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ABSTRACT
Delayed branching is a technique to alleviate branch hazards
without expensive hardware branch prediction mechanisms.
For VLIW processors with deep pipelines and many issue
slots, the instruction scheduler faces the difficult problem
of filling the many delay slots. This paper proposes two
solutions: a code hoisting technique that produces more
candidate operations to be put in the delay slots and an
adapted backtracking instruction scheduler that is capable
of efficiently placing these candidate operations in the delay
slots.

We have demonstrated that the two mechanisms work well
on various multimedia and SPECINT2000 benchmarks. The
code hoisting technique reduces the schedule length of a tra-
ditional scheduler without backtracking by 18%. Using the
backtracking scheduler, this amount increases to 24%.

Categories and Subject Descriptors
D.3.4 [Software]: Programming Languages—Processors

General Terms
Algorithms, Languages

Keywords
VLIW Scheduling, Predication, Code Hoisting

1. INTRODUCTION
Programs that run on mobile systems are becoming in-

creasingly complex. Today you can play games or record
video on your cell-phone or PDA.

To be able to run these applications on battery-operated
devices, high performance, low-power embedded systems are
needed. Furthermore, the design and manufacturing cost
has to be kept as low as possible, meaning the system needs
to have simple hardware and should be easy to program.

Typically the cores of such systems are programmable
processors. VLIW ASIPs in particular are known to be
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cycle

0: op3: jump cb10
1: op1: r1 = add r2, r3
2: op2: r4 = add r5, 2
/* branch occurs here */
/* next: first cycle of cb10  */

op2: r4 = add r5, 2
op1: r1 = add r2, r3

op3: jump cb10

latency

(1)

(3)
(1)

a)

Figure 1: Branch with two delay cycles. Unsched-
uled code (a) and scheduled code (b).

very effective in achieving high performance with reason-
ably low power consumption[7]. Unlike superscalar pro-
cessors, VLIW have a simple hardware structure and rely
on the compiler to extract the instruction level parallelism
(ILP) from the program [13]. They usually do not sup-
port hardware branch prediction, but instead feature de-
layed branches. If a VLIW has two delay cycles, this means
two instructions after the branch are always executed, in-
dependent of the branch outcome, thus avoiding that the
pipeline is flushed when a branch is taken. Figure 1 shows
a branch with two delay cycles. Although the two add op-
erations in the schedule appear after the branch instruction
statically, they are executed before the branch instruction,
as the control flow transfer itself occurs only after cycle 2.

Since the compiler is responsible for filling the delay slots,
it has to solve the following two problems:

1. The compiler has to find enough operations than can
be scheduled in a delay slot. The operations need to be
completely independent of the branch, meaning that
we should be able to schedule them before the branch
but they cannot produce a result that is used by the
branch.

2. The compiler has to ensure that the instruction sched-
uler schedules the candidate operations in the delay
slot. Since in the unscheduled program, the candidate
operations precede the branch, a traditional sched-
uler will schedule them before it schedules the branch.
Next the branch needs to be scheduled, but often it
will occur that the resources in the cycle where the
branch should be scheduled, are already consumed by
the already scheduled operations. In that case, and un-
less backtracking is used, the only solution is to sched-
ule the branch after the already scheduled operations,
leaving the delay slots empty.

This paper proposes solutions for both problems. Sec-
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tion 2 explains a simple mechanism that hoists operation
from after the branch to be put in the delay slot. Next,
Section 3 outlines an algorithm that schedules the branch
operation before the candidate operations are scheduled and
thus allows for a better filling of the delay slots. Section 4
treats related work. After that, results are presented and
discussed in Section 5 by applying the two algorithms on a
set of benchmark applications. Finally Section 6 contains
conclusions and future work.

2. PREDICATE-BASED CODE HOISTING
In this section discusses a code transformation called pre-

dicate-based code hoisting that creates freedom for the in-
struction scheduler to fill the delay slots better. First, the
characteristics of the branch instructions used are discussed.
Next, the superblock concept is presented as the scope for
the transformation. Finally the transformation itself is out-
lined.

