
Performance-Driven Syntax-Directed Synthesis of
Asynchronous Processors

Luis A. Plana, Doug Edwards, Sam Taylor, Luis Tarazona, and Andrew Bardsley
Advanced Processor Technologies Group

School of Computer Science, The University of Manchester
Manchester, M13 9PL, United Kingdom

{lplana, dedwards, smtaylor, ltarazona, abardsley}@cs.manchester.ac.uk

ABSTRACT
The development of robust and efficient synthesis tools is im-
portant if asynchronous design is to gain more widespread
acceptance. Syntax-directed translation is a powerful syn-
thesis paradigm that compiles transparently a system speci-
fication written in a high-level language into a network of
pre-designed handshaking modules. The transparency is
provided by a one-to-one mapping from language constructs
to the module networks that implement them. This gives
the designer flexibility, at the language level, to optimise
the resulting circuit in terms of performance, area or power.

This paper introduces new techniques that exploit this
flexibility to improve the performance of synthesised asyn-
chronous systems. The results of a series of transistor level
simulations show that these techniques, combined with op-
timised handshake module implementations, can produce
close to a ten-fold improvement in the performance of a 32-
bit, ARM-compatible, asynchronous processor used in an ex-
perimental smartcard SoC, without introducing any changes
to the original processor architecture.

Categories and Subject Descriptors
B.5 [Register-Transfer-Level Implementations]: De-
sign Aids—Automatic synthesis, Optimization

General Terms
Design, Performance

1. INTRODUCTION
Most modern embedded systems are synthesised using

CAD tools. Although a large proportion of these systems are
synchronous, interest in asynchronous circuits and tools is
continually growing for their low EMI, robust on-chip inter-
connect and their potential to deal effectively with process
variation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’07,September 30–October 3, 2007, Salzburg, Austria.
Copyright 2007 ACM 978-1-59593-826-8/07/0009 ...$5.00.

There are several asynchronous synthesis systems avail-
able. Some target the synthesis of asynchronous controllers,
e.g., Petrify [1] and Minimalist [2]. Others target both con-
trol and datapath but may require user intervention or guid-
ance during the synthesis process, e.g., TAST [3] and the
CSP-like CHP system [4]. Tangram [5] and Balsa [6] are
fully-automated systems that have successfully synthesised
large-scale circuits using syntax-directed compilation. This
paper focuses on this synthesis approach and examines the
opportunities to optimise the performance of the generated
circuits.

2. SYNTAX-DIRECTED SYNTHESIS
Syntax-Directed translation is a powerful synthesis tech-

nique. The synthesis process involves compiling descrip-
tions written in a high-level language into a network of
pre-designed modules. This approach gives a ‘transparent’
compilation, i.e., there is a one-to-one mapping from a lan-
guage construct to the network of modules that implements
it. This direct mapping gives the designer flexibility at the
language level to impact the resulting circuit; incremental
changes at the language level result in predictable changes
in the implementation. The source code specification may
have a large impact on the performance, power consumption
and area of the resulting circuit.

In many cases, the synthesis system can evaluate the gen-
erated module network to provide the user with an early
estimate of the performance and area of the resulting cir-
cuit. An experienced designer can optimise the resulting
circuit in terms of performance, area or power by choosing
the right specification. Syntax-directed translation has been
used successfully in the synthesis of several embedded sys-
tems, including the G3Card smartcard System-on-Chip, an
asynchronous MIPS microprocessor [7] and the ARM996HS,
the first commercially-available synthesisable asynchonous
ARM. The G3Card SoC is a good example of an asyn-
chronous embedded system. A prototype was fabricated
in a 0.18µm process and was fully functional on first sili-
con. It contains two different, full-featured implementations
of an ARM compatible, asynchronous processor, a Memory
Protection Unit, an asynchronous interface to standard syn-
chronous RAM, a synchronisation coprocessor, and several
peripherals, all synthesised using the Balsa synthesis system.

2.1 The Balsa Synthesis System
Balsa is a synthesis system that generates purely asyn-

chronous macromodular circuits, called handshake circuits.

