
A Low Power Front-End for Embedded Processors
Using a Block-Aware Instruction Set

Ahmad Zmily and Christos Kozyrakis
Electrical Engineering Department, Stanford University

Stanford, CA 94305, USA
zmily@stanford.edu, kozyraki@stanford.edu

ABSTRACT
Energy, power, and area efficiency are critical design concerns for
embedded processors. Much of the energy of a typical embedded
processor is consumed in the front-end since instruction fetching
happens on nearly every cycle and involves accesses to large mem-
ory arrays such as instruction and branch target caches. The use of
small front-end arrays leads to significant power and area savings,
but typically results in significant performance degradation. This
paper evaluates and compares optimizations that improve the per-
formance of embedded processors with small front-end caches. We
examine both software techniques, such as instruction re-ordering
and selective caching, and hardware techniques, such as instruction
prefetching, tagless instruction cache, and unified caches for in-
struction and branch targets. We demonstrate that, building on top
of a block-aware instruction set, these optimizations can eliminate
the performance degradation due to small front-end caches. More-
over, selective combinations of these optimizations lead to an em-
bedded processor that performs significantly better than the large
cache design while maintaining the area and energy efficiency of
the small cache design.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems; C.0 [General]: Hardware/software
interface

General Terms
Design, Performance

Keywords
low power front-end, instruction re-ordering, software hints, in-
struction prefetching, tagless instruction cache, unified instruction
cache and BTB

1. INTRODUCTION
Energy, power, and area efficiency are important metrics for em-

bedded processors. Die area and power consumption determine the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’07, September 30–October 3, 2007, Salzburg, Austria.
Copyright 2007 ACM 978-1-59593-826-8/07/0009 ...$5.00.

60%

80%

100%

120%

Execution Time Total Power Total Energy

Base Base-optimal Base-small

Figure 1: Normalized execution time, total power, and total
energy consumption for the base design (32-KByte, 32-way I-
Cache, 64-entry BTB), the base design with optimal I-Cache
and BTB, and the base design with small front-end arrays (2-
KByte, 2-way I-Cache, 16-entry BTB). The processor core is
similar to Intel’s XScale PXA270 and is running benchmarks
from the MediaBench and SpecCPU2000 suites. Lower bars
present better results.

cost to manufacture, package, and cool the chip. Energy consump-
tion determines if the processor can be used in portable systems.
Moreover, embedded processors must also meet the increasing per-
formance requirements of demanding applications such as image,
voice, and video processing that are increasingly common in con-
sumer products [25]. Hence, area, power, and energy efficiency
must be achieved without compromising performance.

Embedded processors consume a large fraction of their energy in
the front-end of their pipeline. The front-end contains several large
SRAM structures such as the instruction cache, the branch target
buffer (BTB), and the branch predictor, that are accessed on nearly
every clock cycle. Such memory arrays are sized to hold a large
amount of data in order to obtain good overall performance. For
example, the Intel XScale PXA270 processor uses a 32-KByte, 32-
way instruction cache and a 128-entry BTB [10]. Nevertheless, dif-
ferent programs exhibit different locality and memory access pat-
terns and even a single program may not need all the available stor-
age at all times. If the processor is executing a tight loop, for exam-
ple, most of the instruction cache is underutilized as smaller cache
could provide the same performance but with lower area, power,
and energy requirements. Figure 1 quantifies the total energy and
power wasted in the PXA270 processor due to sub-optimal instruc-
tion cache and BTB sizing for MediaBench and SpecCPU2000 ap-
plications. The optimal configuration is found using a method sim-
ilar to [26] where a continuum of cache sizes and configurations
are simulated. During each cycle, the cache with the lowest power
from among those that hit is selected. On average 16% total power

267

Configuration Power Area Access Time
2 KByte, 2 way associative 8.4% 4.6% 50.7%
4 KByte, 4 way associative 14.6% 9.2% 53.0%
8 KByte, 8 way associative 26.9% 18.0% 58.8%
16 KByte, 16 way associative 51.3% 42.8% 71.5%

Table 1: Normalized power dissipation, area, and access time
for different instruction cache configurations over the XScale
32-KByte instruction cache configuration.

and 17% total energy are wasted if the processor uses larger than
needed instruction cache and BTB.

Reducing the instruction cache and BTB capacity of embedded
processors by a factor of 4 or 8 leads to direct die area and power
savings. Table 1 presents the normalized power dissipation, area,
and access time for different smaller instruction cache configura-
tions over the 32-KByte, 32-way instruction cache of the PXA270
processor using Cacti [27]. A 2-KByte instruction cache dissipates
only 8.4% of the power dissipated by the 32-KByte cache and uses
only 4.6% of its area. While the use of smaller arrays reduces die
area and power dissipation, several applications will now experi-
ence additional instruction cache and BTB misses that will degrade
performance and increase energy consumption. Figure 1 quanti-
fies the performance penalty with the smaller instruction cache and
BTB sizes (13% on average). Furthermore, the energy savings
from accessing smaller arrays are nearly canceled from the cost
of operating the processor longer due to the performance degrada-
tion.

This paper studies optimization techniques that improve the per-
formance of embedded processors with small front-end arrays. Our
goal is to reach or exceed the performance of embedded proces-
sors with large caches, while maintaining energy and power con-
sumption close to the optimal design. We evaluate both hardware
and software based techniques such as instruction prefetching and
re-ordering, unified instruction cache and BTB structures, tagless
instruction caches, and various forms of software hints. Instruc-
tion prefetching hides the latency of extra cache misses by fetch-
ing instructions ahead of time. Instruction re-ordering attempts to
densely pack frequently used instruction sequences in order to im-
prove the locality in instruction cache and BTB accesses. Unifying
the instruction cache and the BTB allows a program to flexibly use
the available storage as needed without the limitations of a fixed
partitioning. Alternatively, the BTB and instruction cache could be
organized in such away that the instruction cache tags are no longer
required; hence, their area and power overhead can be saved. Fi-
nally, compiler generated hints can improve the instruction cache
performance by guiding the hardware to wisely use the limited re-
sources.

We explore these front-end optimizations using a block-aware
instruction set architecture (BLISS). Previous work [33] has shown
that BLISS leads to significant performance and code size advan-
tages for processors with conventionally sized front-end caches.
BLISS defines basic block descriptors in addition to and separately
from the actual instructions in each program. A descriptor pro-
vides the type of the control-flow operation that terminates the basic
block, its potential target, the number of instructions in the block,
and a pointer to the actual instructions.