2.1 Simplified Hardware
VLIW processors are used in embedded systems because

they achieve relatively high performance with reduced hard-
ware complexity (and thus reduced power consumption) com-
pared to superscalar out-of-order processors. The VLIW
processor that is used in this paper (called ADRES [12])
uses two mechanisms to simplify the hardware:

1. Delayed branching: Instead of spending expensive
hardware and energy on branch prediction, delayed
branching is used. Branches on ADRES normally have
two delay cycles. This means two instructions that are
after the branch in the program are always executed,
independent of whether the branch is taken or not.
For this paper we have also done experiments with
zero and one delay cycles (see Section 5.1). Note that
even with zero delay cycles, there are slots in the cycle
of the branch instruction itself that need to be filled.

2. Simplified instruction set: ADRES only supports
a simple RISC instruction set that is very similar to
the EPIC instruction set [13]. Conditional branch in-
structions such as bgt r1, r2, cb3 (branch to control
block 3 if register 1 is greater than register 2) are not
supported. Instead they have to be split in two in-
structions. The first instruction pred gt p1, r1, r2,
sets the boolean register (called a predicate) p1 to the
value of the condition. Next the predicate is used to
guard an unconditional branch <p1> jump cb3 (jump
to cb3 if p1 is true). This simplifies the branch hard-
ware, as no complex schemes are required to encode
both the branch target address and the operands in
a single instruction, and the comparison is performed
in a separate cycle, this allowing us to save one delay
cycle. Of course this only reduced the schedule length
if the comparison instruction can be scheduled more
than one cycle before the branch.

2.2 Superblocks
A superblock [5] is a program structure that is obtained

by combining several basic blocks using code duplication.
The combination is based on profiling information, and it en-
ables the optimizer and scheduler to extract more ILP along
the important execution paths by systematically removing

latency
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(1)
(1)

(3)
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op1: r1 = add r1, 3
op2: p1 = pred_ne r1, 0
op6: p2 = pred_eq r1, 0
op4: <p2> r3 = 0
op3: <p1> jump cb10
op5: st A[r1], 0

op5: st A[r1], 0

op2: p1 = pred_ne r1, 0
op1: r1 = add r1, 3

op4: r3 = 0
op3: <p1> jump cb10

0: op1: r1 = add r1, 3
1: op2: p1 = pred_ne r2, 0
2: op3: <p1> jump cb10
3: op6: p2 = pred_eq r2, 0
4: op4: <p2> r3 = 0
5: op5: st A[r1], 0

0: op1: r1 = add r1, 3
1: op2: p1 = pred_ne r2, 0
2: op3: <p1> jump cb10
3: <empty delay cycle>
4: <empty delay cycle>
5: op4: r3 = 0
6: op5: st A[r1], 0

d)

b)

cycle

c)

a)

Figure 2: A small example superblock. Original un-
scheduled code (a) with branch op3. Original sched-
uled code (b). Transformed unscheduled code (c).
Transformed scheduled code (d).

constraints due to the unimportant paths. The resulting
superblock has one entry point, but can have multiple exit
branches. For the code hoisting transformations proposed
in this paper, it is important to know that a superblock is
constructed such that the conditional branches inside the
block are most likely to fall through. Profiling information
is used to calculate branch fall-through probabilities.

2.3 Code Hoisting Algorithm
Figure 2a shows a small example superblock. It contains

one branch in the middle of the block (op3), and a fall-
through path at the end. Every branch of the superblock,
except the last one, has to be conditional. Otherwise the
code after the branch would be unreachable. The scheduled
block, shown in Figure 2b contains two delay cycles after
op3 that cannot be filled due to the dependencies between
op1 and op2 and between op2 and op3.

By computing the complementary predicate p2 of the branch
(op6 in Figure 2c) and using this as a guard for op4, op4
can be hoisted across the branch.

The complete code hoisting algorithm as applied to a
certain superblock is shown in Figure 3. On line 9 the
NumberOfDelaySlotsToFill is computed as follows. A VLIW
with N issue slots, and a branch delay of D has N ×D − 1
delay slots than can be filled: N − 1 slots in the cycle of the
branch and N slots in every delay cycle.

The conditions in the algorithm (if statement on line 10)
are:

• No more operations are hoisted than there are delay
slots to be filled. This is a simple rule-of-thumb that
works well in practice, as will be shown in the results
section.

