRAM architecture, 
respectively. The number following the alphabet means the number 
of accesses by the application processor  to the same data set. 
For the experiment, we extract the actual communication patterns 
from the trace data with an existent LCD-bus based architecture for a 
3G mobile phone application: the baseband processor typically writes 
about 1-10 kilobytes data into the shared memory at once and the 
application processor takes the data by 32 bytes per read respectively. 
We synthesized a synthetic but practical workload based on this 
typical data transfer scenario, and set the total amount of transferred 
data to 256 kilobytes. 
Since the performance of the LCD bus architecture is inferior to the 
base DPSDRAM architecture by about 4 times, we omit it for brevity. 
Regarding non-repetitive accesses, compared with the base 
architecture, both the static-copy and lock-priority scheme show the 
similar performance gain of about 20%. Such performance gains owe 
to reduction of read operations’ overhead at the application processor. 
In case of the static-copy scheme, the sending time increases due to 
DMA operations from the shared bank to the local bank of the 
application processor. In the lock-priority scheme 56% of the reading 
time of the application processor is consumed by the holding time of 
the application processor waiting for the hardware lock available. 
The integration of the static-copy and the lock-priority techniques 
shows the best performance with 33% reduction compared to the 
base DPSDRAM architecture, which is mainly due to the fact that the 
delay by ‘application processor holding’  does not appear any longer, 
i.e., the application processor need not access the shared bank 
because of the static-copy technique. 
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Figure 8. Performance comparison of DPSDRAM architectures varying 
the number of accesses. 

Repetitive accesses to the same data set by the application processor 
make the static-copy technique more attractive. To verify the 
effectiveness of the static-copy scheme, we vary the access counts of 
the application processor to the same data set. The base DPSDRAM 
and the lock-priority technique show poor scalability as shown in 
Figure 8. The base DPSDRAM suffers from significant 
synchronization overheads as the number of accesses increases. The 
performance gap between the static-copy scheme and the lock-
priority scheme gets wider as the access count increases. In case of 
the static-copy, although DMA overhead is added for copying data 
from shared bank to local bank, we can utilize the caching effect that 
outweighs this copying overhead more as the number of data 
accesses increases. It makes the static-copy scheme better scalable 
than the lock-priority scheme. Moreover, the synchronization 
overhead in the static-copy can be removed by combining with the 
lock-priority technique, which leads to further performance gain up 
to 53% over the base DPSDRAM architecture. 

4.2 Evaluation of Using Multiple Blocks in the 
Shared Bank 
The second experiment validates the proposed optimization that 
divides the shared bank into multiple blocks. Additional performance 
gain can be achieved by allowing simultaneous accesses between 
difference blocks in the shared bank by using double-buffering. 
While the baseband processor puts a data set to one shared block, the 
application processor may fetch another data set from the other block 
in parallel. 
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Figure 9. Performance comparison of the DPSDRAM architectures 
exploiting multiple blocks in the shared bank. 

In this sub-section, we refer the base DPSDRAM architecture to the 
architecture with four separate blocks in the shared bank without 
optimization technique (lock-priority or static-copy), which is labeled 
‘A’. We denote the base DPSDRAM with a double-buffering 
technique by ‘B’. The architecture ‘C’ and ‘D’ are the optimized 
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architectures by the lock-priority scheme and the static-copy scheme 
respectively. The architecture ‘E’ combines the double-buffering 
with the static-copy technique while all the techniques (the lock-
priority, static copy, and double-buffering) are incorporated in the 
architecture ‘F’. The performance comparison of those architectures 
is presented in Figure 9. 
The advantage of having multiple blocks in the shared bank appears 
clear in the architectures with double-buffering. Just applying 
double-buffering technique alone to the base DPSDRAM architecture, 
‘B’, shows 17-30% performance gain against the base DPSDRAM 
architecture. Although some access conflicts between processors are 
eliminated by permitting simultaneous accesses to different blocks, 
the performance gain becomes smaller as the number of accesses 
increases. By combining the lock-priority scheme and double-
buffering, ‘C’, 25-40% of performance gain is obtained when 
compared to the architecture with the double-buffering only and 
about 30% performance gain compared to the lock-priority scheme 
only. It is noteworthy that despite the poor scalability of the lock-
priority scheme, the architecture with the lock-priority and double-
buffering techniques shows the improved performance close to that 
of the architecture with both static-copy and lock-priority without 
double-buffering. 
It is also advantageous for the static-copy technique to allow double-
buffing by dividing the shared bank. If we use multiple blocks as 
transient buffers in the static-copy scheme, we can get similar 
performance gain by overlapping the consecutive data transfers. In 
the architecture ‘E’, the double-buffering reduces the baseband 
processor sending time by about 15% and the overall performance 
gain over the architecture with the static-copy only, ‘D’, is about 8%. 
The architecture ‘F’ that has the double-buffered static-copy and 
lock-priority schemes, however, shows no further performance 
improvement since the DMA transfer to the local memory of the 
application processor and the data transfer to the shared bank are 
overlapped, hiding the gain of the additional lock-priority scheme. 

4.3 Evaluation with 3D Rendering Application 
In order to assess the proposed optimization techniques by an 
industrial strength application, we consider a 3D rendering 
application, which is a part of in-house mobile phone software 
development suit. In the example, the baseband processor provides 
the application processor with tens or hundreds kilobytes of data that 
are to be rendered and texture-mapped at once. On the contrary, the 
application processor performs 3D rendering task that requires 
frequent reading of tens of bytes. We observed that most of data 
transfers except for a few control data are unidirectional and the 
application processor accesses the same data repetitively, which 
makes the static-copy scheme efficient. Furthermore, there are some 
time constraints, for example the number of frames to be rendered in 
one second, which stresses the importance of improving the speed of 
data transfer. We extracted memory access traces of which total 
amount of transferred data is about 2 megabytes from both processors. 
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Figure 10. Performance comparison of the DPSDRAM architectures in 
3D rendering examples. 

Figure 10 shows the data transfer time according to three 
communication architectures. ‘BASE’ denotes the base DPSDRAM 
architecture while ‘+S’ and ‘+L’ mean the static-copy and lock-
priority techniques respectively. The LCD bus architecture works 
about 6 times slower than the base DPSDRAM architecture even 
though it does not appear in the graph. Further performance 
improvements can be obtained with the lock-priority and static-copy. 
In case of the architecture with the lock-priority only, there is about 
20% performance improvement compared with the base DPSDRAM 
architecture. Considering both the lock-priority and the static-copy 
achieves additional improvement to about 50%. 

5. CONCLUSION 
In this paper, we have evaluated a dual-port SDRAM architecture for 
mobile embedded systems. To minimize the non-negligible 
synchronization overhead, we proposed three optimization 
techniques: static-copy, lock-priority, and multiple shared blocks. 
Both lock-priority and static-copy techniques reduce the 
synchronization overhead by exploiting typical communication 
patterns of mobile embedded systems. 
The effectiveness of the DPSDRAM architecture has been evaluated 
by extensive experiments. The base DPSDRAM architecture was 
about 4 times faster than the traditional peripheral bus (LCD bus) 
architecture. Furthermore, by combining the three optimization 
techniques, the performance was improved by 20-50% over the base 
DPSDRAM architecture. 
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