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ABSTRACT
Leakage energy consumption is an increasingly important
issue as the technology continues to shrink. Since on-chip
caches constitute a major portion of the processor’s transis-
tor budget, several leakage control policies have been pro-
posed to reduce cache leakage. However, these policies in-
troduce performance unpredictability thereby not suitable
for hard real-time applications that require the timing con-
straint is met in all cases. In this paper, we propose the first
approach to apply existing low leakage circuit techniques
on hard real-time applications. The proposed timing-aware
cache leakage control mechanism exploits task slack time
to turn cache lines into the low-leakage state provided that
the timing constraint is met. The experimental results show
that the proposed cache leakage control policy achieves com-
parable leakage reduction to the leakage control policy that
aggressively turns cache lines into low-leakage modes with-
out considering the timing constraint.

Categories and Subject Descriptors
B.3.3 [Memory Structures]: Performance Analysis and
Design Aids

General Terms
Algorithm, Design, Performance

Keywords
Cache leakage control policy, Hard real-time system

1. INTRODUCTION
Power consumption is becoming a critical design issue of

embedded systems due to the popularity of portable devices
such as cellular phones and personal digital assistants. As
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Figure 1: Leakage reduction circuits: (a) gated-Vdd,
and (b) drowsy caches.

the technology continues to shrink, leakage power is becom-
ing a dominant factor to overall CPU energy [13]. Reduc-
ing leakage energy can be done by exploiting task idle time
to shut down the CPU completely [4, 5, 9, 10] or individ-
ual micro-architecture component, for example, caches [7,
20] and branch predictors [11]. Previous works on applying
shutting down techniques to hard real-time systems only fo-
cus on turning off a CPU completely [4, 5, 9, 10]. We are not
aware of any research work that applies micro-architectural
leakage reduction techniques to hard real-time systems. This
paper is the first attempt to bridge this gap.

In this paper, we target at on-chip cache leakage reduc-
tion. On-chip caches constitute a major portion of the pro-
cessor’s transistor budget and account for a significant share
of leakage. In fact, leakage is projected to account for 70%
of the cache power budget in 70nm technology [13] . There-
fore, reducing cache leakage power consumption is impor-
tant for reducing a processor’s total leakage. Two types
of circuit techniques have been proposed to reduce cache
leakage: Gated-Vdd [20] and drowsy caches [7]. Figure 1
shows the circuit of gated-Vdd and drowsy caches. The
gated-Vdd technique turns off a cache line completely to
save maximum leakage power, but the loss of state exposes
the system to incorrect turn-off decisions which result in
significant performance penalty. The drowsy cache tech-
nique uses a small supply voltage to retain the data in a
memory cell at the low-leakage state [7, 14]. Therefore,
the drowsy cache technique reduces leakage less than the
gated-Vdd technique, but it incurs much less penalty when
accessing a memory cell at the low-leakage state. The de-
lay to switch a memory cell from the low-leakage state to
the active state is called wake-up overhead. To decide when
to turn a cache line into the low-leakage state is called a
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cache leakage control policy. Existing control policies are in
two broad categories: application-sensitive and application-
insensitive policies. Application-sensitive policies use the
feedback from applications to perform leakage control, e.g.,
DRI-cache [22] turns off I-cache lines based on I-cache miss
rates. Application-insensitive policies periodically put cache
lines into the low-leakage mode regardless of applications’
behavior, e.g., the simple policy in [7] turns all the cache
lines in a cache to the drowsy mode at every fixed period.
None of these control policies provide precise timing control.
For a hard real-time system that requires the system to meet
the timing constraint in all cases, even slight performance
degradation could cause catastrophic system breakdown.

Contribution
In this paper, we propose the first timing-aware cache leak-
age control mechanism for hard real-time systems. To achieve
energy savings with hard real-time guarantee, we exploit
both static and dynamic slack to tolerate delay caused by
accessing low-leakage cache lines.

Unlike previous works that choose between the drowsy
cache or gated-Vdd, our scheme allows the joint use of both
techniques. We exploit task-level information to manage
cache lines of idle and active tasks differently. For cache
lines allocated to an active task, due to short idle period
between accesses, only the drowsy cache technique is con-
sidered. Cache lines of an active task are turned into the
drowsy mode periodically, and waken up when they are ac-
cessed. The period to turn all cache lines to the drowsy mode
is referred to as the drowsy window size. A smaller drowsy
window size leads to higher leakage savings at the cost of
higher wake-up overheads. Our timing-aware cache leakage
control mechanism chooses the smallest drowsy window size
provided that the timing constraint is met. For cache lines
allocated to idle tasks, we seek opportunities to turn cache
lines off completely to get more leakage gain as long as the
penalty of fetching data from the lower level memory hier-
archy does not cause the violation of timing constraint. In
summary, this paper makes the following contributions:

1. We propose the first timing-aware cache leakage con-
trol mechanism that allows a hard real-time system
to take advantage of existing cache leakage reduction
techniques.

2. Our timing-aware cache leakage control scheme ex-
ploits task-level information to allow the joint use of
drowsy caches and gated-Vdd techniques. For cache
lines allocated to idle tasks, we seek opportunities to
turn cache lines off completely to get more leakage
gain.

3. Our timing-aware leakage control mechanism has the
capability to adjust the drowsy window size dynam-
ically with hard real-time guarantee, while previous
works could only use a fixed drowsy window size through-
out program execution[7, 14]. Run-time drowsy win-
dow resizing allows us to choose a smaller window size
whenever the system has more slack time to achieve
more leakage reduction.