In this paper, we explore the front-end optimizations that im-
prove the performance of embedded processors with small front-
end caches using the BLISS ISA. BLISS provides a flexible sub-
strate to implement the optimizations efficiently because the de-

scriptors are directly visible to software, provide accurate informa-
tion for prefetching, and can carry software hints. Hence, BLISS
allows significant reorganization of the front-end without modify-
ing the software model. While some of the optimizations can also
be implemented with a conventional instruction set, they lead to
lower performance benefits and are typically more complex.

Overall, this paper provides the insights and analysis necessary
to design the front-end for efficient embedded designs. The specific
contributions are:

● we demonstrate that a block-aware architecture allows the
implementation of a wide-range of front-end optimizations
in a simple and efficient manner.

● we evaluate the front-end optimizations and analyze how they
allow an embedded processor with small front-end caches to
perform similarly to one with larger structures.

● we demonstrate that combinations of these optimizations fur-
ther improve the performance and allow the front-end of the
processor to achieve power and energy consumption levels
close to the optimal design. The best performing configu-
ration allows an embedded processor with small front-end
caches to be 9% faster and consume 14% less power and
19% less energy than a similar pipeline with large front-end
structures.

● While some optimizations can be implemented using a con-
ventional instruction set, we demonstrate that they are typi-
cally more complex and may lead to lower energy and per-
formance benefits compared to BLISS. We compare BLISS
with the front-end optimizations to the Filter cache design
with similar optimizations. We show that BLISS provides
similar power reduction and at the same time provides sig-
nificant performance and energy improvements.

The rest of the paper is organized as follows. Section 2 pro-
vides a brief overview of the BLISS architecture. In Section 3, we
present the different front-end optimizations. Section 4 explains the
methodology used for evaluation. In Section 5, we evaluate the per-
formance, cost, and total energy benefits of the different front-end
optimizations for a configuration similar to the XScale processor.
In Section 6, we discuss the related research that this work is based
on. Section 7 provides a summary.

2. BLISS OVERVIEW
Before we describe the front-end optimizations, we provide a

brief overview of the BLISS architecture. For further details, we
refer readers to [33].

The BLISS instruction set provides explicit basic block descrip-
tors (BBD) in addition to and separately from the ordinary instruc-
tions they include. The code segment for a program is divided in
two distinct sections. The first section contains descriptors that de-
fine the type and boundaries of basic blocks, while the second sec-
tion lists the actual instructions in each block. Figure 2 shows the
descriptor format. Each block descriptor defines the type of the
control-flow operation that terminates the block. The BBD also in-
cludes an offset field to be used for blocks ending with a branch
or a jump with PC-relative addressing. The actual instructions in
the basic block are identified by the pointer to the first instruction
and the length field. The last BBD field contains optional compiler-
generated hints.

Figure 2 also shows an embedded processor with a BLISS-based
front-end that uses a cache for basic block descriptors (BB-cache)

268

Back-end
pipeline

I-Cache
Pipelined

BB-Cache

RAS

Predictor

call return target

basic block target

branch type

BBD

mipredicted branch target

L2 Cache

i-c
ac

he
 m

is
s

BBQ

D-Cache

I-
ca

ch
e

pr
ef

et
ch

BB-cache
misses

Hints
(3)

Length
(4)

Offset
(8)

Type
 (4)

Instruction Pointer
 (13)

Type: Basic Block type (type of terminating branch):
- FT, B, J, JAL, JR, JALR, RET, LOOP

Offset: displacement for PC-relative branches and jumps.
Length: number of instructions in the basic block (0..15)
Instruction pointer: address of the 1st instruction in the block
 bits [15:2]. bits [31:16] in TLB
Size: optional compiler-generated hints used for cache hints
 in this study

BB Descriptor Format:

Figure 2: The BLISS architecture. The top graph presents an embedded processor based on the BLISS ISA. The bottom graph
shows the 32-bit basic block descriptor format.

as a replacement for the BTB. The front-end operates in a decou-
pled manner. On every cycle, the BB-cache is accessed using the
PC. On a miss, the front-end stalls until the missing descriptor is
retrieved from the memory hierarchy (L2-cache). On a hit, the
BBD and its predicted direction/target are pushed in the basic block
queue (BBQ). The predicted PC is used to access the BB-cache in
the following cycle. Instruction cache accesses use the instruction
pointer and length fields of the descriptors available in the BBQ
to retrieve the instructions in the block. If all instructions are in a
single cache line, a single cache access per block is sufficient.

Previous work has shown that BLISS leads to significant im-
provements in performance, energy consumption, and code size
[33]. Performance is improved because BLISS tolerates instruc-
tion cache latency and improves control-flow prediction [31]. The
BBQ decouples control-flow prediction from instruction fetching.
Multi-cycle latency for a large instruction cache no longer affects
prediction accuracy, as the vital information for speculation is in-
cluded in basic-block descriptors available through the BB-cache.
Since the PC in the BLISS ISA always points to basic block de-
scriptors (i.e. a control-flow instruction), the predictor is only used
and trained for PCs that correspond to branches which reduces in-
terference and accelerates training in the predictor.

The improved control-flow prediction accuracy reduces the en-
ergy wasted by mispredicted instructions. In addition, energy con-
sumption is further reduced because BLISS allows for energy op-
timizations in the processor front-end [32]. Each basic block de-
fines exactly the number of instructions needed from the instruc-
tion cache. Using segmented word lines for the data portion of the
cache, we can fetch the necessary words while activating only the
necessary sense-amplifiers in each case. Front-end decoupling tol-
erates higher instruction cache latency without loss in speculation

accuracy. Hence, we can access first the tags for a set associative
instruction cache, and in subsequent cycles, access the data only
in the way that hits We can also merge the instruction accesses for
sequential blocks in the BBQ that hit in the same cache line, in
order to save decoding and tag access energy. Finally, the branch
predictor is only accessed after the block descriptor is decoded;
hence, predictor accesses for fall-through or jump blocks can be
eliminated.

