
Eliminating Inter-Process Cache Interference through
Cache Reconfigurability for Real-Time and Low-Power

Embedded Multi-Tasking Systems

Rakesh Reddy
University of Maryland

College Park, USA
rnreddy@umd.edu

Peter Petrov
University of Maryland

College Park, USA
ppetrov@ece.umd.edu

ABSTRACT
We propose a technique which leverages configurable data caches
to address the problem of cache interference in multitasking em-
bedded systems. Data caches are often necessary to provide the
required memory bandwidth. However, caches introduce two im-
portant problems for embedded systems. Cache outcomes in multi-
tasking environments are notoriously difficult to predict, if not im-
possible, thus resulting in poor real-time guarantees. Additionally,
caches contribute to a significant amount of power. These issues
are key factors for many embedded systems. We study the effect of
multiple tasks on the data cache, and propose a technique which
leverages configurable cache architectures to eliminate inter-task
cache interference. By mapping tasks to different cache partitions,
interference is completely eliminated with only a minimal impact
on performance. Furthermore, dynamic and leakage power are
significantly reduced as only a subset of the cache is active at any
moment. We introduce a profile-based, static analysis algorithm,
which identifies a beneficial cache partitioning. The OS configures
the data cache during context-switch by activating the correspond-
ing partition. Our experiments on a large set of multitasking bench-
marks demonstrate that our technique not only efficiently elimi-
nates inter-task interference but also significantly reduces both dy-
namic and leakage power.

Categories and Subject Descriptors: B.3 [Hardware]: Memory
structures; C.3 [Computer Systems Organization]: Special-Purpose
and Application-Based Systems

General Terms: Algorithms, Design, Experimentation

1. INTRODUCTION
Modern embedded systems have become increasingly complex

as they find their way into increasingly demanding applications.
Embedded applications, such as cell phones and various hand-held
devices impose strong requirements for performance as they need
to handle various data processing functions such as speech, audio,
and video. To meet these demands, modern embedded processors
have evolved, and in the process borrowed many concepts from
high-performance general-purpose microprocessors. The memory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’07, September 30–October 3, 2007, Salzburg, Austria.
Copyright 2007 ACM 978-1-59593-826-8/07/0009 ...$5.00.

hierarchy is one of these concepts, addressing the problem of the
growing discrepancy between memory and processor speeds. This
speed up comes at the cost of increased power, in some cases as
much as 50% of the total chip power [15].

Moreover, market demands require combined functionality of
many application domains including multimedia processing (speech,
image, and video), wireless capabilities, security features and user
interfaces. The nature of many of these applications also requires
that they are processed in real-time as a part of their specification.
For example on-line speech processing algorithms must meet dead-
lines. A dedicated processor such as a DSP could be used for each
task. However, such a solution is often impractical as it results in
increased power consumption, layout size and cost. Instead it is
advantageous to execute multiple tasks on a single processor as it
results in superior hardware utilization. Recent embedded proces-
sors have offered hardware support for multitasking, such as Mem-
ory Management Units (MMU). Embedded OSes have also become
readily available to utilize this hardware and support multitasking.
The need for real-time performance has also led to the wide avail-
ability of real-time operating systems to ensure execution schedules
where deadlines are met. A multitasking system must address sev-
eral issues that are not relevant for a single task system. One such
issue is that during task preemption, the preempted task must pre-
serve its state so it may properly resume execution regardless of the
activities of the preempting task. This involves saving information
such as the PC, stack pointer and register file. Saving and reloading
the state of the cache to memory for every task, however, is infea-
sible due to the large cache size. As an alternative, the cache is
shared between the tasks without preserving its state.