We evaluate the proposed leakage control scheme on 8 real
applications. The experimental results show that with tight

deadlines, the simple policy in [7] causes high deadline miss
ratio. (e.g., with 1% static slack 1, the deadline miss ratio
2 is up to 97.6%.) This confirms our assertion that exist-
ing leakage reduction techniques are not suitable for hard
real-time applications, and a timing-aware leakage control
scheme is a must. When static slack is 1% where the simple
policy achieves 89.7% to 90.6% leakage saving, the proposed
scheme achieves less leakage savings than the simple policy
(78.4% to 86.9%) in order to satisfy the timing constraint.
As task slack increases, the leakage savings of the proposed
method approaches that of the simple policy. With 20%
of static slack, our scheme even achieves up to 1.3% more
leakage savings than the simple policy. This energy advan-
tage provided by the proposed scheme comes from run-time
drowsy window resizing. The experimental results also show
that the joint use of the drowsy cache and gated-Vdd tech-
nique provides up to 2.8% more leakage reduction compared
to that of adopting the drowsy technique alone.

The rest of the paper is organized as follows. Section 2 de-
scribes the previous works. Section 3 gives the background
of this work. Section 4 describes the basic system model
discussed in this paper. The proposed timing-aware cache
leakage management policy is described in Section 5. Sec-
tion 6 describes the architectural and OS support for the
proposed scheme. The experimental results are discussed in
Section 7, and Section 8 offers our conclusions and future
work.

2. PREVIOUS WORK
Several works have been proposed to reduce dynamic or

leakage power of real-time systems [19, 9, 10, 17]. To re-
duce CPU leakage energy, Martin et al. [17] propose a new
scheduling algorithm that combines DVS (Dynamic Volt-
age Scaling) and adaptive body biasing to simultaneously
optimize both dynamic and leakage power consumption in
real-time systems. Niu et. al. [19] propose a method that
combines DVS and CPU shut-down to minimize the overall
energy consumption for hard real-time systems. Jejurikar et.
al. [9, 10] present a procrastination scheduling technique to
maximize the duration of idle intervals by keeping the pro-
cessor in a sleep/shutdown state even if there are pending
tasks, within the constraints imposed by performance re-
quirements. All the above works that minimize CPU leak-
age consumption for hard real-time systems only focus on
turning off a CPU completely.

3. BACKGROUND
In this section, we introduce existing cache leakage con-

trol policies and the cache locking algorithm adopted in our
work.

3.1 Cache Leakage Control Policies
There are two broad categories of cache leakage control

policies: application-sensitive policies [22, 23, 18] and appli-

1Static slack = 1 -
∑n

i
Wi
Pi

, where Wi and Pi are the WCET

and period of a task i among n tasks in a task set.
2Deadline miss ratio = Nmiss tasks

Ntotal task
, where Nmiss tasks is the

number of tasks that missed their deadline, and Ntotal tasks

is the total number of executed tasks.
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cation insensitive policies [12, 7, 14]. Application sensitive
techniques decide when and where to do leakage control ac-
cording to the feedback from applications. DRI-cache [22]
employs gated-Vdd and reduces I-cache leakage power by
resizing the cache according to the variation of I-cache miss
rates. Zhang et al. [23] present a compiler approach that
turns off the cache lines of code regions that would not be
accessed for a long period of time. In [18], the upper bound
of leakage power reduction in caches is estimated, and a
prefetching scheme that combines both drowsy caches and
the gated-Vdd technique is proposed to approximate opti-
mal cache leakage reduction. Contrast to application sensi-
tive policies, application insensitive policies periodically turn
cache lines into the low-leakage state regardless of applica-
tions’ behavior. Cache decay [12], which adopts the gated-
Vdd circuit, turns off a cache line completely when it is not
accessed for a period of time. Simple policy in [7] that co-
operates with the drowsy cache circuit turns all cache lines
into the drowsy mode periodically. This is also the policy
we adopt in this paper for managing cache lines allocated to
active tasks. We call this policy as Drowsy+Simple in this
paper. Because Drowsy+Simple incurs more performance
degradation in instruction caches than in data caches, Kim
et al. [14] propose an architectural control mechanism that
cooperates with drowsy caches for instruction cache leak-
age reduction without significant impact on execution time.
The control technique in [14] divides an instruction cache
into regions called banks, and cache lines are waken up from
the drowsy mode in the granularity of bank. A bank pre-
diction scheme is also proposed to reduce the performance
overhead.

Based-on the above discussion, we know that both appli-
cation -sensitive and application-insensitive leakage control
techniques introduce unpredictable performance overhead
and thereby not suitable for hard real-time applications.

3.2 Cache Locking Technique
For real-time applications, analyzing the worst case execu-

tion time (WCET) is critical. The use of caches complicates
the WCET analysis due to the unpredictability in cache be-
havior. In a multitasking environment, the unpredictable
cache behavior comes from both inter- and intra-task inter-
ference. One way to cope with this problem is cache lock-
ing [21], which restricts cache usage so as to eliminate both
inter- and intra-task interference. Cache locking loads and
locks cache contents to ensure that cache contents remain
unchanged during program execution. The ability to lock
cache contents is available in several commercial processors,
e.g., PowerPC 440 and ARM946E-S. In ARM946E-S, a set of
instructions for cache locking are provided, and cache lock-
ing is achieved by programming the instructions with the
memory addresses of contents to be locked [2].