BLISS improves code density by removing redundant sequences
of instructions across basic blocks and flexible interleaving of 16-
bit and 32-bit instructions at basic block granularity [34]. All in-
structions in a basic block can be eliminated if the same sequence
is present elsewhere in the code. Correct execution is facilitated
by adjusting the instruction pointer in the basic block descriptor to
point to the unique location in the binary for that instruction se-
quence. We can also aggressively interleave 16-bit and 32-bit in-
structions at basic-block boundaries without the overhead of addi-
tional instructions for switching between 16-bit and 32-bit modes.
The block descriptors identify if the associated instructions use the
short or long instruction format.

In this paper, we go beyond previous BLISS studies by introduc-
ing hardware and software optimizations that improve efficiency
with small front-end structures. While the base BLISS approach is
not sufficient to address the performance challenges in such sys-
tems, its instruction set and front-end organization provide sig-
nificant benefits for hardware and software optimizations that can
bridge the gap. Many of the optimization techniques covered in
this study have been already proposed for conventional instruction
sets. In this paper, we demonstrate that BLISS provides a flexible
substrate to implement the optimizations efficiently which trans-
lates to higher performance and energy improvement compared to

269

implementing them using conventional instruction sets. We explain
the synergy in Section 3.

3. FRONT-END OPTIMIZATIONS
Reducing the instruction cache and BTB capacity of embedded

processors by a factor of 4 or 8 leads to direct die area and power
savings. However, several applications will now experience addi-
tional instruction cache and BTB misses that will degrade perfor-
mance and increase energy consumption (see Figure 1). This sec-
tion discusses hardware and software techniques that can reduce
the performance degradation. The hardware-based techniques in-
clude instruction prefetching, unified instruction cache and BTB
structures, and tagless instruction caches. Instruction prefetch-
ing hides the latency of extra cache misses by fetching instructions
ahead of time. Unifying the instruction cache and the BTB allows
a program to flexibly use the available storage as needed without
the limitations of a fixed partitioning. Alternatively, the BTB and
the instruction cache could be organized in such away that the in-
struction cache tags are no longer required; hence, their area and
power overhead can be saved. The software-based techniques in-
clude instruction re-ordering and various forms of software hints.
Instruction re-ordering attempts to densely pack frequently used in-
struction sequences in order to improve the locality in instruction
cache and BTB accesses. Finally, compiler-generated hints can im-
prove the instruction cache performance by guiding the hardware
to wisely use the limited resources. The following sections will
explain each optimization technique and how it can be easily sup-
ported by BLISS.

3.1 Instruction Prefetching (Hardware)
Instruction cache misses have a severe impact on the processor

performance and energy efficiency as they cause the front-end to
stall until the missing instructions are available. If an instruction
cache is smaller than the working set, misses are inversely propor-
tional to the cache size. Hence, a smaller instruction cache will
typically cause additional performance loss. Instruction prefetch-
ing can reduce the performance impact of these misses. Instruction
prefetching speculatively initiates a memory access for an instruc-
tion cache line, bringing the line into the cache (or a prefetching
buffer) before the processor requests the instructions. Prefetching
from the second level cache or even the main memory can hide the
instruction cache miss penalties, but only if initiated sufficiently far
ahead in advance of the current program counter.

Most modern processors only support very basic hardware se-
quential prefetchers. With a sequential or stream-based prefetcher,
one or more sequential cache lines after the currently requested one
are prefetched [28, 19]. Stream prefetching only helps with misses
on sequential instructions. An alternative approach is to initiate
prefetches for cache lines on the predicted path of execution [6].
The advantage of such a scheme is that it can prefetch potentially
useful instructions even for non-sequential access patterns as long
as branch prediction is sufficiently accurate. Prefetched instruc-
tions are typically stored in a separate buffer until the data is used at
least once to avoid cache pollution. Most prefetching methods filter
out useless prefetches by probing the cache to save bandwidth and
power. To avoid adding an additional port, probing is performed
only when the instruction cache port is idle.

BLISS supports efficient execution-based prefetching using the
contents of the BBQ. The BBQ decouples basic block descriptor
accesses from fetching the associated instructions. The predictor
typically runs ahead, even when the instruction cache experiences
temporary stalls due to a cache miss or when the instruction queue
is full. The contents of the BBQ provide an early, yet accurate

view into the instruction address stream and are used to lookup fur-
ther instructions in the instruction cache. Prefetches are initiated
when a potential miss is identified. BLISS also improves predic-
tion accuracy since the PC always points to basic block descriptors
and the predictor is only used and trained for PCs that correspond
to branches which reduces interference and accelerates training in
the predictor [31]. The improved prediction accuracy makes the
execution-based prefetching scheme even more effective. Prefetch-
ing, if not accurate, leads to additional L2-cache accesses that can
increase the L2-cache power dissipation.

3.2 Unified I-Cache and BTB (Hardware)
Programs exhibit different behaviors with respect to the instruc-

tion cache and BTB utilization. While some programs stress the
instruction cache and are susceptible to its size (e.g., rasta from
MediaBench), other programs depend more on the BTB capacity
(e.g., adpcm from MediaBench). Even in a single program, differ-
ent phases may exhibit different instruction cache and BTB access
patterns. Being able to flexibly share the instruction cache and BTB
resources could be valuable for those types of programs, especially
when the hardware resources are limited.

The BLISS front-end can be configured with a unified instruc-
tion cache and BB-cache storage as both instructions and descrip-
tors are part of the architecturally-visible binary code. Each line
in the unified cache holds either a few basic block descriptors or
a few regular instructions. The unified cache can be accessed by
both the descriptor fetch and the instruction fetch units using a sin-
gle access port. Instruction fetch returns multiple instructions per
access (up to a full basic block) to the back-end pipeline and does
not need to happen on every cycle. On the remaining cycles, we
perform descriptor fetches. For the embedded processors we stud-
ied in Section 5, sharing a single port for instruction and descriptor
fetches had a negligible impact on performance.

With a conventional architecture, on the other hand, storing BTB
and instruction cache entries in a single structure is more challeng-
ing as the same program counter is used to access both structures.
This implies that extra information is required to be stored in the
unified cache to differentiate between BTB and instruction entries.
In addition, the two entries map to the same cache set, causing
more conflicts. The BTB and instruction cache are also accessed
more frequently as basic block boundaries are not known until in-
struction decoding. Hence, sharing a single port is difficult.