• Only operations that have a delay that is smaller or
equal to the branch delay can be hoisted. This is be-
cause we do not allow operations to be in flight across
branches.

Section 5 presents the results from applying this algo-
rithm.
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for CurrentOp = First to last operations in SuperBlock

do
if CurrentOp defines a predicate then
CurrentPredDef = CurrentOp

P = Predicate computed by CurrentOp

NotP = Inverse of P
InversePredDef = Operation to compute NotP

else if CurrentOp is a conditional branch then
CurrentBranch = CurrentOp

Compute NumberOfDelaySlotsToFill

else if (CurrentBranch is defined) and
(NumberOfDelaySlotsToFill > 0) and
(Delay(CurrentOp) < Delay(CurrentBranch))

then
if InversePredDef not yet inserted then

Insert InversePredDef after CurrentPredDef

end if
Add NotP as a guard to CurrentOp

Move CurrentOp before CurrentBranch

Decrement NumberOfDelaySlotsToFill

end if
end for

Figure 3: Code hoisting across branches using pred-
ication.

3. BACKTRACKING ASAP OPERATION
SCHEDULER (ASAPBT)

This section looks at what is wrong with traditional list
schedulers first, and then proposes an improved scheduling
algorithm with respect to filling the delay slots of delayed
branches.

3.1 Traditional list schedulers
Traditional ready-list schedulers have problems with nega-

tive latencies that occur when using delayed branching. The
arrows in the example code in Figure 4a indicate dependency
edges between operations. Note that in this example not all
dependency edges are shown. Dependence constraints in
number of cycles are annotated next to the edges. These
numbers are calculated using the operation latencies, which
are the numbers in brackets next to the operations. For
example, the first add produces register r2 that is used by
sub. Since an add has a latency of one, the two operations
should be at least one cycle apart. A branch operation in
this example has a latency of three, meaning two delay cy-
cles. As a consequence the dependency between the jump
and preceding sub has a negative value. The sub should be
scheduled at last -2 cycles before the jump, i.e., at last, two
cycle after it.

A traditional list scheduler maintains a list of operation
that are ready to be scheduled. This list is a subset of the
operations yet to be scheduled. An operation can only be
scheduled if it is in the ready-list, i.e., if all its predecessors
have been scheduled. So in our example, the jump can only
be scheduled after all the other operations have already been
scheduled. For a single-issue processor, this will result in the
schedule as shown in Figure 4b. The schedule has a length
of 6 cycles because the two delay slots that follow the branch
before are empty.

<p1> jump cb4

pred_lt p1 = r2 < r3

add r2 = r 1, 4

sub r4 = r2, 10

0: pred_lt p1 = r2 < r3

1: add r2 = r 1, 4

2: sub r4 = r2, 10

3: <p1> jump cb4

4: empty delay slot

5: empty delay slot

0: pred_lt p1 = r2 < r3

1: <p1> jump cb4

2: add r2 = r1, 4

3: sub r4 = r2, 10

d)

b)

11

1−1=0

1−3=−2

(1, 0, 0)

(1, 0, 0)

(3, 1, 1)

a)

(1, 1, 1)

latency, asap,alap

unscheduled operations = {
add r2 = r1, 4 (asap:3) }

c)

0: pred_lt p1 = r2 < r3 (asap:1)

1: <p1> jump cb4 (asap:2)

2: sub r4 = r2, 10 (asap:4)

3:

Figure 4: Example of dealing with branch delay slots
in the instruction scheduler. Unscheduled code (a).
Code scheduled with a list scheduler without back-
tracking (b). Scheduling state of the proposed back-
tracking scheduler after unscheduling the add oper-
ation (c). Code scheduled with our proposed back-
tracking list scheduler (d).

3.2 Static and Dynamic ASAP
and ALAP Times

Before continuing, it is necessary to explain the concept
of As Soon As Possible (ASAP) and As Late As Possible
(ALAP) scheduling times. Two version are distinguished.
Static ASAP and ALAP times are computed without schedul-
ing info. Dynamic ASAP/ALAP times use scheduling info
for the already scheduled operations.