To decide the contents to be locked in a cache, the algo-
rithm in [21] selects the locked contents of the cache so as
to minimize the CPU utilization. The CPU utilization U is
estimated by

U =
∑n

i=1
Wi
Pi

(1)

, where Wi denotes the WCET of task i and Pi denotes
the period of task i. Therefore, the algorithm tries to lock
data that are accessed in the worst-case execution path and
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Figure 2: Baseline cache architecture.

have high access frequencies. The algorithm targets at a set-
associative cache in a multitasking environment. They first
identify data mapped to the same cache set, and sort these
data in a non-decreasing order of nload(i,j)/Pi ratio, where
nload(i,j) is the number of access to the j-th data of task i
along the worst-case execution path. For an N-way cache,
the first N data are selected to be locked in the cache.

4. SYSTEM MODEL
The system consists of a task set of the n periodic real-

time tasks. These tasks are independent tasks and preempt-
able. Tasks are denoted as T = {τ0, τ1, ..., τn}, where T de-
notes the task set and τi denotes the i-th task of n tasks.
Each τi has its own period Pi and its WCET Wi. We assume
a task’s deadline is its period. Tasks are scheduled using
the EDF (Earliest Deadline First) scheduling policy. A task
with earlier deadlines gets higher priority. The scheduler
has two queues: waiting queue (Qwaiting) and ready queue
(Qready). The waiting queue contains the completed tasks,
and the ready queue contains the running and preempted
tasks. The task that is currently running is the active task,
and the task that is preempted or completes is the idle tasks.
The schedualibitlity of a task set is tested by the CPU uti-
lization U defined by Eq.(1). If U is less than 100%, the
task set is said to be schedulable.

The baseline cache architecture that supports cache lock-
ing described in Section 3.2 is shown in Figure 2. The
lock ctrl signal indicates whether a cache line can be re-
placed or not. We select instructions to be locked in the
instruction cache based on the locking algorithm described
in Section 3.2. Each cache line is associated with the leak-
age mode bits to select the supply voltage. A cache line can
be turned into either the state-preserving mode (i.e. drowsy
caches) or state-destructive mode (i.e. the gated-Vdd cir-
cuit). We use the terms drowsy mode and state-preserving
mode interchangeably in this paper. A cache line switches
to the active state once it is accessed.

5. TIMING-AWARE CACHE LEAKAGE
CONTROL

The objective of the proposed leakage management method
is to determine the drowsy window size for active tasks and
the leakage mode for idle tasks, provided that the timing
constraint is not violated. In this section, we present our
leakage management method for both active and idle tasks.
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Figure 4: Overview of the timing-aware cache leak-
age control mechanism for active tasks.

5.1 Leakage Control Scheme for Active Tasks
The leakage control scheme for active tasks is based on

the Drowsy+Simple policy proposed in [7]. Different from
Drowsy+Simple that uses fixed drowsy window size, the
leakage control scheme for active tasks adjusts drowsy win-
dow size dynamically with hard real-time guarantee. The
drowsy window size affects leakage savings and the perfor-
mance overhead caused by waking-up drowsy cache lines.
With a smaller window size, cache lines are set to the drowsy
mode more frequently thereby achieving higher leakage re-
duction, but it also causes more wake-up overheads. As illus-
trated in Figure 3, to meet the timing constraint, the total
wake-up overheads cannot exceed a task’s slack. Therefore,
our leakage control scheme is to decide the smallest drowsy
window size so as the timing constraint is met. That is, the
wake-up overhead of all drowsy windows does not exceed the
total slack time. The slack time of a task comes from two
sources. One is called static slack that is computed based
on the WCET. The other is called dynamic slack which is
due to variations of task execution time.

The proposed leakage control scheme contains the off-line
phase and on-line phase as shown in Figure 4. In the off-
line phase, static slack allocation and the worst case active
set analysis are performed. Static slack allocation assigns
slack time to each task, and the worst case active set anal-
ysis estimates the number of cache lines that can be ac-
cessed in a drowsy window in the worst case. In the on-line
phase, we perform dynamic slack reclamation and drowsy

L(B1)=3

B1

B2
L(B6)=4

B6

L(B7)=5

B7

AS(B2) = 7

AS(B7) = 5

AS(B6) = 4+5 = 9

AS(B1) = max(3+7 , 3+9) = 12

B1,B6,B7 : Normal basic block.
B2,B3,B4,B5 : Merged as one basic block since they are in a loop.

L(Bi): number of locked cache lines touched by Bi.
AS(Bi): Active set size of basic block Bi.
AS(Bi) = max{L(Bi) + Active(Bj)} ,

L(B2)=2

L(B3)=3 L(B4)=1

L(B5)=2

B3 B4

B5

child(Bi)Bj

Figure 5: An example of the control flow graph for
the worst case active set analysis.

window resizing. Dynamic slack reclamation reclaims dy-
namic slacks due to variations of task execution time. Dy-
namic slack reclamation is performed when context switches
occur. Drowsy window resizing is to decide the drowsy win-
dow size of each task, and it is performed when context
switches occur or the active set changes. Below we describe
the proposed scheme in details.

5.1.1 Off-line Phase

Static Slack Allocation
We first allocate static slack to tasks based on their worst
case preemption rates. We allocate less slack time to tasks
with higher preemption rates. In our timing-aware leakage
control scheme, the slack time of a task cannot be utilized
by other tasks until it completes. A task that has a higher
preemption rate tends to complete later than other tasks.
Therefore, tasks with higher preemption rates are allocated
less static slack. Assume for all i, j, if i < j, then Pi < Pj .
The number of preemption PN(τk) of a task τk in the worst
case is

PN(τk) =
∑k−1

i=1 �
Pk
Pi

�.
The static slack time, ρk, allocated to a task k is

ρk = Pk × (1 − U) × 1/PN(τk)
Σn

i=11/PN(τi)
.