3.3 Tagless I-Cache (Hardware)
In previous work [32], we showed that we could eliminate the

data access for all but the way that hits by accessing the tag arrays
first then the data array in a subsequent cycle. Now we will focus
on eliminating the instruction cache tags altogether (storage and ac-
cess). BLISS provides an efficient way to build an instruction cache
with no tag accesses by exploiting the tags checks performed on de-
scriptor accesses. This improves instruction cache access time, re-
duces its energy consumption significantly, and eliminates the area
overhead of tags. The new tagless instruction cache is organized
as a direct mapped cache, with only the data component. Figure
3 illustrates the organization of this cache. For each basic block
descriptor in the BB-cache, there is only one entry in the tagless
instruction cache which can hold a certain number of instructions,
4 in our experiments. A flag bit is used in each descriptor in the
BB-cache entry to indicate if the corresponding entry in the tag-
less instruction cache has valid instructions or not. This flag is
initialized during BB-cache refill from L2-cache and is set after the
instructions are fetched from the L2-cache and placed in the tag-
less instruction cache. Moreover, the flag that indicates if the entry

270

=?=?

Tag Valid Data

Tag Index OffsetPC

BB-cache Entry Format

length
(4b)

type
(4b)

target
(30b)

hints
(2b)

instr. pointer
(13b)

bimod
(2b)

IV
(1b)

BB-Cache I-Cache

Matching Way

Tag Valid Data

BBD Instructions

Data

Way 0 Way 3

Figure 3: The organization of the tagless instruction cache with
BLISS.

in the tagless cache is valid or not can be used by the prefetching
logic. This eliminates the need to probe the cache and improves the
overall performance of the prefetcher.

The operation of the BLISS front-end with the tagless cache is
very similar to what we explained in Section 2 except the way the
instruction cache is accessed. On a BB-cache miss, the missing
descriptors are retrieved from the L2-cache. At that stage, the in-
struction valid bits (IV) are initialized for those descriptors indicat-
ing that their associated instruction cache entries are invalid. The
instruction fetch unit uses the valid bit to determine how to ac-
cess the instruction cache. If the instruction valid bit is not set, the
instructions are retrieved from the L2-cache using the instruction
pointer available from the descriptor. Once the instructions are re-
trieved and placed in the instruction cache, the valid bit for the cor-
responding descriptor is set. If the instruction valid bit is set, the
instructions are retrieved from the instruction cache using the index
field of the PC and the index of the matching BB-cache way. For
basic blocks larger than 4 instructions, only the first four instruc-
tions are stored in the instruction cache. In the applications studied
in Section 5, 68% of the executed basic blocks include 4 instruc-
tions or less. Similar to the victim cache, we use a 4-entry fully
associative cache to store the remaining instructions. This victim
cache is accessed in a subsequent cycle and is tagged using the PC.
In a case of a miss, the instructions are brought from the L2-cache.

Nevertheless, the tagless instruction cache has two limitations.
First, once a BB-cache entry is evicted, the corresponding instruc-
tion cache entries become invalid. In addition, the virtual associa-
tivity and size of the instruction cache are now linked with that of
the BB-cache and cannot be independently set. We can use an al-
ternative approach for indexing the tagless cache to solve this lim-
itation. We can determine the location in the instruction cache in-
dependently by an additional pointer field in the BB-cache format.
This is similar to having a fully associative instruction cache, but
with additional complexity in its management (keep track of LRU,
etc).

3.4 Instruction Re-ordering (Software)
Code re-ordering at the basic block level is a mature method that

tunes a binary to a specific instruction cache organization and im-

proves hit rate and utilization. Re-ordering uses profiling informa-
tion to guide placement of basic blocks within the code. The goal
is to arrange closely executed blocks into chains that are laid out
sequentially, hence increasing the number of instructions executed
per cache line. The improved spatial locality reduces the miss rate
for the instruction cache of a specific size. This implies that we
can afford using a smaller cache without negatively impacting the
performance.

Pettis and Hansen suggested a bottom-up block-level position-
ing algorithm [20]. In their approach, they split each procedure
into two procedures, one with the commonly used basic blocks and
one with the rarely used basic blocks (”fluff”). The infrequently
executed code is replaced with a jump to the relocated code. Ad-
ditionally, a jump is inserted at the end of the relocated code to
transfer control back to the commonly executed code. Within each
of the two procedures, a control-flow graph is used to from chains
of basic blocks based on usage counts. The chains are then placed
making fall through the likely case after a branch.

Basic block re-ordering is easily supported by BLISS using the
explicit block descriptors. Blocks of instructions can be freely re-
ordered in the code segment in any desired way as long as we up-
date the instruction pointers in the corresponding block descriptors.
Figure 4 presents an example to illustrate this optimization. The
two instructions in the second basic block in the original code are
rarely executed. Therefore, they can be moved to the end of the
code as long as the instruction pointer for BBD2 is updated. Com-
pared to re-ordering with conventional architectures, this provides
two major benefits. First, there is no need to split the procedure or
introduce additional jump instructions for control transfers between
the commonly and the less commonly used code (fewer static and
dynamic instructions). The pointers in the block descriptors handle
control transfers automatically. Second, re-ordering basic blocks
does not affect branch prediction accuracy for BLISS, as the vi-
tal information for speculation is included in the basic block de-
scriptors available through the BB-cache (block type, target offset).
On a conventional architecture, re-ordering blocks may change the
number of BTB entries needed and the conflicts observed on BTB
accesses.

3.5 Cache Placement Hints (Software)
Conventional caches are designed to be managed purely by hard-

ware. Hardware must decide where to place the data and which
data to evict during cache replacement. A consequence is that the
cache resources may not be optimally utilized for a specific bench-
mark, leading to poor cache hit rate. Compilers and profile-based
tools can help the processor with selecting the optimal policies in
order to achieve the highest possible performance using the mini-
mal amount of hardware. Hints can indicate at which cache levels it
is profitable to retain data based on their access frequency, exclud-
ing infrequent data from the first level cache. Hints can also guide
the hardware placing data in the cache to avoid conflicts, or im-
prove the cache replacement decisions by keeping data with higher
chance of reuse.