43

Proposed originally for use with the Tangram language (upon
which Balsa is heavily based), handshake circuits offer an
attractive paradigm for circuit synthesis. Complex descrip-
tions written in the source language are translated into a cir-
cuit consisting of instances of handshake components com-
posed in a macromodular style.

procedure buffer
(

parameter DataType : type;
input in : DataType;
output out : DataType

) is
variable buf : DataType

begin
loop

in -> buf;
out <- buf

end -- loop
end -- procedure buffer

Figure 1: Balsa code for 1-place buffer.

Figure 1 shows how a simple 1-place buffer is specified
in Balsa. The specification is parameterised in the type of
data that the register holds. Data is stored in a variable
[buf] and the operation is described as an infinite repetition
[loop] of two actions: input [–>] data from channel [in] into
buf sequenced [;] with output of the [<–] data in buf to
channel [out].

activate

outin

;

buf

1 2

*

−> −>

Figure 2: 1-Place buffer handshake circuit.

Figure 2 shows the handshake circuit for a Balsa-synthesised
pipeline register. The data is stored in a latch [buf] and a
Sequence component [;] is used to sequence the writing [→]
to and reading [→] from [buf]. A Loop component [*] re-
peatedly activates the Sequencer. The one-to-one mapping
of the language constructs into handshake components is
very clear. Even though the handshake circuit is composed
of a number of handshake components it is not a complex
circuit. The handshake components in the figure are all very
simple: the Transferrer component [→] is implemented with
wires only, the Loop component requires a NOR gate and
the Sequencer consists of a C-element and an AND gate.

handshake components are selected from a relatively small
set and are straightforward to implement. They are inter-
connected through channels. Each channel connects an ac-
tive port on one component to a passive port on another.
The sense of the port (active or passive) indicates the di-
rection of the handshake. An active port initiates a hand-
shake (sends the request) and the passive port acknowledges.

Channels can carry data and this can flow in either the same
direction as the request (a push channel) or in the opposite
direction (a pull channel).

libs.
back−end

fabrication

Balsa

Commercial
Extraction tools spice

Commercial

Simulation
Transistor−level

transistor count
size estimate &

tr
an

si
st

or
le

ve
l

Breeze

balsa−c

balsa−netlist

layout

Verilog

Commercial
Layout tools

libs.
front−end

validation

fu
nc

tio
na

l

breeze−sim

Simulation
Verilog

Commercial

ga
te

−
le

ve
l

Figure 3: Balsa design flow.

The generation of the handshake Circuit is the first step
in the Balsa synthesis flow, shown in Figure 3. The Balsa
compiler generates an intermediate netlist, in Breeze format,
which can be used for functional validation and early perfor-
mance estimates. The Balsa netlister generates a structural
verilog netlist based on the target celll library and the se-
lected asynchronous style and data encoding. The Verilog
netlist can be processed with commercial layout and extrac-
tion tools for further validation and fabrication.

The G3Card SoC synthesised with Balsa was based on the
SPA processor, a fully synthesised, 32 bit, 100% ARM com-
patible processor core. SPA was implemented as a simple,
ARM7 style, 3-stage pipeline . Both dual-rail (1-of-2 data
encoding, quasi-delay insensitive -QnDI- timing assump-
tions) and bundled data (single-rail data encoding, data-
bundling timing assumptions) were implemented from the
same Balsa specification.

The main goal of the dual-rail processor implementation
was to defeat power analysis, therefore, a power-balanced
circuit was targeted. Performance was not a significant re-
quirement for the smartcard, however, the synthesised SPA
was significantly slower than expected. The following sec-
tion explores performance-oriented techniques that result in
improved performance.

3. PERFORMANCE-DRIVEN SYNTHESIS
The techniques introduced in this section target optimised

performance of Balsa-synthesised circuits. Area is not con-
sidered a significant factor, although the Results Section
shows that significant reductions in area are also achieved.
These techniques presented rely on the use of new handshake
components that eliminate unnecessary synchronisation be-
tween data and control and alow more concurrent operation.
Details of this new handshake components can be found else-
where [8].

44

3.1 Efficient Pipeline Control
Almost all modern embedded processors are pipelined,

therefore, asynchronous synthesis tools must generate effi-
cient pipeline control logic. Balsa has no special language
constructs or handshake components to specify or imple-
ment pipelines. Pipeline stages are usually specified in Balsa
procedures and pipeline registers are implemented using con-
ventional variables. Balsa does not allow concurrent reads
and writes to the same variable which means that, when a
variable is used as a pipeline register, the stages at either side
of the variable cannot normally process data concurrently.