Several solutions exist for allowing the tasks to share the data
cache while maintaining correctness. Sharing the cache, however,
leads to inter-task cache interference which is detrimental not only
to performance, but even more importantly to real-time responsive-
ness. Cache interference occurs when a task block in the cache is
overwritten by another task. General purpose processors can ad-
dress this problem with increased cache sizes to reduce the likeli-
hood of data in the cache being evicted. On the other hand, em-
bedded systems are resource constrained thereby precluding an in-
crease in the cache size. Cache interference can be very problem-
atic for several reasons. Interference complicates Worst-Case Ex-
ecution Time (WCET) analysis. The purpose of the WCET is to
identify an upper bound on the tasks execution time. Unlike general
purpose systems, many real-time applications must meet deadlines
based on WCET in order to operate properly. This analysis is com-
plex, but well researched in the case of a single task [10, 12, 14].
However, in the case of multiple tasks sharing the cache, predicting
hit/miss behavior is extremely complex, if not impossible, and usu-
ally results in a overly pessimistic analysis and under utilization of

198

the processor. Additionally, interference increases the miss-rate of
a task running alone versus running within a group of other tasks.
With more tasks there is an increased likelihood that a task’s data
is overwritten and more misses occur.

While embedded systems have become more complex, the set
of applications that they run is well defined during development
compared to their general purpose counter part. To address the
inter-task cache interference problem, we have performed a de-
tailed analysis on the effect of cache interference in a multitasking
system. Furthermore, we introduce a methodology which leverages
configurable caches where the data cache is judiciously partitioned
so that each task has its own partition of the cache which is unaf-
fected by other tasks. We determine this partitioning by analyzing
the cache behavior for a given set of applications. Identifying the
best partitioning of the cache amongst the tasks is performed during
compile-time and the information regarding the cache partitions,
consisting of control signals to the configurable cache, is trans-
ferred to the OS when loading the tasks. During context-switch
the OS configures the cache by activating the cache partition of
the preempting task. The proposed technique has two key bene-
fits. First, techniques used for WCET analysis for a single task
with a cache can be utilized since inter-task interference is elimi-
nated. This allows for much better WCET analysis, and therefore
better processor utilization. Second, by using reconfigurable cache
architectures, significant reductions in dynamic and leakage power
is achieved as only a portion of the cache is active at any time. All
these benefits are achieved with minimal impact on the total miss
rate as compared to the baseline where all the tasks share the cache.
For some groups of tasks the total miss rate is minimally increased,
while for others it is decreased due to the interference elimination.

2. RELATED WORK
The effect of cache interference due to multitasking is a well

known problem. In [1] cache interference was studied based on its
affect on performance over an extended period of time for various
cache configurations. Much of the focus of this paper was the inter-
ference between user and kernel space and evaluating the effect of
cache flushing on context switch or using PIDs. In [16] the authors
have focused on the effect interference has on context switches in a
multi-tasking system by tracking the CPI. Both approaches take an
aggregate count of interference based on performance as a whole
and do not account for interference explicitly. Interference in multi-
threaded and multichip systems has become a very important topic
and various solutions have been proposed [6, 25]. In regards to em-
bedded systems, the effect of interference posed on kernel services
and the impact on responsiveness in real-time embedded systems
was recently analyzed [20]. However, no analysis was present on
how multiple tasks would interfere with each other.

The unpredictability of caches in WCET analysis with multiple
tasks is an important problem. WCET is a critical component in
embedded systems as there are often real-time constraints that must
be met. Unlike general purpose systems, operating in a timely
manner is a necessity rather than a convenience. Having a more
accurate knowledge of the WCET allows for better utilization of
the processor. Interference in the cache between tasks leads to the
pessimistic assumption that a task’s data is invalid after a context
switch. Several approaches propose solutions that place restrictions
on preemption [3, 4] which may be undesirable for many applica-
tions. One method to achieve more accurate WCET analysis is to
partition the cache so tasks are restricted to a subset of the cache.
This eliminates the conflicts between tasks thereby ensuring better
predictability. There have been hardware and software approaches
to this method. Software based approaches employ the compiler

Figure 1: Observable cache interference. a) Single task b) A
task preempted then resumed

to map tasks to only certain parts of the cache [26, 17]. These ap-
proaches fail to realize any savings in power and neither study looks
at the impact on performance. In [24] the data cache is equally
partitioned and each set of tasks with the same priority level are
mapped to a shared equally-sized portion of the cache. Tasks of
the same priority share cache, hence only interference from higher
priority tasks is considered; furthermore, no detailed cache inter-
ference evaluation is presented. In [21] a priority based scheme for
a unified cache is proposed which focuses on worst case response
time for higher level tasks. Cache lines deemed important for a task
are locked in the cache. While these studies improve WCET, they
do not use information on tasks cache behavior which can signifi-
cantly increase the miss-rate.