A compiler can attach hints to executable code at various gran-
ularities, with every instruction, basic block, loop, function call,
etc. BLISS provides a flexible mechanism for passing compiler-
generated hints at the granularity of basic blocks. The last field
of the basic block descriptor contains optional compiler-generated
hints. Specifying hints at the basic block granularity allows for
fine-grain information without increasing the length of all instruc-
tion encodings or requiring additional, out-of-band, instructions
that carry the hints. Hence, hints can be communicated without
modifying the conventional instruction stream or affecting static

271

BB descriptors

BBD1: BR_F, BBD3, ,
BBD2: JAL , foo, 2,
BBD3: BR_B, BBD1, 3,
BBD4:

BLISS code

(a)

beq r8, r1
add r3, r2, r8
addiu r17, r0, 1
lw r6,1492(r30)
addu r4, 0, r2
sub r3, r2, r8
addiu r17, r0, 1

Re-ordered BLISS code

(b)

beq r8, r1
lw r6,1492(r30)
addu r4, 0, r2
sub r3, r2, r8
addiu r17, r0, 1
add r3, r2, r8
addiu r17, r0, 1

BB descriptors

BBD1: BR_F, BBD3, ,
BBD2: JAL , foo, 2,
BBD3: BR_B, BBD1, 3,
BBD4:

Figure 4: Example to illustrate the instruction re-ordering optimization with BLISS. (a) Original BLISS code. (b) Re-ordered BLISS
code. For illustration purposes, the instruction pointers in basic block descriptors are represented with arrows.

Front-End Parameters
XScale PXA270

Base BLISS
Fetch Width 1 inst/cycle 1 BB/cycle
Regular I-cache 32 KBytes, 32-way, 32B blocks

1 port, 2-cycle access
Small I-cache 2 KBytes, 2-way, 32B blocks

1 port, 2-cycle access
BTB/BB-cache

Regular 64-entry, 4-way 64-set, 4-way
Small 16-entry, 2-way 16-set, 2-way

BBQ – 4 entries

Common Processor Parameters
XScale PXA270

Execution single-issue, in-order with 1 INT & 1 FP unit
Predictor 256-entry bimod with 8 entry RAS
D-cache 32 KBytes, 4-way, 32B blocks

1 port, 2-cycle access
L2-cache 128 KBytes, 4-way, 64B blocks

1 port, 5-cycle access
Main memory 30-cycle access

Table 2: The microarchitecture parameters for base and BLISS
processor configurations used for power and area optimization
experiments.

or dynamic instruction counts. Furthermore, since descriptors are
fetched early in the pipeline, the hints can be useful with decisions
with most pipeline stages, even before instructions are decoded.

We evaluate two types of software hints for the L1 instruction
cache management. The first type indicates if a basic block should
be excluded from the L1 instruction cache. We rely on prefetch-
ing, if enabled, to bring excluded blocks from the L2-cache when
needed. Note that the hints are visible to the prefetcher; there-
fore, cache probing is not required for those blocks. A very sim-
ple heuristic based on profiling information is used to select which
cache lines are cache-able. We exclude blocks with infrequently
executed code and blocks that exhibit high miss rates. The second
type of hints redistributes the cache accesses over the cache sets to
minimize conflict misses. The hints are used as part of the address
that indexes the cache. The 3 hint bits are concatenated with the
index field of the address to form the new cache index field.

4. METHODOLOGY
Table 2 summarizes the key architectural parameters for the base

and BLISS processor configurations used for evaluation. Both are
modeled after the Intel XScale PXA270 [10]. We fully model all
contention for the L2-cache bandwidth between BB-cache misses
and instruction cache or data cache misses. For fair energy com-
parison, the base design is modeled with serial instruction tag and
data accesses to eliminate the data access for all but the way that
hits. We have also performed experiments with a high-end embed-
ded core comparable to the IBM PowerPC 750GX and the achieved
results are consistent.

Our simulation framework is based on the Simplescalar/PISA
3.0 toolset [5], which we modified to add the BLISS front-end
model. All front-end optimizations explained in Section 3 are fully
modeled in the simulations. For energy measurements, we use the
Wattch framework at the cc3 power model [4], which we also mod-
ified to accurately capture all of the optimizations. Energy con-
sumption was calculated for a 0.10µm process with a 1.1V power
supply. The reported Total Energy includes all the processor com-
ponents (front-end, execution core, and all caches). For perfor-
mance, we report IPC, ignoring the fact that processors with smaller
caches may be able to run at higher clock frequencies than proces-
sors with larger caches. We study 10 benchmarks form Media-
Bench and SpecCPU2000 suites. The selected benchmarks have
relatively high instruction cache or BTB miss rates. The bench-
marks are compiled at the -O2 optimization level using gcc. We
did not include the code size optimizations in [34]. MediaBench
programs are simulated to completion and for the SpecCPU2000
programs we skipped 1 billion instructions and simulated 1 billion
instructions for detailed analysis. For benchmarks with multiple
datasets, we run all of them and calculate the average.

5. EVALUATION
This section presents the performance, total energy, and cost

evaluation results for the different front-end optimizations using
BLISS.

5.1 Performance Analysis
Figure 5 compares the IPC of BLISS with small caches and the

various optimizations to that of the base design with large caches
(IPC of 1.0). We only present a single combination of optimiza-
tions, the best performing one (prefetching + instruction re-ordering
+ unified cache + redistribute cache hints). For reference, the aver-
age normalized IPC for various other configurations is: 0.87 for the
base design with small caches, 0.91 for the base design with small

272

0.95

1.00

1.05

1.10

1.15

1.20

adpcm g721 jpeg mesa pegwit rasta gcc crafty vortex apsi Average

No
rm

al
ize

d
IP

C
1-Prefetching 2-Instruction Reordering
3-Unified Cache 4-Tagless Cache + Prefetching
5a-Exclude Cache Hints 5b-Redistribute Cache Hints
Optimizations 1+2+3+5b

Figure 5: Normalized IPC for BLISS with the different front-end optimizations over the base. The BLISS design uses the small
I-cache and BB-cache. The base design uses the regular I-cache and BTB. The 1.0 line presents the base design. Higher bars present
better performance.

0.00

0.20

0.40

0.60

0.80

1.00

adpcm g721 jpeg mesa pegwit rasta gcc crafty vortex apsi AverageN
or

m
al

iz
ed

 I
ns

tr
uc

ti
on

 C
ac

he
 m

is
se

s

1-Prefetching 2-Instruction Reordering
3-Unified Cache 4-Tagless Cache + Prefetching
5a-Exclude Cache Hints 5b-Redistribute Cache Hints
Optimizations 1+2+3+5b

Figure 6: Normalized number of instruction cache misses for BLISS with the different front-end optimizations over the base. The
BLISS design uses the small I-cache and BB-cache. The base design uses the small I-cache and BTB. Lower bars present better
results.

caches and prefetching, and 0.99 for BLISS with small caches and
no prefetching. It is important to notice that for all but one bench-
mark (gcc), all optimizations allow BLISS with small caches to
reach the IPC of the base design with large caches. The design
with the combined optimizations consistently outperforms the base
with an average IPC improvement of 9%.