Worst Case Active Set Analysis
To estimate the performance overhead caused by activating
drowsy cache lines in a drowsy window, we need to predict
the number of cache access in a drowsy window. The number
of cache lines that can be accessed in a drowsy window in
the worst case is all the cache lines that could be accessed
in the future. To obtain this information, we first construct
the CFG (Control Flow Graph) of a program. In the CFG,
each node represents a basic block, and an edge from node
a to node b indicates that an execution path exists from
basic block a to basic block b. Figure 5 shows an example
of the CFG. The worst case active set analysis is performed
on the CFG. As shown in Figure 5, each node is associated
with L(Bi), which is the number of locked cache lines in
basic block Bi. The worst case active set size of each node
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Bi, which is denoted by AS(Bi), is the maximal number of
locked cache lines that could be accessed from Bi. Therefore,
AS(Bi) is calculated by

AS(Bi) = max{L(Bi) + AS(Bj)},∀Bj ∈ child(Bi)

, where child(Bi) denotes the set of child nodes of Bi. For
example, the basic block B1 in Figure 5 has active set size
AS(B1) = max{L(B1) + AS(B2), L(B1) + AS(B6)} = 12.

Worst case active set analysis is performed at compile
time. To convey the worst case active set size to the cache
controller, which performs the leakage control, we use a store
instruction to write the worst case active set size to the cache
controller. Because the drowsy window resizing process is
triggered on seeing a change in the worst case active set size,
we insert the store instructions only at the loop entry point
to prevent frequent drowsy window resizing. As shown in
Figure 5, B2, B3, B4 and B5 form a loop, and the active set
size information is recorded on B2 only.

5.1.2 On-line Phase

Dynamic Slack Reclamation
Dynamic slack is from variations of task execution time, and
the collection of the dynamic slack time is performed by
the OS when a context switch occurs. The dynamic slack
reclamation process used here is similar to the one proposed
in [15]. Before we detail dynamic slack reclamation, we first
define five notations:

• UCPU
i : the unused CPU budget of τi

• W rem
i the remaining WCET of τi

• Si: the slack time of τi

• Ei: the execution time of τi

• DS: dynamic slack time

When a task arrives (i.e., removed from the waiting queue),
UCPU

i and W rem
i are initialized to (WCET + static slack)

and WCET, respectively. During the execution of τk, UCPU
i

is consumed, and W rem
i decreases. W rem

i is updated by the
cache controller, and the value is automatically decremented
by one at every cycle. Note that we do not claim the slack
time of preempted tasks as in [15]. In our scheme, a pre-
empted task could utilize its slack to turn its cache lines
into the low-leakage mode during the idle period.

When τi is preempted or completes, we first consume the
dynamic slack (DS) from unused CPU budget of the tasks
in Qwaiting with earlier deadlines. Then, we update UCPU

i

of task τi. DS is estimated by the following equation:

DS =
∑

τk∈Qwaiting
UCPU

k .

If DS is greater than Ei, UCPU
i is not consumed. Otherwise,

the CPU budget is updated using the following formula.

UCPU
i = UCPU

i − (Ei − DS).

Therefore, the slack time that a task can use to compensate
the wake-up overheads is

Si = (UCPU
i − W rem

i ) + DS.

Drowsy Window Resizing
The process of drowsy window resizing is to decide the small-
est drowsy window size such that the timing constraint is
met. Drowsy window resizing is performed when a context
switch occurs or when the current active set is changed. To
decide the drowsy window size of the scheduled task, we have
to find the smallest drowsy window size with the wake-up
overhead that is not larger than the task’s available slack.
Therefore, the drowsy window size is the smallest window
size that satisfies the following inequality:

�W rem
i

wsize
� × Sactive(i) × OH ≤ Si (2)

, where wsize denotes the window size, Sactive(i) denotes
the worst case active set size of task τi, and OH denotes the
number of cycles to wake up a drowsy cache line.

5.2 Leakage Control Scheme for Idle Task
The cache lines of idle tasks could be turned into the

state-preserving or state-destructive mode. When a context
switch occurs, the OS decides the leakage mode of the task
that is switched out during its idle period based on its idle
time and available slack. The slack Si and idle period Ii of
a task τi that is preempted or completes are given below:{

Si = UCPU
i − W rem

i

Ii = BCET (τcurr) preempted tasks{
Si = ρi

Ii = Tarrive(τi) − Tenter q(τi) completed tasks

, where BCET (τcurr) is the best case execution time of the
current active task, Tarrive(τi) is the next arrival time of τi,
and Tenter q(τi) is the time τi entering the waiting queue.

To decide the leakage mode of an idle task, we need to
evaluate the performance overhead (Poverhead(Mi)) and the
energy overhead (Eoverhead(Mi)) of a low-leakage mode Mi,
where Mi is either the state-preserving or state-destructive
mode. Poverhead(Mi) and Eoverhead(Mi) are:

Poverhead(Mi) = Nwake × Dwake(Mi)

Eoverhead(Mi) = Nwake × Ewake(Mi)

, where Nwake denotes the number of times to wake up
cache lines in the low-leakage mode, and Dwake(Mi) and
Ewake(Mi) denote the delay and energy overhead to wake
up cache lines in the low-leakage mode Mi. For the state-
preserving mode, the wake-up latency is 2-cycle when both
the tag and data array are in the drowsy mode, and the
wake-up energy is the energy required to charge a drowsy
cache line from the drowsy state to the active state. For the
state-destructive mode, the wake-up overhead is the latency
and energy to access the next level memory hierarchy.

To turn an idle task’s cache lines into a low-leakage mode
Mi, the task must have

(1) Poverhead(Mi) ≤ Si, and
(2) Eoverhead(Mi) ≤ Eleak reduction(Mi)

, where Eleak reduction(Mi) denotes the leakage reduction ob-
tained by applying low-leakage mode Mi. Eleak reduction(Mi)
is derived from the following formula:
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Figure 6: Hardware support for the proposed timing-aware leakage control scheme.