The goal of configurable caches has been to reduce the power
consumption of the cache by configuring it based on the behav-
ior of a task. Certain tasks can perform just as well with only
a subset of the cache resulting in an unnecessary consumption of
power from the underutilized portion. Depending on the technique
used, power savings can be achieved on dynamic or leakage power.
To address this problem, several contributions have been recently
made in the area of reconfigurable cache architectures [2, 7, 27, 29].
Disabling associativity ways has been shown to be very efficient in
significantly reducing dynamic power [2]. In [29] a scheme is pro-
posed that uses disabled ways combined with concatenating ways
and varying block sizes. In [27] the cache is configured by vary-
ing the sets that can be accessed to reduce leakage in the unused
portion. While several architectures are proposed, there has been
few research projects on how to configure the cache. One approach
is to use hardware to dynamically tune the cache for application
based on its miss rate [28, 19] but this decreases predictability. A
way partitioning scheme is proposed in [22] based on task priority
but does not study the implementation. In [11] a software based
technique is used to optimize loop nests within the application.
The methods to leverage reconfigurable caches so far are limited
to looking at a single task running alone. The approach we pro-
pose aims at configuring the cache amidst multiple tasks running at
the same time with the objective of eliminating interference and as
such make multitasking with cache sharing a feasible approach for
real-time and energy-efficient embedded applications.

3. INTER-TASK CACHE INTERFERENCE

3.1 Observable Cache Interference
Inter-process cache interference occurs when a cache line be-

longing to one task is replaced by another task, which prevents the
first task from finding its data in the cache. We define cache inter-
ference to be only those misses that occur as a result of another task
evicting a block which would not have occurred if the task was run-
ning alone and as such would have found the data in the cache. A

199

Figure 2: Interference miss classification infrastructure

task causes an interference miss only if it evicts a block that will be
used by another task once it resumes as opposed to the task resum-
ing and missing for other reasons. Figure 1a shows the memory ac-
cesses of a single task and Figure 1b shows a task being preempted.
In the single task scenario, Task 1 reads A resulting in a cold miss,
followed by hits on the following reads of A. In Figure 1b, Task 1 is
preempted by Task 2. Task 2 reads B causing A to be evicted and D
causing C to be evicted. When Task 1 resumes execution and reads
A, it results in a miss because of Task 2’s execution. Since this
would not have occurred had Task 1 not been preempted, we clas-
sify this as an observable interference miss. Note that a preempting
task evicting the preempted tasks block is not sufficient for for a
interference miss. The preempted task must use the line that was
evicted to be considered an interference miss. In this case, Task 2
evicting C does not constitute an interference since Task 1 does not
use this block again.

3.2 Evaluating Cache Interference
The difficulty in studying true interference in the cache can be

attributed to the difficulty in knowing the life time of a cache line.
That is to say, it is difficult to dynamically determine liveliness,
or how long a cache line will remain in the cache and whether it
will be used by the task later. The dynamic nature of data in the
data cache with multiple tasks makes this impossible to study from
an analytical perspective. Normal cache simulations can not de-
termine if an access is an interference miss because this conclusion
relies on future information of whether the block will be used again
and not evicted by the owner task.

In our evaluation of interference misses we have developed a
simulation-based approach, which precisely identifies whether a
cache miss is due to an interference or not. Our approach in de-
termining this is to assign each task its own local cache which only
it has access to, and a global cache, as shown in Figure 2. The
global cache acts as a cache normally would with all tasks access-
ing it and potentially interfering with each other. Each task also has
its own local cache that only it accesses. The local cache in essence
stores the cache line’s liveliness state because the only way it can
be evicted from the local cache is if the task evicts it itself. For
every access, a task accesses the global cache and its local cache
with each returning a hit or a miss. Based on the results from these
caches, the access can be categorized as:

Global Hit, Local Hit. An access that hits in both the global and
local cache. This corresponds to a normal cache hit.

Global Miss, Local Miss. An access that misses in both the
global and local caches. This signifies an access that is a miss re-
gardless of whether or not there were other tasks and hence does
not contribute to interference and is treated as a normal miss.