The analysis for the individual optimizations is the following.
The advantages of instruction prefetching and re-ordering are con-
sistent across all benchmarks. When combined, re-ordering re-
duces significantly the prefetching traffic. The unified cache is
most beneficial for benchmarks that put pressure on the BTB (e.g.,
jpeg), but may also lead to additional conflicts (e.g., crafty).
With the tagless cache, the performance greatly depends on the
size of the basic blocks executed. For large basic blocks (vortex
and apsi), performance degrades as the instruction cache cannot
fit all the instructions in the block (limit of 4). Similarly, for pro-
grams with many small blocks (2 or less instructions as in g721),
the instruction cache capacity is underutilized. The tagless cache
performs best for programs with basic blocks of size 4 instructions
like pegwit. It is also best to combine the tagless instruction cache

with prefetching to deal with conflict misses. Software hints tend
to provide a consistent improvement for all of the benchmarks. The
redistribute cache hints achieve slightly better performance than the
exclude cache hints.

To understand the effectiveness of each technique in reducing the
performance impact of the small instruction cache, we look at the
instruction cache miss rates for the different optimizations. Figure
6 presents the normalized number of instruction cache misses for
BLISS with the different front-end optimizations over the base de-
sign with the small instruction cache. The reduction in instruction
cache misses with prefetching, instruction re-ordering, and unified
cache is consistent across most benchmarks with a 20% average.
For the tagless instruction cache + prefetching, the decrease varies
and largely depends on the basic block average size. Both of the
software cache placement hints with prefetching significantly re-
duce the number of cache misses with an average of 58%. Finally,
the best combination of the optimizations (prefetching + instruc-
tion re-ordering + unified cache + redistribute cache hints) achieves
66% reduction.

273

0.60

0.70

0.80

0.90

1.00

adpcm g721 jpeg mesa pegwit rasta gcc crafty vortex apsi Average

N
or

m
al

iz
ed

 T
ot

al
 E

ne
rg

y

1-Prefetching 2-Instruction Reordering
3-Unified Cache 4-Tagless Cache + Prefetching
5a-Exclude Cache Hints 5b-Redistribute Cache Hints
Optimizations 1+2+3+5b

Figure 7: Normalized total energy comparison for BLISS with the different front-end optimizations over the base. The BLISS design
uses the small I-cache and BB-cache. The base design uses the regular I-cache and BTB. The 1.0 line presents the base design. Lower
bars present better results.

5.2 Cost Analysis
Power and die area determine the cost to manufacture and pack-

age the chip. The front-end consumes a large fraction of the power
budget as it includes large memory structures that are accessed
nearly every cycle. For example, the Intel XScale PXA270 proces-
sor consumes 20% of it power budget in the front-end itself. Table
3 quantifies the potential cost reduction of using small front-end
structures for the XScale PXA270 processor in Table 2. It presents
the normalized power and area of the small front-end structures
over the large structures for the XScale configuration. We also
report the normalized access times for the small front-end struc-
tures. However, we ignore the fact that the processor with the small
caches can run at higher clock frequency. The small instruction
cache only dissipates 8.4% of the power dissipated by the large
cache and uses only 4.6% of its area. The small predictor tables
dissipate 75.4% of the power dissipated by the larger structures and
use only 47.5% of the area. The small instruction cache access time
is also half of the access time for the large cache.

Power Area Access Time
Instruction Cache 8.4% 4.6% 50.7%
Predictor Tables 75.4% 47.5% 94.7%

Table 3: Normalized power dissipation, area, and access time
for the small instruction cache and predictor tables over the
large structures of the XScale configuration.

5.3 Total Energy Analysis
Figure 7 compares the total energy of BLISS with small caches

and the various optimizations to that of the base design with large
caches (energy of 1.0). Lower energy is better. For reference,
the average total energy for other configurations is: 0.95 for the
base design with small caches, 0.93 for the base design with small
caches and prefetching, and 0.88 for BLISS with large caches.

With all optimizations, BLISS with small caches consumes less
energy than the base with small or large caches. The combined
optimizations lead to an energy consumption of 81%. The tagless
instruction cache configuration provides significant energy bene-
fits for several benchmarks (adpcm, jpeg, mesa, pegwit) as it

eliminates redundant tag accesses. However, for vortex, the tag-
less instruction cache has the highest energy consumption. This
is due to the fact that vortex has large basic blocks that will re-
quire to be prefetched and placed in the small victim cache. For
the remaining optimizations, energy consumption tracks the IPC
behavior.

5.4 Comparison Analysis to Hardware-based
Techniques

Many techniques have been proposed to save the front-end power
without the need for a new ISA. One such example is the Filter
cache design proposed by Kin et al. [13]. A Filter cache is a
tiny cache introduced as the first level of memory in the instruc-
tion memory hierarchy.

Many of the front-end optimizations that are presented in Section
3 can also be implemented with a conventional instruction set us-
ing the Filter cache. Figure 8 summarizes the comparison between
BLISS with the combined optimizations (unified cache + prefetch-
ing + instruction re-ordering + redistribute hints) to the base de-
sign with (Filter cache + prefetching + instruction re-ordering +
selective caching hints). Note that similar front-end optimizations
and cache sizes are used with both designs. The base XScale con-
figuration with the full-sized instruction cache and BTB is shown
as a reference. We also show the results for the base design with
optimally-sized caches. We use a method similar to [26] to quan-
tify the amount of energy wasted due to sub-optimal cache sizes. A
continuum of cache sizes and configurations are simulated. During
each cycle, the cache with the lowest power from among those that
hit is selected.