As indicated earlier, the pipeline registers are variables in-
side each stage and both input and output registers are used.
This structure essentially implements a half-occupancy pipe-
line: a pipeline with twice as many stages, with alternating
processing and empty stages. Without the empty stages, ad-
jacent processing stages would not be able to operate con-
currently, severely limiting the throughput of the pipeline.

The use of the new handshake components introduced
earlier results in a more efficient pipeline implementation.
Pipeline registers are not general-purpose variables: they
are always written by a stage and then read by the follow-
ing one. This write/read access pattern allows the use of a
single variable as a true pipeline register. In this case, the
registers are specified outside the processing stages and the
stages contain only the processing logic. The pipeline regis-
ter implemented using the new handshake components turns
out to be very simple and performs quite well compared to
highly optimised controllers.

Lt+

A−

Lt−

A+ Aout−

Rout−

Aout+

Rout+

Ain−

Rin−

Ain+

Rin+

Figure 4: Pipeline control.

Figure 4 shows the behaviour of the pipeline controller. R
and A represent the request and acknowledge signals used
to implement the in and out channels, and Lt represents the
latch enable signal.

The behaviour depicted in the figure shows that the Balsa-
synthesised pipeline controller implements an efficient, fully-
decoupled, request-activated protocol. Figure 5 shows the
implementation of the pipeline register controller as gener-
ated by the Balsa back-end. The activate signal is used to
initialise the register.

3.2 True Asynchronous Operation
The pipeline structures described above operate in a pseu-

do-synchronous fashion, i.e., the transfers of all data items
from one stage to the next occur simultaneously as in syn-
chronous systems. Although there is no global clock, data

C

Lt

Aout

Ain

Rin

C Rout

A

activate

Figure 5: Pipeline control handshake circuit.

advances through the pipeline in lockstep, using local hand-
shake channels. This regular operation is easy to understand
and evaluate but can reduce the overall performance of the
synthesised processor.

DEC−1

DEC−2 PR

PR

PR

PR

PR

FETCH
EXE−2

EXE−3

EXE−1

Figure 6: True asynchronous pipeline.

True asynchronous pipelines, make no attempt to have a
lockstep operation, as shown in Figure 6. Each unit within
a pipeline stage is allowed to progress at its own pace, hand-
shaking individually with units in the previous and following
stages. This means, for example, that different data items
sent by units in the Decoder can arrive in the Execute stage
at completely unrelated times. Consequently, different units
in the Execute stage can operate on data items that corre-
spond to different instructions, giving some of them a head
start. Given the elastic nature of asynchronous pipelines,
true asynchronous operation will result in improved perfor-
mance in most cases.

3.3 Data-Driven Operation
A drawback of syntax-directed synthesis is the overhead

imposed on the circuits by the control-driven approach to
the translation. Data and control are frequently synchro-
nised and, often, control is slower than data reducing the
performance of the circuit as data is stalled while control
catches up.

Figure 7(a) shows a segment of a simplified Balsa descrip-
tion of the EXECUTE stage of the SPA processor. This is
an example of a control-driven description. In this code the
operations are explicitly sequenced, as is commonly done in
high-level language descriptions. The syntax-directed trans-
lation will result in a handshake Circuit consisting of a tree
of control components that direct the movement of data
through the datapath.

Figure 8 shows the simplified handshake Circuit. Trans-
ferrers [→] are used to control the flow of data through the
datapath. Given that the control tree guarantees mutually
exclusive operation, an uncontrolled Merge component [|]
can be used to the merge the results of the different units

45

doRegisterRead;
case instruction of
add then

doShift;
doAlu

| mul then
doMul

| ldr, str then
doMemAccess

end;
doRegisterWriteBack

doRegisterRead ||
steerRegData ||
doShift ||
doAlu ||
doMul ||
doMemAccess ||
multiplexResults ||
doRegisterWriteBack

(a) (b)

Figure 7: Execute stage Balsa code.

into the register write-back. In every step, the control will
start and operation and wait until the result is ready be-
fore starting the next one. The control circuit is generated
as part of the syntax-directed translation and will resemble
the description, with 3 Sequencers, a Case and several com-
pletion detection elements. The latency through the control
tree is likely to be very large, affecting the performance of
the circuit.