Eleak reduction(Mi) =
(Eleak active − Eleak low(Mi)) × Iidle − Eoverhead(Mi)

, where Eleak active(Mi) and Eleak low(Mi) denote the leak-
age energy of cache lines in the active and low-leakage mode
Mi, respectively. Iidle is the idle length of the idle task.

To determine the leakage mode of idle tasks, we evaluate
the performance overhead and leakage reduction achieved
by both the gated-Vdd and drowsy cache circuits. The
low-leakage mode which achieves the most leakage reduc-
tion while meeting the timing constraint is selected as the
low-leakage mode of an idle task.

6. ARCHITECTURAL AND OS SUPPORT
This section describes the required modifications to the

cache controller and the operating system where a context
switch is handled, including (1) task-aware leakage control,
(2) drowsy window resizing and (3) restoring cache contents
of cache lines that are put into the state-destructive mode.

To support task-aware leakage control, we add an addi-
tional field to record the corresponding task id of a cache line
as shown in Figure 6. The current task id is stored in the
Task ID Reg register. A cache line is allowed to switch its
leakage mode only when its task id matches the current task
id. The Leakage Mode Reg register keeps the leakage mode
for the current task. A write to the Leakage Mode Reg reg-
ister shall trigger the update of the leakage mode bits for
the cache lines of the current task.

To support drowsy window resizing, the cache controller is
enhanced with the Drowsy Window Resizing Unit as shown
in Figure 6. The drowsy window resizing unit uses three
registers, Remain WCET Reg, Remain Slack Reg and Ac-
tive Set Reg, to store W rem

i , Si, Sactive(i) in Eq.(2). Re-
main WCET Reg is automatically decremented by one at
every cycle, and Remain Slack Reg is automatically decre-
mented by OH when a drowsy cache line is waken up. The

Table 1: Simulated architecture parameters.

Processor Core
Instruction Window 16-RUU, 16-LSQ
Issue width 1 instruction per cycle, in-order issue
Functional Unit 4 IntALU, 1 IntMult Div

1 FPALU, 1 FPMult Div
2 mem ports

Memory Hierarchy
L1 I-cache Size 8KB, 2-way, 16B block size
L2 cache Size 32KB, 4-way, 32B block size

8-cycle access latency
Memory 12-cycle access latency

Energy Parameter
Process Technology 0.07um
Supply Voltage 0.9V
Temperature 100oC

values in Remain WCET Reg and Active Set Reg are saved
/restored during context switch. When a context switch
occurs, the OS first determines the leakage mode of the
current task during its idle period through the algorithm
described in Section 5.2. The OS then performs dynamic
slack reclamation described in Section 5.1 to set the value of
the Remain Slack Reg register for the newly scheduled task.
Note that the Active Set Reg register is updated during pro-
gram execution when the active set changes. Obtaining the
drowsy window size, according to Eq.(2), requires one mul-
tiply and divide operations. To reduce hardware resources,
this calculation is transformed into two divide operations as
shown in the following equation:

wsize =
W rem

i
Si

Sactive(i)×OH

Since OH is fixed at two, we use a shift operation to perform
Sactive(i) × OH . According to the divider implementation
provided in [6], the divide latency is 16 cycles. So the cache
controller takes 32 cycles to estimate the drowsy window
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Table 2: Task sets characterization.
Name Description Code size WCET

Small task set (Total code size 7608 bytes)
jfdctint JPEG integer implementation of the forward DCT 3296 19087
crc cyclic redundancy code example program 1400 142088
ludcmp Linear equations by LU decomposition 2336 16607
matmult Matrix multiplication 576 12555

Medium task set (Total code size 9192 bytes)
qurt Computation of roots of quadradic equations 1200 4038
minver Matrix inversion 3656 11281
jfdctint JPEG integer implementation on DCT 3296 18969
fftl FFT Cooly-Turkey algorithm 1040 8685

size. Since the cache is still accessible to the CPU during
the drowsy window resizing process, this does not incur any
performance overhead. One way to avoid expensive divide
operations for calculating the drowsy window size is to use a
table-lookup approach. We leave it as the future work. The
resulting drowsy window size is stored in DW Reg.

To be able to restore locked cache contents for cache lines
that are put into the state-destructive mode, we set the tag
array into the drowsy mode only. For a cache access that
results in a tag hit but a data miss, a request of the hit tag
address is issued to the lower level of the memory hierarchy
to fetch the data, and the lock ctrl signal is turned off to
allow data write-back.

7. EXPERIMENTAL RESULTS
For cache leakage evaluation, we use the HotLeakage tool

set [24]. HotLeakge is developed based on the Wattch [3]
tool set. HotLeakage explicitly models the effects of temper-
ature, voltage, and parameter variations, and has the ability
to recalculate leakage currents dynamically as temperature
and voltage changed at runtime due to operating conditions,
DVS techniques, etc. To simulate multi-tasking workloads,
we modified HotLeakage to allow multiple programs execut-
ing simultaneously. We also implement the EDF scheduler.
In our experiment, cache locking is performed on L1 I-cache.
Since we also put cache tag into the drowsy mode, the perfor-
mance overhead of accessing a drowsy line is set to 2 cycles
according to [16], and the power overhead is 0.3mW. The
access delay of the L2 cache is set to 8 cycles. The detailed
processor and memory hierarchy parameters are shown in
Table 1. We implement two leakage control mechanisms,
the Drowsy+Simple scheme proposed in [7], and the pro-
posed timing-aware leakage control scheme (TALC). For the
Drowsy+Simple scheme, we determined the drowsy window
size through exhaustive simulations and chose the best one
on the average, 1000-cycle [7]. The cache lines allocated
to idle tasks are turned into the drowsy mode immediately
when a context switch occurs.