BLISS with the front-end optimizations provides similar total
power reduction to the Filter cache design and the base design with
optimally-sized caches (14% savings). It also provides similar total
energy savings to the optimally-sized design (19% reduction). The
small advantage is due to the more efficient access of instruction
cache in the BLISS base model [31]. More important, the power
and energy savings do not lead to performance losses as it is the
case for the base design with the Filter cache. BLISS provides a 9%
performance improvement over the base design with large caches
and a 12% performance improvement over the base design with
Filter cache and the combined front-end optimizations. The perfor-
mance advantage is due to two reasons. First, the efficient imple-

274

75%

85%

95%

105%

Execution Time Total Power Total Energy

Base Base-optimal
Base-Filter with optimizations BLISS-small with optimizations

Figure 8: Average execution time, total power, and total energy
consumption for base design (with large caches), base design
(with optimal caches), base design (with Filter cache and a com-
bination of front-end optimizations), and BLISS (with small
caches and a combination of front-end optimizations). Lower
bars present better results.

mentation of front-end optimizations mitigates the negative effects
of the small instruction cache and BTB. Second, the block-aware
architecture allows for higher prediction accuracy that provides the
additional performance gains [31]. In addition, BLISS provides
7% energy improvement over the base design with Filter cache and
the combined front-end optimizations. Overall, BLISS with small
caches and front-end optimizations improves upon the Filter cache
with comparable front-end optimizations by offering similar power
reduction at superior performance and energy consumption (12%
performance and 7% total energy improvements).

We only report IPC for the BLISS and the Filter cache designs,
ignoring the opportunity for performance gains if we exploit the
faster access time of the small caches. By reducing the clock pe-
riod, the BLISS and Filter cache designs can run at higher clock
frequencies than processors with larger caches which will result in
additional performance and energy improvements.

6. RELATED WORK
Significant amount of front-end research focused on instruction

cache optimizations of microprocessor-based systems because of
the cache’s high impact on system performance, cost, and power.
The use of a tiny (Filter) cache to reduce power dissipation was
proposed by Kin et al. [13]. Bellas et al. [2] proposed using a
profile-aware compiler to map frequent loops into the Filter cache
to reduce the performance overhead. BLISS provides similar power
reduction as the Filter cache design and at the same time improves
performance and energy consumption. Lee et al. [14] suggested
using a tiny tagless loop cache with a controller that dynamically
detect loops and fill the cache. The loop cache is an alternative to
the first level of memory which is only accessed when a hit is guar-
anteed. Since the loop cache is not replacing the instruction cache,
their approach improves the energy consumption with small perfor-
mance, area, and total power overhead. Rose et al. [8] evaluated
different small cache designs.

Many techniques have been proposed to reduce the instruction
cache energy. Some of the techniques include way prediction [22],
selective cache way access [1], sub-banking [7], and tag compari-
son elimination [18], Other research has focused on reconfigurable
caches [23] where a subset of the ways in a set-associative cache
or a subset of the cache banks are disabled during periods of mod-
est cache activity to reduce power. Using a unified reconfigurable
cache has also shown to be effective in providing greater levels of
hardware flexibility [16]. Even though reconfigurable caches are
effective in reducing energy consumption, they have negligible ef-
fect on reducing the peak power or the processor die area.

Many prefetching techniques have been suggested to hide the
latency of cache misses. The simplest technique is the sequential
prefetching [28, 19]. In this scheme, one or more sequential cache
lines that follow the current fetched line are prefetched. History-
based schemes [29, 12] use the patterns of previous accesses to
initiate the new prefetches. The execution-based scheme has been
proposed as an alternative approach [24, 6]. In this scheme, the
prefetcher uses the predicted execution path to initiate accesses.
Other types of prefetching schemes include wrong path prefetching
[21] and software cooperative approach [15]. In the later scheme,
the compiler inserts software prefetches for non-sequential misses.
BLISS enables highly accurate execution-based prefetching using
the contents of the BBQ.

Much research exists at exploring the benefit of code re-ordering
[30]. Most of the techniques use a variation of the code positioning
algorithm suggested by Pettis and Hansen [20]. Several researchers
have also worked on using software-generated hints to improve the
performance and power of caches [11, 17, 3, 9]. BLISS efficiently
enables instruction re-ordering with no extra overhead and no im-
pact on speculation accuracy. Moreover, the architecturally visible
basic block descriptors allow communicating software hints with-
out modifying the conventional instruction stream or affecting its
instruction code footprint.

7. CONCLUSIONS
This paper evaluated several front-end optimizations that im-

prove the performance of embedded processors with small front-
end caches. Small caches allow for an area and power efficient
design but typically lead to performance challenges. The opti-
mizations included instruction prefetching and re-ordering, selec-
tive caching, tagless instruction cache, and unified instruction and
branch target caches. We built these techniques on top of the block-
aware instruction set (BLISS) architecture that provides a flexible
platform for both software and hardware front-end optimizations.
The best performing combined optimizations (prefetching + in-
struction re-ordering + unified caches + redistribute cache hints)
allow an embedded processor with small front-end caches to be
9% faster and consume 14% less power and 19% less energy than a
similar pipeline with large front-end structures. While some of the
optimizations can also be implemented with a conventional instruc-
tion set, they lead to lower performance benefits and are typically
more complex. The BLISS ISA-supported front-end outperforms
(12% IPC and 7% energy) a front-end with a conventional ISA with
Filter cache and similar front-end optimizations. Overall, BLISS
allows for low power and low cost embedded designs in addition to
performance, energy, and code size advantages. Therefore, it can
be a significant design option for embedded systems.

8. REFERENCES

[1] D. H. Albonesi. Selective Cache Ways: On-Demand Cache
Resource Allocation. In The Proceedings of Intl. Symposium
on Microarchitecture, pages 248–259, Haifa, Israel,
November 1999.

[2] N. Bellas, I. Hajj, C. Polychronopoulos, and G. Stamoulis.
Energy and Performance Improvements in Microprocessor
Design using a Loop Cache. In The Proceedings of Intl.
Conference on Computer Design, pages 378–383,
Washington, DC, October 1999.

[3] K. Beyls and E. H. D’Hollander. Generating Cache Hints for
Improved Program Efficiency. Journal of Systems
Architecture, 51(4):223–250, April 2005.

275

[4] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A
Framework for Architectural-Level Power Analysis and
Optimizations. In The Proceedings of Intl. Symposium on
Computer Architecture, pages 83–94, Vancouver, BC,
Canada, June 2000.

[5] D. Burger and T. M. Austin. Simplescalar Tool Set, Version
2.0. Technical Report CS-TR-97-1342, University of
Wisconsin, Madison, June 1997.

[6] I.-C. K. Chen, C.-C. Lee, and T. N. Mudge. Instruction
Prefetching Using Branch Prediction Information. In The
Proceedings of Intl. Conference on Computer Design, pages
593–601, San Jose, CA, October 1997.