Global Miss, Local Hit. An access in which the local cache
access hits while the global cache access misses. Since the block
is still in the local cache and is being read it is still alive but was
prematurely evicted in the global cache due to interference. We
will refer to this miss type as an interference miss for the rest of
this paper.

Global Hit, Local Miss. A global cache hit and a local cache
miss situation is impossible if there is no data sharing because a
task’s data in the global cache is always a subset of that in the local
cache. If tasks are sharing data, this situation corresponds to one of
the tasks “prefetching” the data for the other.

Using the SimpleScalar [5] simulation infrastructure we have
generated memory traces for applications from the MediaBench
[13] and the MiBench [9] benchmarks suits. The traces contain
not only the memory references, but also information about the ex-
ecution progress in terms of total instructions executed. The second
piece of information is needed in order to model task preemption.
The traces are subsequently used to simulate individual tasks and
multi-tasked benchmarks with cache sizes of 16KB and 32KB sizes
and associativities of 4 and 8 ways which reflects current embedded
processors such as the Intel XScale and the ARM9. The block size
is fixed at 32 bytes. For multi-tasking scheduling, a simple round
robin approach with fixed execution slices of 33,000 instructions
and 100,000 instructions are studied to look at how the frequency
of context switches affected interference. These values correspond
to 1ms for 33MHz and 100MHz with a CPI of 1. All the tasks
were executed until completion and their memory and execution
progress traces captured. By grouping together tasks we have con-
structed various multitasking benchmarks, comprising of 2, 3, and
4 parallel tasks. In this study we evaluate the cache interference be-
tween the application tasks and do not include any kernel code. The
context-switch kernel code has a very small data footprint and, if
need be, can be assigned to its own very small partition of the cache
(or bypass the data cache altogether). Complex kernel operations
are not common for embedded applications and, if required, the
kernel can be treated as yet another task in the group, which uses the
data cache and possibly introduces interference. The kernel cache
behavior is very specific to the OS and its particular implementa-
tion; it could differ significantly even across different versions of
the same OS. In this paper we focus on the task interference. Ta-
ble 1 shows the combinations of tasks used for each multitasking
benchmark and Table 2 shows the overall miss rates.

Figures 3 and 4 report the misses for each benchmark with the
above mentioned configurations and the interference encountered
by each task. The crossed out parts of the bars correspond to
interference misses. There are several distinct behaviors among
the applications. ADPCM, GSM and G721 suffer from significant
amounts of interference but have relatively low miss rates. These
applications exhibit strong temporal and spatial locality and as a
result there is an increased propensity that data evicted due to pre-
emption will be used again. As a result these applications suffer a
great deal from interference. On the other hand, JPEG, EPIC and
LAME, have relatively high miss rates to begin with so the affect
of interference is relatively small. This high miss rate also miti-
gates the impact of interference on other task as shown in B1, B4
and B9 of figure 3. These applications have higher miss rates since
they do not exhibit much locality. As a result, the liveliness of
these blocks is low and evicting these tasks blocks is not as likely
to cause interference. However, large amounts of data are brought
in, thus increasing the interference seen by other tasks. These ap-
plications are also cache starved which will be shown later in this
paper. Another behavior is exhibited by the streaming applications.
A streaming application is one that shows limited temporal local-

200

Bench 1 Bench 2 Bench 3 Bench 4 Bench 5
Task 1 LAME Encode Matrix Mult MPEG2 Decode ADPCM Decode ADPCM Encode
Task 2 ADPCM Decode JPEG Decode GSM Encode JPEG Encode GSM Decode
Task 3 - - - EPIC Encode G721 Decode
Task 4 - - - - -

Bench 6 Bench 7. Bench 8. Bench 9. Bench 10
Task 1 MPEG2 Encode ADPCM Decode MPEG2 Decode EPIC Encode MPEG2 Decode
Task 2 GSM Encode GSM Decode G721 Encode JPEG Encode EPIC Encode
Task 3 G721 Encode Matrix Mult GSM Encode G721 Decode GSM Decode
Task 4 - JPEG Decode GSM Decode ADPCM Encode ADPCM Decode