The benchmarks used in this work are from the SNU
real-time benchmark suite [1]. The benchmark programs
are C sources which are collected from numerical calcula-
tion programs and DSP algorithms. We mix multiple appli-
cations together to form two multi-tasking workloads, the
small task set and the medium task set. The small task
set has about 7KB total code size, and the medium task
set has about 9KB total code size. Details of the workloads
are listed in Table 2. The WCET of each task is measured
with cache locking. To generate varying execution time, we
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Figure 7: Deadline miss ratio of Drowsy+Simple.

use the method similar to [8]. We assume the BCET of a
task as a percentage of its WCET. In our experiments, the
(BCET/WCET) ratio is set to 0.95. The execution time
of each task instance is generated by a normal distribution
with mean μ = (WCET + BCET )/2 and standard devia-
tion ρ = (WCET − BCET )/6. The task instance is forced
to terminate once it’s execution time is expired.

We first show the deadline miss ratio of Drowsy+Simple
to demonstrate the importance of designing a timing-aware
leakage control algorithm. We adjust the period of each
task to achieve 1%, 2%, 3% , 4% and 5% static slack. Fig-
ure 7 shows the ratio of tasks missing deadlines with dif-
ferent static slack. We can see that the Drowsy+Simple
scheme has high ratio of tasks missing their deadlines with
low static slack. For the small task set, the miss ratio is
86.3% and 0.4% when static slack is 1% and 2%, respec-
tively. For the medium task set, the miss ratio is up to
97.9% and 95.6% when the static slack is 1% and 2%, respec-
tively. Drowsy+Simple has higher miss ratio in the medium
task set than in the small task set. The medium task set
has larger total code size and has more instructions locked
in the cache than those of the small task set. Therefore,
the Drowsy+Simple scheme incurs more performance degra-
dation in the medium task set than in the small task set.
Although Drowsy+Simple only misses the deadlines in the
cases with a tight schedule, this is still not acceptable for
a hard real-time system that requires the system to always
meet the timing constraint. This confirms our assertion that
existing leakage reduction techniques are not suitable for
hard real-time applications. Our timing-aware leakage con-
trol algorithm is guaranteed to meet the timing constraint,
therefore, the miss ratio is zero in all cases.
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Figure 8: Evaluation of leakage reduction.

Figure 8 compares the energy savings achieved by our
TALC scheme vs. the Drowsy+Simple mechanism with 1%,
5%, 10%, 15% and 20% static slack. Note that for fair
comparison, in this set of experiments, the TALC scheme
turns the cache lines of idle tasks into the drowsy mode
only. We present experimental results for the small and
medium task sets separately. When static slack is 1% where
Drowsy+Simple has 86.3% and 97.6% of tasks missing their
deadlines with the small and the medium task set, in order
to satisfy the timing constraint, the TALC scheme achieves
less energy savings than Drowsy+Simple. From Figure 8, we
also observe that TALC achieves less leakage reduction with
the medium task set than the small task set. Since TALC as-
sumes the worst case active set for drowsy window resizing,
it could overestimate the wake-up delay. For the medium
task set, the overestimation is more serious than the small
one since the medium task has larger code size and longer
worst-case execution path. A more precise active set analy-
sis scheme could help alleviate this problem. We leave this as
the future work. As the slack time increases, the energy sav-
ings achieved by TALC approaches Drowsy+Simple. With
20% static slack, the proposed scheme has 1.1% and 1.3%
more leakage savings than Drowsy+Simple with the small
and medium task set, respectively. This energy advantage
provided by TALC over Drowsy+Simple comes from run-
time drowsy window resizing. Figure 9 shows the profiling
of drowsy window size with 20% static slack for the small
task set . The drowsy window size is sampled every 2000-
cycles. We could see that the drowsy window size of TALC
ranged from 13 cycles to 979 cycles while Drowsy+Simple
fixed the window size to 1000-cycle.

To evaluate the effect of turning off cache lines of idle
tasks completely, we create a new task set that has suffi-
cient length of idle period to take advantage of the state-
destructive mode. To lengthen the idle period, we can in-
crease both static and dynamic slack. To increase static
slack, we set 20%, 30%, 40%, 50% and 60% static slack in
this set of experiments. To increase dynamic slack, we pro-
long a task’s WCET by increasing the number of iterations
executed by the task’s major subroutines on the worst-case
execution path. Since the BCET/WCET ratio remains 0.95
as the original setup, a task gains more dynamic slack with
increasing WCET. The experimental results of this new task
set is shown in Table 3. In Table 3, TALC-drowsy denotes
the TALC scheme adopting only the drowsy circuits, while
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Figure 9: Variation of drowsy window size for the
small task set with 20% static slack.

Table 3: Leakage savings of TALC-drowsy and
TALC-dual.

Static slack TALC-drowsy TALC-dual Difference
20% 90.9% 93.3% 2.4%
30% 91.7% 94.2% 2.5%
40% 92.9% 95.6% 2.7%
50% 93.9% 96.6% 2.7%
60% 94.2% 97.0% 2.8%

TALC-dual denotes the TALC scheme adopting both the
drowsy and gated-Vdd circuits. The results show that turn-
ing off cache lines of an idle task achieves up to 2.8% more
leakage savings than that of TALC-drowsy.