The static ASAP scheduling times are calculated using
dependence constraints of operations. If an operation has
no incoming dependencies its ASAP time is 0. For other
operation, the ASAP time is maximum over all incoming
dependencies of the ASAP time of the incoming operation,
plus the latency of the incoming edge. For ALAP times, first
the ASAP time of every operation needs to be known. If
an operation has no outgoing dependencies its ALAP time
is the maximum ASAP time of all operations. For other
operation, the ALAP time is minimum over all outgoing de-
pendencies of the ALAP time of the destination of the edge,
minus the latency of the edge. Once the static ASAP and
ALAP times are known, each operation’s slack can be com-
puted. Slack(op) is computed as static ALAP(op) - static
ASAP(op)

The difference between static and dynamic ASAP/ALAP
times is that scheduling information is used to calculate dy-
namic ASAP/ALAP times. If an operation is scheduled its
ASAP is equal to its ALAP time, is equal to the schedul-
ing time of the operation. If no scheduling info is available,
ASAP/ALAP times are computed as above. This means
the dynamic ASAP/ALAP times need to be updated during
scheduling. Each time an operation is scheduled or unsched-
uled, the depending and dependent operation’s ASAP and
ALAP times change.
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ASAP and ALAP times are for the example are annotated
to Figure 4a.

3.3 Backtracking schedulers with
standard priority function

Existing backtracking schedulers recognize the above sit-
uation where the jump cannot be placed because the add
is blocking the slot. They will backtrack in the sense that
they will unschedule the add to place the jump in cycle 2.
Figure 4c shows the scheduling state after unscheduling the
add.

After unscheduling the add, the sub operation, that is still
scheduled in cycle 3, will also need to be unscheduled. The
reason for this is can be derived from the dynamic ASAP
and ALAP times: the sub can be placed the earliest one
cycle after the add, which on its term can be scheduled the
earliest one cycle after the jump. Since the jump has just
been scheduled in cycle 2, the earliest schedule time of sub is
cycle 4. This conflict with the fact that the sub is scheduled
in cycle 3. The final schedule after the add and sub have
been rescheduled is shown in Figure 4d. It is two cycles
shorter than the schedule obtained not using backtracking.

From the above, we see two reasons to unschedule opera-
tions:

1. if a operation with a higher priority needs to be sched-
uled there. The priority function can be chosen freely.
For example, later in this paper the amount of slack
will be used as priority.

2. if the operation is scheduled outside its ASAP-ALAP
range.

In [1] two backtracking schedulers are presented. One,
ListBT, uses the ready-list of the traditional list scheduler.
It schedules operations in dependence order and only allows
operations to be unscheduled if they have an negative la-
tency dependency with a branch. This precondition limits
the number of scheduling steps, which speeds up schedul-
ing time, but might not produce the optimal schedule. The
other scheduler, OperBt, allows operations to be scheduled
before all predecessors are scheduled. This will increase the
chance of finding a better schedule, but will also increase
the number of scheduling steps.

In the next section, an algorithm will be presented that
tries to combine the best of these two algorithms.

3.4 Backtracking scheduler with
ASAP priority

By carefully selecting the order in which operations are
scheduled, we can limit the number of scheduling steps, even
if we allow operations to be scheduled before all their pre-
decessors have been scheduled, and even if we do not limit
the type of operations that can be unscheduled.

The solution is to select the operation that currently has
the lowest ASAP time (urgency), or if two operation have
the same lowest ASAP time, the operation with the least
slack. This is the backtracking scheduler proposed in this
paper, which we call AsapBt.

The main scheduling loop is shown in Figure 5. All the op-
erations that need to be scheduled are in UnscheduledOps.
First static and dynamic ASAP and ALAP times for all
of these operations are calculated. Since no operations are
scheduled yet, the static and dynamic values are identical.

Later the dynamic times will be updated as operations be-
come scheduled. Static times will be used to calculate op-
eration slack. To guarantee that the algorithm finishes in
a finite amount of steps, the number of times an opera-
tion can be unscheduled is limited (MaximumUnplaceCount).
UnscheduleCount keeps track on how many times an oper-
ation has already been unscheduled.

The scheduling loop selects the most urgent operation,
i.e., the operation with the earliest dynamic ASAP time.
This operation (CurrentOp) can be scheduled in a valid way
in its dynamic ASAP-ALAP range. If we cannot find a
schedule in this range, meaning that Cycle > ALAP, all de-
pending operations need to be unscheduled. This type of un-
scheduling is not taken into account in the UnscheduleCount.