Table 1: Multi-task benchmark sets

Cache Time Slice B1 B2. B3. B4. B5 B6 B7. B8. B9 B10
16KB 4-Ways 33,000 1.87 2.60 0.110 1.469 0.039 0.120 2.402 0.161 1.098 0.986

100,000 1.73 2.35 0.110 1.441 0.038 0.119 1.889 0.162 1.044 0.949
16KB 8-Ways 33,000 1.86 2.57 0.074 1.404 0.024 0.094 2.453 0.090 1.055 0.970

100,000 1.73 2.31 0.074 1.459 0.024 0.095 1.860 0.095 1.061 0.991
32KB 4-Ways 33,000 1.31 2.12 0.073 1.119 0.017 0.099 1.859 0.095 0.791 0.505

100,000 1.29 2.28 0.073 1.130 0.017 0.097 1.832 0.093 0.799 0.518
32KB 8-Ways 33,000 1.23 2.02 0.054 1.100 0.015 0.084 1.658 0.048 0.762 0.587

100,000 1.24 2.27 0.054 1.111 0.016 0.084 1.825 0.049 0.733 0.605

Table 2: Overall miss rate (percentages)

ity with very good spatial locality. These applications incur a large
miss rate but are not impacted by other applications. Streaming ap-
plications differ from the likes of JPEG and EPIC in the fact that
they are not cache starved. A side effect of the poor temporal lo-
cality of these applications is that they create increased amounts
of interference in other applications as they bring large amount
of data without reusing it. Matrix Multiply (MMUL) acts simi-
lar to a streaming application. While it is not normally considered
a streaming application, it requires a cache much larger than those
studied to successfully exploit temporal locality. For most of the
multitasking benchmarks the lower context switch frequency re-
sults in higher interference since cache block liveliness usually de-
creases with time. The exception to this is MMUL. As MMUL acts
much like a streaming application, when this type of application is
allowed to run for longer periods of time, it increases the likelihood
that another task’s data is evicted thereby increasing interference.

4. CACHE PARTITIONING FOR
INTERFERENCE ELIMINATION

The above figures have shown that multiple tasks sharing the
cache can exhibit a significant amount of cache interference. For
some benchmarks, interference misses account for over 50% of
the total misses resulting in significant degradation in performance
compared to tasks running by themselves. What is worse is the
loss or predictability in the system. Even for the best case bench-
mark, 10% of the misses are attributed to interference. This effect
can not be ignored and must be considered in WCET. Alternatively,
conservative approaches would mean the system is not being fully
utilized. We address this problem by partitioning the cache so each
task is limited to a non-overlapping portion of the cache with a size
tuned to the task needs. We refer to this partitioning scheme as
strict partitioning scheme since we allow no overlap. By ensuring
that tasks share no parts of the cache, it is guaranteed that no in-
terference occurs. This makes the system much more predictable
and easier to analyze for WCET and when task cache behavior is
used, we can do so with little or no impact on performance while in
some cases even improve performance. Furthermore, we evaluate
an extension of the strict partitioning, which we refer to as over-

lapped partitioning, where tasks with no real-time requirements are
allowed to share their cache partitions.

4.1 Configurable Caches
A configurable cache is advantageous over conventional caches

because it can be fine-tuned to a specific task. With multiple tasks
running on a single processor, certain tasks may require a smaller
cache size than others for acceptable performance. To some tasks
the extra cache provides minimal or no benefit at the cost of in-
creased power consumption. With configurable caches, this cost
can be reduced by disabling portions of the cache for tasks that
show marginal benefit from having access to the full cache.

Figure 5 shows how various cache configurations affect applica-
tions. The figures depict several applications and their misses with
varying ways and set sizes which correspond to cache configura-
tions that can be mapped too. In Figure 5a, we see that the miss
rate for ADPCM decode saturates fairly quickly and increasing the
cache size after a certain point has no effect. MPEG2 decode in
Figure 5b shows a similar behavior. Increasing the cache ways or
set size starts to converge and after a certain point only minimal im-
provements are achieved even when the cache is doubled. We refer
to this as the point of minimal gain. The LAME codec in Figure 5c
has a continually downward slope and none of the set lines con-
verge signifying it could still benefit from increased cache. Several
techniques for cache reconfiguration exist.