8. CONCLUSION AND FUTURE WORK
In this paper, we present a timing-aware cache leakage

control scheme for hard real-time system. The basic idea
of the proposed algorithm is to utilize system slack to tol-
erate the performance overhead caused by activating cache
lines in the low-leakage mode. Our scheme allows the joint
use of drowsy and gated-Vdd circuits. Furthermore, the
proposed timing-aware leakage control algorithm is able to
adjust the drowsy window size dynamically with hard real-
time guarantee. The experimental results show that with
a tight schedule, the proposed scheme achieves compara-
ble leakage savings with Drowsy+Simple while providing
timing guarantee. With sufficient static slack (e.g., 20%),
our scheme achieves up to 1.3% more leakage savings than
Drowsy+Simple. This energy advantage provided by the
proposed scheme comes from run-time drowsy window resiz-
ing. With the task set that has opportunities to put cache
lines into the state-destructive mode for idle tasks, the pro-
posed scheme achieves up to 2.8% more leakage savings than
the proposed scheme with the drowsy mode only.

The proposed scheme can be improved in two ways. First,
we plan to adopt a history-based prediction scheme to pro-
vide more precise active set estimation than the worst case
active set analysis method presented in this paper. Second,
we are designing a table-lookup approach to avoid expensive
divide operations required for drowsy window resizing.

9. ACKNOWLEDGMENTS
This work is supported in part by research grants from

Excellent Research Projects of National Taiwan University

255



95R0062-AE00-07, and ROC National Science Council NSC
95-2221-E-002-360 and NSC 96-2752-E-002-008-PAE.

10. REFERENCES
[1] Snu real-time benchmarks. In

http://archi.snu.ac.kr/realtime/benchmark/index.html.

[2] ARM946E-S.
http://www.samsung.com/products/semiconductor
/asic/ipcorelibrary/intellectureproperties/processorcores
/armcores/ddi0201 a946es.pdf.

[3] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A
framework for architectural-level power analysis and
optimizations. In Proceedings of the 27th annual
international symposium on Computer architecture
(ISCA’ 00), 2000.

[4] J.-J. Chen, H.-R. Hsu, and T.-W. Kuo. Leakage-aware
energy-efficient scheduling of real-time tasks in
multiprocessor systems. In Proc. the 12th IEEE
Real-Time and Embedded Technology and Applications
Symposiums (RTAS ’06), 2006.

[5] J.-J. Chen and T.-W. Kuo. Procrastination for
leakage-aware rate-monotonic scheduling on a
dynamic voltage scaling processor. In Proc. of
Conference on Languages, Compilers, and Tools for
Embedded Systems 2006(LCTES ’06), 2006.

[6] A. Cortex-R4F. http://www.arm.com/pdfs/cortex-r4f

[7] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and
T. Mudge. Drowsy caches: Simple techniques for
reducing leakage power. In Proceedings of the 29th
annual international symposium on Computer
architecture 2002(ISCA’ 02), 2002.

[8] R. Jejurikar and R. Gupta. Integrating preemption
threshold scheduling and dynamic voltage scaling for
energy efficient real-time systems. In Proceedings of
the 10th IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications
(RTCSA ’04), 2004.

[9] R. Jejurikar and R. Gupta. Dyanmic slack reclamation
with procrastination scheduling in real-time embedded
systems. In Proceedings of the 42nd Design
Automation Conference (DAC ’05), 2005.

[10] R. Jejurikar, C. Pereira, and R. Gupta. Leakage aware
dynamic voltage scaling for real-time embedded
systems. In Proceeding of the 41st Design Automation
Conference (DAC ’04), 2004.

[11] P. Juang, K. Skadron, M. Martonosi, Z. Hu, D. W.
Clark, P. W. Diodato, and S. Kaxiras. Implementing
branch-predictor decay using quasi-static memory
cells. ACM Transactions on Architecture and Code
Optimization (TACO), vol. 1, p.180-219, 2004.

[12] S. Kaxiras, Z. Hu, and M. Martonosi. Cache decay:
Exploiting generational behavior to reduce cache
leakage power. In Proceedings of the 28th annual
international symposium on Computer architecture
2001(ISCA’ 01), 2001.

[13] N. S. Kim, T. Austin, D. Blaauw, T. Mudge,
K. Flautner, J. S. Hu, M. J. Irwin, M. Kandemir,

and V. Narayanan. Leakage current: Moore’s law
meets static power. IEEE Computer, 36.

[14] N. S. Kim, K. Flautner, D. Blaauw, and T. Mudge.
Drowsy instruction caches: Leakage power reduction
using dynamic voltage scaling and cache sub-bank
prediction. In Proceedings of the 35th annual
ACM/IEEE international symposium on
Microarchitecture(Micro-35), 2002.

[15] W. Kim, J. Kim, and S. Min. A dynamic voltage
scaling algorithm for dynamic-priority hard real-time
systems using slack time analysis. In Proceedings of
the conference on Design, automation and test in
Europe (DATE ’02), 2002.

[16] Y. Li, D. Parikh, and Y. Zhang. State-preserving vs.
non-state-preserving leakage control in caches. In
Proceedings of the Design, Automation and Test in
Europe Conference and Exhibition (DATE ’04), 2004.

[17] S. Martin, K. Flautner, T. Mudge, and D. Blaauw.
Combined dynamic voltage scaling and adaptive body
biasing for lower power microprocessor under dynamic
workloads. In Proceedings of the 2002 IEEE/ACM
international conference on Computer-aided design
(ICCAD ’02), 2002.

[18] Y. Meng, T. Sherwood, and R. Kastner. On the limits
of leakage power reduction in caches. In Proceedings of
the 11th International Symposium on
High-Performance Computer Architecture (HPCA-11),
2005.