For the current Cycle and for each Slot in the VLIW, the
algorithm checks if there are some BlockingOps that prevent
scheduling in this Cycle and Slot. If those BlockingOps

all have more slack than the CurrentOp and if none of the
BlockingOps are already unscheduled more times than Ma-

ximumUnplaceCount, the BlockingOps are unscheduled and
their UnschedulCounts are updated. Also the dynamic ASAP
and ALAP times are recalculated. Unscheduled operations
go back to the UnscheduledOps list, scheduled operations
are removed. The algorithm finishes when the list is empty.

4. RELATED WORK
Basic list scheduling only schedules the operations within

a basic block. First, it constructs a data-ready-set, a set
of operations whose predecessors have all be scheduled. It
selects an operation from the set based on a certain priority
function. When an operations is scheduled, other operations
might become ready and are put in the data-ready-set. The
priority function has been the topic of much research, as it
is highly related with the resulting schedule quality. See [2]
for an overview of priority functions. As already indicated
above, scheduling using the data-ready-set does not work
well for an architecture with delayed branching.

Normally operations are scheduled top-down (first the in-
structions at the beginning of the basic block). In [10]
a bottom-up approach is presented where operations are
scheduled from the end of the basic block to the beginning.
In the bottom-up approach operations whose successors (as
opposed to predecessors) have all been scheduled become
ready. The authors of that paper claim their approach works
well with delayed branching. However, we were unable to
produce good results using bottom-up scheduling.

In [1] the backtracking scheduler is introduced that is used
as a reference case in this paper. Our approach is better
because it does not limit the type of operations that can be
unscheduled.

The scope of global schedulers is not limited to basic blocks.
To increase scheduling freedom, and like this also ILP, these
schedulers schedule superblocks [5], hyperblocks [11] or code
traces [3]. We have chosen to use the superblock as a schedul-
ing scope, since it fits well with the propose code hoisting
technique, but there is no reason why the proposed schedul-
ing technique could not be applied to hyperblocks or traces.

Code motion techniques have been extensively studied in
the past [8], but not in the context of delayed branching.
The authors of [4] propose code hoisting techniques that
are very similar to our techniques, but without the benefit
of using predication. Hyperblock creation [11] is another
technique that uses predication to avoid branch hazards. It
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Populate UnscheduledOps list
Initialize ASAP and ALAP times of all operations
Initialize UnscheduleCounts for all operations
while UnscheduledOps not empty do
CurrentOp = Operation in UnscheduledOps with lowest ASAP
for all Cycle = ASAP(CurrentOp) to +∞ do

/* If outside ASAP-ALAP range, the schedule of the depending operations becomes invalid. */
if Cycle > ALAP(CurrentOp) then

/* Forcibly unschedule all depending ops */
Recursively unschedule all operations depending on CurrentOp

Update ASAP and ALAP times because some operations were unscheduled.
end if
for all Slot = FirstSlot to LastSlot do
BlockingOps = Operations that need to be unscheduled to be able to schedule CurrentOp

if BlockingOps is empty OR
(slack of all BlockingOps > slack of CurrentOp AND
UnscheduleCount of all BlockingOps < MaximumUnplaceCount) then

Unschedule BlockingOps /* If empty, there is nothing to do here */
Increment UnscheduleCount of all BlockingOps /* If empty, there is nothing to do here */
Schedule CurrentOp in current Cycle and Slot

Update ASAP and ALAP times because some operations were (un)scheduled.
Remove CurrentOp from UnscheduledOps

Goto next operation (next iteration of while loop)
end if

end for
end for

end while

Figure 5: Backtracking list scheduler using ASAP/ALAP times as priority (AsapBt).

is complementary to this work because it predicates and
hoists complete basic blocks, while we only predicate and
hoist single operations.

The front-end compiler used (IMPACT) already contains
hyperblock creation [11] and traditional code hoisting. Since
these optimizations are always used, this means the results
presented here are improvements on top of those.

5. RESULTS AND DISCUSSION
This section evaluates the proposed techniques. It studies

the performance improvements for several multimedia and
general purpose benchmarks using the two techniques (code
hoisting and backtracking). It compares the AsapBt sched-
uler with the OperBt and ListBt scheduler on which AsapBt
is based. Also, it looks at the compilation overhead due to
the backtracking.