REGISTER BANK

MUL

SHF

ALU

M
E

M
O

R
Y

 A
C

C
E

S
S

 U
N

IT

REGISTER WRITE−BACK

IN
S

T
C

O
N

T
R

O
L

Figure 8: Control-Driven Execute stage.

The control-data synchronisation may seem like a neces-
sary price to pay to guarantee correct operation but this is
not the case. In asynchronous circuits valid data identifies
itself. There is no need for explicit sequencing of the op-
erations: the units can wait until data arrives, process it
and send result data out. Figure 7(b) shows an alternative,
data-driven description of the same stage.

In this description, all units are activated in parallel. A
steer and a multiplex units are added to guide the data.
Figure 9 shows the simplified handshake Circuit. All the
units are ready to receive data and will start operating as
soon as the data arrives. In a multiply instruction, the data
is sent to the MUL unit and the rest will remain ready.
Although the steer and multiplex modules require control
signals, these can be setup directly by the decoder, without
involving any sequencing and without any need to synchro-
nise with the data. The steering control signals are very
likely to be ready before the data and will not delay the
operations, clearly improving the performance of the stage.

SHF

REGISTER WRITE−BACK

REGISTER BANK

MULALU

S
T

E
E

R
IN

G
 C

O
N

T
R

O
L

M
E

M
O

R
Y

 A
C

C
E

S
S

 U
N

IT

Figure 9: Data-Driven Execute stage.

3.4 Speculative Operation
Speculative operation is an important tool in the design

of modern embedded processors. Significant performance
improvements can be obtained if the results of speculative
operations are useful most of the time. The ARM ISA estab-
lishes that all instructions are conditional, i.e., they can be
executed or skipped depending on the condition codes. Pro-
gram execution statistics show that most instructions are
executed, opening the possibility of speculatively starting
the instruction and throwing away the results if the condi-
tion code test fails.

Speculative operation is not always straightforward to im-
plement in synthesised asynchronous systems. In these sys-
tems, handshake channels, and not individual signals, are
used to communicate data. A system is likely to deadlock
if a channel is prevented from completing a handshake cy-
cle. For this reason, SPA has no speculative operation: it
evaluates the condition code of an incoming instruction and
starts execution only if the condition passes.

K

SHF

FLAGS

REGISTER BANK

MUL

REGISTER WRITE−BACK

ALU

M
E

M
O

R
Y

 A
C

C
E

S
S

 U
N

IT

K

EVAL

IN
S

T
. C

O
N

D
IT

IO
N

 C
O

D
E K

Figure 10: Speculative operation control.

A performance-oriented implementation can incorporate
speculative operation in the execute unit: the evaluation
of the condition code can be carried out concurrently with
the execution of the instruction. If the condition fails the
instruction is discarded at a checkpoint without any result
being written back. The key issues are the location of the

46

checkpoints and the need to allow all handshake channels
to complete their cycles. Figure 10 shows how kill modules
[K] are used for this purpose. Data-processing operations
are started speculatively and, if the condition test fails, are
discarded before the write-back of the results. On the other
hand, data memory operations are not started speculatively
as the performance and power penalties for the discarded
instruction would be extremely high. This strategy will re-
sult in a performance improvement only if the percentage of
executed instructions is high, but this is usually the case.

4. RESULTS
This section shows the results of pre-layout, transistor-

level simulations of several implementations of the SPA pro-
cessor using a 0.18µm standard cell library. The simulations
show that the techniques described earlier result in signifi-
cant performance improvements.

Relative Relative
Processor DMIPS Perf. Trans. Size

Bundled Data
SPA 10.17 1.00 283,663 1.00
nanoSpa 22.46 2.21 181,749 0.64
nanoSpa
with new HCs 54.44 5.35 242,724 0.86

Dual Rail
SPA 6.53 1.00 717,549 1.00
nanoSpa 18.57 2.84 611,578 0.85
nanoSpa
with new HCs 58.37 8.94 570,920 0.80

Table 1: Simulation Results.

The performance-driven techniques were applied in the
synthesis of nanoSpa, a new Balsa specification of the orig-
inal SPA architecture. NanoSpa is organised as a 3-stage,
Harvard-style pipeline but has a few differences with respect
to SPA: (i) the decoder stage lacks the Thumb module and
the coprocessor interface, (ii) the execute stage incorporates
all the functional units present in SPA, (iii) nanoSpa imple-
ments user and supervisor operating modes only, lacking the
other ARM modes, and (iv) nanoSpa does not support nei-
ther interrupts nor memory aborts. Although not easy to
evaluate, these differences should not have a large impact on
the relative performance of the two implementations.