[19] L. Niu and G. Quan. Reducing both dynamic and
leakage energy consumption for hard real-time
systems. In Proceedings of the 2004 international
conference on Compilers, architecture, and synthesis
for embedded systems (CASES ’04), 2004.

[20] M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. N.
Vijaykumar. Gated-vdd: A circuit technique to reduce
leakage in deep-submicron cache memories. In
Proceedings of the International Symposium on Low
Power Electronics and Design (ISLPED ’00), 2000.

[21] I. Puaut and D. Decotigny. Low-complexity algorithms
for static cache locking in multitasking hard real-time
systems. In Proceedings of the 23rd IEEE Real-time
Systems Symposium (RTSS ’02), 2002.

[22] S.-H. Yang, B. Falsafi, M. D. Powell, K. Roy, and
T. N. Vijaykumar. An integrated circuit/architecture
approach to reducing leakage in deep-submicron
high-performance i-caches. In Proceedings of the 7th
International Symposium on High-Performance
Computer Architecture (HPCA-7), 2001.

[23] W. Zhang and J. S. Hu. Compiler-directed instruction
cache leakage optimization. In Proc. the 35th Annual
International Symposium on Microarchitecture
(MICRO-35), 2002.

[24] Y. Zhang, D. Parikh, K. Sankaranarayanan,
K. Skadron, and M. Stan. Hotleakage: A
temperature-aware model of subthreshold and gate
leakage for architects.

256



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Academy
    /AgencyFB-Bold
    /AgencyFB-Reg
    /Alba
    /AlbaMatter
    /AlbaSuper
    /Algerian
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialRoundedMTBold
    /ArialUnicodeMS
    /BabyKruffy
    /BaskOldFace
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BlackadderITC-Regular
    /BodoniMT
    /BodoniMTBlack
    /BodoniMTBlack-Italic
    /BodoniMT-Bold
    /BodoniMT-BoldItalic
    /BodoniMTCondensed
    /BodoniMTCondensed-Bold
    /BodoniMTCondensed-BoldItalic
    /BodoniMTCondensed-Italic
    /BodoniMT-Italic
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BradleyHandITC
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /CalisMTBol
    /CalistoMT
    /CalistoMT-BoldItalic
    /CalistoMT-Italic
    /Castellar
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chick
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CopperplateGothic-Bold
    /CopperplateGothic-Light
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Croobie
    /CurlzMT
    /EdwardianScriptITC
    /Elephant-Italic
    /Elephant-Regular
    /EngraversMT
    /ErasITC-Bold
    /ErasITC-Demi
    /ErasITC-Light
    /ErasITC-Medium
    /EstrangeloEdessa
    /Fat
    /FelixTitlingMT
    /FootlightMTLight
    /ForteMT
    /FranklinGothic-Book
    /FranklinGothic-BookItalic
    /FranklinGothic-Demi
    /FranklinGothic-DemiCond
    /FranklinGothic-DemiItalic
    /FranklinGothic-Heavy
    /FranklinGothic-HeavyItalic
    /FranklinGothic-Medium
    /FranklinGothic-MediumCond
    /FranklinGothic-MediumItalic
    /FreestyleScript-Regular
    /FrenchScriptMT
    /Freshbot
    /Frosty
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Gigi-Regular
    /GillSansMT
    /GillSansMT-Bold
    /GillSansMT-BoldItalic
    /GillSansMT-Condensed
    /GillSansMT-ExtraCondensedBold
    /GillSansMT-Italic
    /GillSans-UltraBold
    /GillSans-UltraBoldCondensed
    /GlooGun
    /GloucesterMT-ExtraCondensed
    /GoudyOldStyleT-Bold
    /GoudyOldStyleT-Italic
    /GoudyOldStyleT-Regular
    /GoudyStout
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /ImprintMT-Shadow
    /InformalRoman-Regular
    /Jenkinsv20
    /Jenkinsv20Thik
    /Jokerman-Regular
    /Jokewood
    /JuiceITC-Regular
    /Karat
    /Kartika
    /KristenITC-Regular
    /KunstlerScript
    /Latha
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSans-TypewriterBoldOblique
    /LucidaSans-TypewriterOblique
    /LucidaSansUnicode
    /Magneto-Bold
    /MaiandraGD-Regular
    /Mangal-Regular
    /MaturaMTScriptCapitals
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MSOutlook
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /OCRAExtended
    /OldEnglishTextMT
    /Onyx
    /PalaceScriptMT
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Papyrus-Regular
    /Parchment-Regular
    /Perpetua
    /Perpetua-Bold
    /Perpetua-BoldItalic
    /Perpetua-Italic
    /PerpetuaTitlingMT-Bold
    /PerpetuaTitlingMT-Light
    /Playbill
    /Poornut
    /PoorRichard-Regular
    /Porkys
    /PorkysHeavy
    /Pristina-Regular
    /PussycatSassy
    /PussycatSnickers
    /Raavi
    /RageItalic
    /Ravie
    /Rockwell
    /Rockwell-Bold
    /Rockwell-BoldItalic
    /Rockwell-Condensed
    /Rockwell-CondensedBold
    /Rockwell-ExtraBold
    /Rockwell-Italic
    /ScriptMTBold
    /ShowcardGothic-Reg
    /Shruti
    /SnapITC-Regular
    /Square721BT-Roman
    /Stencil
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /TwCenMT-Bold
    /TwCenMT-BoldItalic
    /TwCenMT-Condensed
    /TwCenMT-CondensedBold
    /TwCenMT-CondensedExtraBold
    /TwCenMT-Italic
    /TwCenMT-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Vrinda
    /Webdings
    /WeltronUrban
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