5.1 Experimental Setup
The target processor, called ADRES [12], is a tightly inte-

grated combination of a 2D coarse-grain array used only for
the innermost loops and a VLIW processor for the sequen-
tial code. It is a processor template, meaning it supports a
wide variety of similar processors. Thus, the designer can
freely choose the number of functional units (FUs) and reg-
isters and the interconnection network between the FUs in
the coarse-grain array. Furthermore, he can configure the
operations supported on the different FUs, and their laten-
cies. Figure 6 shows an example instantiation of the tem-
plate where the VLIW has 4 FUs and the 2D array 16 FUs.
The two parts of the processor communicate through the
shared VLIW register file. In the 2D array part most of the
FUs do not have access to the global register file. To save

Shared Register File

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU FUFUFU

VLIW Part

2D−array Part

Figure 6: ADRES architecture template

233



on power, they communicate using a local interconnection
network. Conceptually, the array can be seen as a very wide
VLIW machine with special loop control, that operates in
as a tightly coupled co-processor/accelerator for the main
CPU, which is the VLIW processor.

The ADRES instance used for our experiments has a three-
issue VLIW with one branch unit and two load-store units.
The branch and load-store units also support arithmetic op-
erations and multiplications. Loads have a three-cycle delay
and multiplications two cycles. All other operations are sin-
gle cycle. We have done experiments with three different
latencies for branches: one cycle, two cycles and three cy-
cles. A three issue VLIW provides a good trade-off between
energy and performance: since most of the ILP is inside the
innermost loops that are mapped to the 2D array, not much
parallelism is needed in the VLIW. More slots would not in-
crease performance significantly, but would increase power
consumption.

In our compiler tool chain, IMPACT [6] is used as the
front-end and ILP-optimizing compiler. This compiler in-
cludes the traditional code-hoisting optimizations described
in Section 4. Three-operand unscheduled assembly is passed
to the ADRES-specific back-end. The back-end schedules
the innermost loops on the 2D array and does acyclic schedul-
ing and register allocation for the VLIW. We have extended
the existing VLIW scheduler to support the code hoisting
and backtracking-based scheduling mechanisms. The loop
scheduler uses a software pipelining modulo scheduling al-
gorithm, but since this paper focuses on acyclic scheduling,
the cycles spent in innermost loops are ignored in the results.

One might ask if it is fair to ignore the cycles spent in in-
nermost loops, since especially in multimedia applications,
90% upto 99% of the instructions are executed in inner-
most loops [15]. However, we’ve done experiments where we
mapped an H.264 AVC video decoder application [16] on an
ADRES processor with 16 FUs. Even though 75% of the
instructions executed are in inner loops, this accounts only
for 36% of the total execution time, meaning that 64% of
the time is spent in sequential code. The reason behind this
is that instruction level parallelism is much high in inner
loops (9.0 instructions per cycle (IPC)) than in non-inner
loop code (1.88 IPC).

Since the ADRES processor is mainly targeting multime-
dia applications, we have chosen the MediaBench suite [9]
for evaluation. Next to that, we have also evaluated a set of
7 SPECINT2000 benchmarks [14] that are certified to work
with the IMPACT compiler. (Tables 1 and 2)

5.2 Dynamic Cycles
Figure 7 shows performance improvements due to code-

hoisting and AsapBt backtracking. Branches for these re-
sults have two delay cycles. The base case (100%) uses
a scheduler without backtracking and does not do code-
hoisting. On average across all applications (global aver-
age in the figure), code-hoisting using a scheduler with-
out backtracking results in an improvement of 18%. En-
abling both code-hoisting and backtracking gives the best
results: 24% of gain compared to the base case. The gain
is consistent across all applications. Multimedia applica-
tions seem to have more opportunities for code-hoisting than
SPECINT2000 applications (21% improvement for Media-
Bench compared to 16% for SPECINT2000).