Table 1 shows the results of the execution of the Dhrystone
benchmark program for the original SPA and two different
implementations of nanoSpa. The table includes results for
bundled data and dual-rail versions. The performance of the
original SPA is set as the reference.

The table shows that efficient pipeline control, true asyn-
chronous operation, speculation and optimal combinational
logic provide outstanding results. The basic nanoSpa cores,
with the original handshake components, are a remarkable
2.21 (bundled data) and 2.84 (dual-rail) times faster that
the original SPA implementations.

Table 1 also shows that the combination of the perfor-
mance-driven specification with the use of the new hand-
shake components results in very significant performance
improvements, reaching 5.35 (bundled data) and 8.94 (dual-
rail) times the performance of the original SPA.

The new techniques and handshake components provide
a larger performance improvement in dual-rail implementa-
tions than in single-rail ones. This is in part due to the fact
that the original dual-rail implementations were less efficient
and, therefore, had more room for improvement.

Finally, Table 1 also shows the transistor counts for the
different processor implementations. It is clear from the
table that the new cores are significantly smaller than the
original SPA implementations. The table also shows that
the new handshake components, while significantly improv-
ing the performance of nanoSpa, have a relatively small im-
pact on the size of the circuit. In fact, the dual-rail version
with the new components is smaller. The large differences
in transistor counts with respect to the original SPA indi-
cate that there is enough room to incorporate the additional
functionality without a large impact on the performance.

5. CONCLUSIONS
The work presented in this paper confirms that syntax-

directed compilation is a powerful synthesis approach and,
combined with an efficient set of handshake components,
can automatically generate efficient asynchronous systems
for complex, real world applications.

Extensive simulation results show that the introduction
of new handshake components, used to implement paral-
lel, sequential and input control, can double the perfor-
mance of existing designs without the need to modify the
source descriptions. Additionally, the introduction of new
performance-oriented techniques used to implement efficient
pipeline control, true asynchronous behaviour and specu-
lative operation can triple the performance of existing de-
signs. The combination of new components and techniques
has been shown to generate a new implementation of an ex-
isting 32-bit, ARM-compatible processor with close to ten
times the performance of the original one.

6. REFERENCES
[1] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and

A. Yakovlev. Petrify: a tool for manipulating concurrent
specifications and synthesis of asynchronous controllers. IEICE
Transactions on Information and Systems, E80-D(3):315–325,
March 1997.

[2] R. M. Fuhrer, S. M. Nowick, M. Theobald, N. K. Jha, and L. A.
Plana. MINIMALIST: An environment for the synthesis and
verification of burst-mode asynchronous machines. In Proc.
International Workshop on Logic Synthesis, June 1998.

[3] TIMA Laboratory, Concurrent Integrated Systems Group.
TAST: Tool for asynchronous circuit synthesis.
http://tima.imag.fr/cis/Tast/tast.html, 2002.

[4] A. J. Martin. Programming in VLSI: From communicating
processes to delay-insensitive circuits. In C.A.R. Hoare, editor,
Developments in Concurrency and Communication, UT Year
of Programming Series, pages 1–64, Addison-Wesley, Reading
MA, 1990.

[5] A. Peeters and K. van Berkel. Single-rail handshake circuits. In
Proc. Working Conf. on Asynchronous Design Methodologies,
pages 53–62, May 1995.

[6] A. Bardsley. Implementing Balsa Handshake Circuits. PhD
thesis, Department of Computer Science, University of
Manchester, 2000.

[7] Q.Y. Zhang and G. Theodoropoulos. Towards an asynchronous
MIPS processor. In Cryptographic Hardware and Embedded
Systems (CHES 2003), volume 2779 of Lecture Notes in
Computer Science, pages 137–150. Springer-Verlag, 2003.

[8] Luis A. Plana, Sam Taylor, and Doug Edwards. Attacking
control overhead to improve synthesised asynchronous circuit
performance. In Proc. International Conf. Computer Design
(ICCD), pages 703–710. IEEE Computer Society Press, October
2005.

47