[7] K. Ghose and M. B. Kamble. Reducing Power in Superscalar
Processor Caches Using Subbanking, Multiple Line Buffers
and Bit-Line Segmentation. In The Proceedings of Intl.
Symposium on Low Power Electronics and Design, pages
70–75, San Diego, CA, August 1999.

[8] A. Gordon-Ross, S. Cotterell, and F. Vahid. Tiny Instruction
Caches for Low Power Embedded Systems. ACM
Transactions on Embedded Computing Systems,
2(4):449–481, November 2003.

[9] Intel Corporation. Intel Itanium Architecture Software
Developers Manual. Revision 2.0, December 2001.

[10] Intel Corporation. Intel PXA27x Processor Family
Developer’s Manual, October 2004.

[11] P. Jain, S. Devadas, D. Engels, and L. Rudolph.
Software-Assisted Cache Replacement Mechanisms for
Embedded Systems. In The Proceedings of Intl. Conference
on Computer-Aided Design, pages 119–126, San Jose, CA,
November 2001.

[12] D. Joseph and D. Grunwald. Prefetching using Markov
Predictors. In The Proceedings of Intl. Symposium on
Computer Architecture, pages 252–263, Denver, CO, June
1997.

[13] J. Kin, M. Gupta, and W. H. Mangione-Smith. The Filter
Cache: An Energy Efficient Memory Structure. In The
Proceedings of Intl. Symposium on Microarchitecture, pages
184–193, Research Triangle Park, NC, December 1997.

[14] L. H. Lee, B. Moyer, and J. Arends. Instruction Fetch Energy
Reduction Using Loop Caches for Embedded Applications
with Small Tight Loops. In The Proceedings of Intl.
Symposium on Low Power Electronics and Design, pages
267–269, San Diego, CA, August 1999.

[15] C.-K. Luk and T. C. Mowry. Architectural and Compiler
Support for Effective Instruction Prefetching: a Cooperative
Approach. ACM Transactions on Computer Systems,
19(1):71–109, February 2001.

[16] A. Malik, B. Moyer, and D. Cermak. A Low Power Unified
Cache Architecture Providing Power and Performance
Flexibility. In The Proceedings of Intl. Symposium on Low
Power Electronics and Design, pages 241–243, Rapallo,
Italy, July 2000.

[17] S. McFarling. Program Optimization for Instruction Caches.
In The Proceedings of Intl. Conference on Architectural
Support for Programming Languages and Operating
Systems, pages 183–191, Boston, MA, April 1989.

[18] R. Panwar and D. Rennels. Reducing the Frequency of Tag
Compares for Low Power I-Cache Design. In The
Proceedings of Intl. Symposium on Low Power Design, pages
57–62, Dana Point, CA, April 1995.

[19] G.-H. Park, O.-Y. Kwon, T.-D. Han, S.-D. Kim, and S.-B.
Yang. An Improved Lookahead Instruction Prefetching. In

The Proceedings of High-Performance Computing on the
Information Superhighway, pages 712–715, Seoul, South
Korea, May 1997.

[20] K. Pettis and R. C. Hansen. Profile Guided Code Positioning.
In The Proceedings of Conference on Programming
Language Design and Implementation, pages 16–27, White
Plains, NY, June 1990.

[21] J. Pierce and T. Mudge. Wrong-Path Instruction Prefetching.
In The Proceedings of Intl. Symposium on Microarchitecture,
pages 165–175, Paris, France, December 1996.

[22] M. D. Powell, A. Agarwal, T. N. Vijaykumar, B. Falsafi, and
K. Roy. Reducing Set-Associative Cache Energy via Way
Prediction and Selective Direct-Mapping. In The
Proceedings of Intl. Symposium on Microarchitecture, pages
54–65, Austin, TX, December 2001.

[23] P. Ranganathan, S. Adve, and N. P. Jouppi. Reconfigurable
Caches and their Application to Media Processing. In The
Proceedings of Intl. Symposium on Computer Architecture,
pages 214–224, Vancouver, BC, Canada, June 2000.

[24] G. Reinman, B. Calder, and T. Austin. Fetch Directed
Instruction Prefetching. In The Proceedings of Intl.
Symposium on Microarchitecture, pages 16–27, Haifa, Israel,
Nov. 1999.

[25] C. Rowen. Engineering the Complex SOC. Prentice Hall,
2004.

[26] J. S. Seng and D. M. Tullsen. Architecture-Level Power
Optimization - What Are the Limits? Journal of
Instruction-Level Parallelism 7, 7(3):1–20, January 2005.

[27] P. Shivakumar and N. P. Jouppi. Cacti 3.0: An Integrated
Cache Timing, Power, Area Model. Technical Report
2001/02, Compaq Western Research Laboratory, Aug. 2001.

[28] J. E. Smith and W.-C. Hsu. Prefetching in Supercomputer
Instruction Caches. In The Proceedings of Conference on
Supercomputing, pages 588–597, Minneapolis, MN,
November 1992.

[29] V. Srinivasan, E. S. Davidson, G. S. Tyson, M. J. Charney,
and T. R. Puzak. Branch History Guided Instruction
Prefetching. In The Proceedings of Intl. Symposium on
High-Performance Computer Architecture, pages 291–300,
Nuevo Leone, Mexico, January 2001.

[30] H. Tomiyama and H. Yasuura. Code Placement Techniques
for Cache Miss Rate Reduction. ACM Transactions on
Design Automation of Electronic Systems, 2(4):410–429,
October 1997.

[31] A. Zmily, E. Killian, and C. Kozyrakis. Improving
Instruction Delivery with a Block-Aware ISA. In The
Proceedings of EuroPar Conference, pages 530–539, Lisbon,
Portugal, August 2005.

[32] A. Zmily and C. Kozyrakis. Energy-Efficient and
High-Performance Instruction Fetch using a Block-Aware
ISA. In The Proceedings of Intl. Symposium on Low Power
Electronics and Design, pages 36–41, San Diego, CA,
August 2005.

[33] A. Zmily and C. Kozyrakis. Block-Aware Instruction Set
Architecture. ACM Transactions on Architecture and Code
Optimization, 3(3):327–357, September 2006.

[34] A. Zmily and C. Kozyrakis. Simultaneously Improving Code
Size, Performance, and Energy in Embedded Processors. In
The Proceedings of Conference on Design, Automation and
Test in Europe, pages 224–229, Munich, Germany, March
2006.

276

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