Using a backtracking scheduler without code-hoisting to

Table 1: List of benchmarks from the MediaBench
suite

Benchmark Description
AES Encryption
Blowfish encode Encryption
JPEG decode Image
JPEG encode Image
EPIC Image
g721 decode Audio
g721 encode Audio
ghostscript Image
gsm decode Audio
gsm encode Audio
mesa 3D graphics
MPEG2 decode Video
MPEG2 encode Video
Rasta Speech Recogn.
SHA Encryption
avg mediabench Average of MediaBench

Table 2: List of SPECINT2000 benchmarks
Benchmark Description
164.gzip Compression
175.vpr Versatile Place and Route
181.mcf Combinatorial Optimization
197.parser Word Processing
255.vortex Object-oriented Database
256.bzip2 Compression
300.twolf Place and Route Simulator
avg spec Average of the SPEC Applications

fill the delay slots does not seem to be a good idea: improve-
ment are marginal in most cases (2% on average) and in
some cases the backtracking scheduler performs worse than
the one without (e.g. epic, blowfish, adpcmdec).

The above results were for branches with two delay cycles.
We have also done experiments with different numbers of
delay cycles. Table 3 compares the averages for the different
techniques on architectures that have a branch with two, one
and no delay cycles.

Table 3: Comparison of performance improvements
due to predicate-based code-hoisting (PBCH) and
backtracking scheduling (BT) for branches with two,
one and no delay cycles.

no PBCH PBCH no PBCH PBCH
no BT no BT BT BT
2 delay cycles

avg mediabench 100% 84% 98% 77%
avg spec 100% 79% 98% 73%

global average 100% 82% 98% 76%
1 delay cycles

avg mediabench 100% 83% 99% 80%
avg spec 100% 81% 98% 77%

global average 100% 82% 99% 79%
0 delay cycles

avg mediabench 100% 87% 99% 86%
avg spec 100% 87% 98% 84%

global average 100% 87% 99% 85%
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Figure 7: Performance improvements due to predicate-based code-hoisting (PBCH) and backtracking schedul-
ing (BT). Dynamic cycles are relative to the base case: no PBCH and no BT. Branches have two delay cycles.

The results for the one cycle delay slot due to code-hoisting
are surprisingly good. Although the one cycle delay instance
has less delay slots where the hoisted operations can be
placed, the code-hoisting algorithm still gave the same im-
provements on this instance as it did on the instance with
two delay cycles: 18% less cycles using scheduler without
backtracking. This is because the hoisted operations do not
necessary need to be placed in the delay cycles, they can
also be placed in the cycle of the branch or even before it. If
the branch has no delay cycles, the algorithm still achieved
a 13% improvement only due to code-hoisting.

Clearly, the backtracking scheduler is not needed when
there are no delay slots to be filled: the improvement of the
backtracking scheduler is only 2%. Compare the average
of “code hoisting/no backtracking” (87%) to “code hoist-
ing/backtracking” (85%).

When comparing the AsapBt backtracking method pro-
posed in this paper with the ListBt and OperBt schedulers
(Figure 8), we see that AsapBt is either as good as the
OperBt scheduler or a little bit better (1% on average for all
applications). However, we will see in the next section that
the overhead due to backtracking in AsapBt is significantly
less than in OperBt.

5.3 Backtracking Overhead
Backtracking scheduling is slower because operations can

be replaced multiple times. Figure 9 shows the overhead
in number of extra scheduling steps per operation for the
method proposed in this paper (AsapBt) and for the OperBt
and ListBt scheduler described in [1].

For our method and an architecture with two branch de-
lay cycles, each operation was placed 1.23 times on aver-
age, meaning only 23% of the operations were unplaced.
For larger applications, the overhead was even smaller (e.g.
10% on 197.parser). For some kernels that were difficult to
schedule because of a high inherent parallelism, the overhead
raised to 50% (e.g. sha and aes).

For less delay cycles, the overhead reduces to 20% and
18% for one or no delay cycles respectively.

For the same VLIW configuration, our method has an
overhead that holds the middle between the OperBt sched-
uler (which schedules each operation 1.36 times on average)

and the ListBt scheduler (which schedules each operation
1.20 times on average), but slightly outperforms both of
them in performance of the resulting schedule (as already
discussed in the previous section).

6. CONCLUSIONS
Traditional list schedulers are not good at filling delay

cycles that occur when delayed branching is used. In this
paper we have proposed a combination of a code-hoisting
transformation and a novel backtracking instruction sched-
uler that improve the schedules of a set of relevant bench-
marks with 24% on architectures that apply delayed branch-
ing (branches have two delay cycles).

The main contribution of this paper is not either of the
two optimizations, but their symbiosis. Results show that
the gain of combining the two is larger that each individual
gain. Predicate-based code-hoisting is needed as an enabling
transformation for the backtracking instruction scheduler.

The extra compilation time due to backtracking stays lim-
ited: 23% extra scheduling steps.

Acknowledgments
This research has been carried out in the context of IMEC’s
multimode multimedia program which is partly sponsored
by Samsung and Freescale.

7. REFERENCES
[1] S. G. Abraham, W. Meleis, and I. D. Baev. Efficient

backtracking instruction schedulers. In IEEE PACT,
pages 301–308, 2000.

[2] B. De Sutter. General-purpose architecture instruction
scheduling techniques. Technical report, ELIS,
Universiteit Gent, Belgium, November 1998.

[3] J. A. Fisher. Trace scheduling: A technique for global
microcode compaction. IEEE Trans. Computers,
30(7):478–490, 1981.

[4] T. R. Gross and J. L. Hennessy. Optimizing delayed
branches. In MICRO 15: Proceedings of the 15th
annual workshop on Microprogramming, pages
114–120, Piscataway, NJ, USA, 1982. IEEE Press.

235



50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

ad
pc

m
_d

ec

ad
pc

m
_e

nc ae
s

bl
ow

fis
he

nc
cj
pe

g

dj
pe

g
ep

ic

g7
21

_d
ec

g7
21

_e
nc

gh
os

ts
cr

ip
t

gs
m

de
c

gs
m

en
c

m
es

a_
os

de
m

o

m
pe

g2
de

c

m
pe

g2
en

c
ra

st
a

sh
a

av
g

m
ed

ia
be

nc
h

16
4.

gz
ip

17
5.

vp
r

18
1.

m
cf

19
7.

pa
rs

er

25
5.

vo
rte

x

25
6.

bz
ip
2

30
0.

tw
ol

f

av
g

sp
ec

gl
ob

al
av

er
ag

e

R
e

la
ti
v
e

c
y
c
le

s

OperBt ListBt AsapBt

Figure 8: Comparison of performance improvements for the different backtracking strategies: for the schedul-
ing method proposed in this paper (AsapBt) and for the OperBt and ListBt scheduler described in [1].
Dynamic cycles are relative to the base case: no PBCH and no BT. Branches have two delay cycles.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ad
pc

m
_d

ec

ad
pc

m
_e

nc ae
s

bl
ow

fis
he

nc
cj
pe

g

dj
pe

g
ep

ic

g7
21

_d
ec

g7
21

_e
nc

gh
os

ts
cr

ip
t

gs
m

de
c

gs
m

en
c

m
es

a_
os

de
m

o

m
pe

g2
de

c

m
pe

g2
en

c
ra

st
a

sh
a

av
g

m
ed

ia
be

nc
h

16
4.

gz
ip

17
5.

vp
r

18
1.

m
cf

19
7.

pa
rs

er

25
5.

vo
rte

x

25
6.

bz
ip
2

30
0.

tw
ol

f

av
g

sp
ec

gl
ob

al
av

er
ag

e

%
E

x
tr

a
s
c
h

e
d

u
li
n

g
s
te

p
s

d
u

e
to

b
a

c
k
tr

a
c
k
in

g

OperBt ListBt AsapBt

Figure 9: Scheduling overhead due to backtracking. Number of extra scheduling step for an architecture with
2 delay cycles for the scheduling method proposed in this paper (AsapBt) and for the OperBt and ListBt
scheduler described in [1].

236



[5] W.-M. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P.
Chang, N. J. Warter, R. A. Bringmann, R. G.
Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G.
Holm, and D. M. Lavery. The superblock: an effective
technique for vliw and superscalar compilation. J.
Supercomput., 7(1-2):229–248, 1993.

[6] The IMPACT Research Group,
http://www.crhc.uiuc.edu/Impact/. The IMPACT
Research Compiler, 1987.

[7] M. F. Jacome and G. de Veciana. Design challenges
for new application-specific processors. Special issue
on Design of Embedded Systems in IEEE Design &
Test of Computers, April-June 2000.
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