The architecture proposed in [2] selectively disable ways to re-
duce the dynamic power. Registers are configured by software to
control which ways are enabled. The configurable cache proposed
in [29] introduces a hardware that allows for configurations of the
associativity, caches size and block size. Their work presents the
idea of way concatenation in which ways are combined to make
larger sets. Ways are concatenated by using a bit from the index to
select which ways read and limiting dynamic power to these ways.
The way shut off is also used to allow for more configurability. In
[18] the number of sets that can be accessed by a cache is con-
figurable and the use of gated-Vdd is proposed to reduce leakage
power in disabled sets. The number of sets can be configured in
powers of two by masking the number of bits used in the index.
Extra tag bits must be used since decreasing the number of sets

201

Figure 3: Interference misses for 16KB configurations

Figure 4: Interference misses for 32KB configurations

requires a larger tag for correctness. While providing significant
reduction in leakage current, gated Vdd does not maintain data in
the cache resulting in cold start misses when it is turned back on.
An alternative technique is to use drowsy caches [8]. Drowsy cache
techniques place cache lines into a low power mode which reduces
leakage but maintains data in the cache. Such a cache has been im-
plemented in [8] by using dynamic voltage scaling which reduces
leakage by a factor 12.

Our study leverages the ideas presented in the above work. We
vary the number of ways and sets used by each task and use the
hardware to partition tasks thereby eliminating interference. The
inactive parts of the cache can be placed in drowsy mode, thus re-
ducing the cache leakage power. We allow tasks to use any number
of associativity ways as long as it is less than or equal to the base
line configuration. Shutting off ways requires a register containing
a bit for each way and adds a gate to determine whether or not to
pre-charge a way. In terms of associativity sets, we assume that a
cache partition can consist of either all the sets, half of them, or
a quarter of them. Additionally, the selected set must be aligned

at address boundary corresponding to their size. Set-selection re-
quires a register that maintains the size of the partition and another
which determines the portion of the cache to map to. This hard-
ware lies on the critical path, however it is shown in [27] how this
delay can be significantly minimized. It has been shown in [8] that
if drowsy cache blocks are not accessed then there is no impact on
access time. Since in our approach drowsy lines are never accessed,
the cache hit latency is not deteriorated. Drowsy caches increases
the cache line by 3% when implemented on a line by line basis.
However, our approach does not require this level of granularity.

4.2 The Cache Partitioning Problem
In the proposed partitioning scheme the cache is essentially di-

vided into a set of rectangles, each consisting of a number of columns
(ways) and a number of rows (contiguous group of sets). The rect-
angle size is determined by the cache requirements of the task asso-
ciated to it. Figure 6 depicts an example of such partitioning. The
validity of a set of partitions is determined by the capabilities of the
underlying configurable architecture. In this example we have a to-

202

Figure 5: Miss rates for a) ADPCM Decode b) MPEG2 Encode c) Lame Encode

Figure 6: Cache partitioning examples

tal of 4 ways and sets that can be configured down to a quarter of the
original sets. Figure 6a shows a valid mapping of tasks. Note that
none of the tasks overlap and that all set configurations are powers
of 2 as previously discussed. The tasks are not required to cover the
area and in fact, covering less area while maintaining the number
of misses equates to a further reduction in power. Figure 6b shows
an invalid partitioning that is due to several reasons. First T4 and
T3 overlap making it invalid. Additionally, T1 is configured with a
set size that is not a power of 2.

A static off-line approach is used to determine cache partition-
ing for the given set of tasks. While partitioning for a single task
in hardware is feasible [27, 29], partitioning multiple tasks is com-
plex and infeasible to perform at run time because of the immense
number of combinations as the number of tasks and configurabil-
ity of the cache increases. Our approach also simplifies hardware
and does not require suboptimal configurations that exist during the
tuning stages often found in hardware approaches.

Partitioning the tasks can be viewed as a set coverage problem.
For each task Ti, we have a partition Pi where i identifies the task
associated to that partition (from 1 to the total number of tasks N).
Each Pi is an equivalent to a rectangle that represents valid con-
figuration as defined by the cache architecture. This optimization
problem can be formally defined as:

maximize

N
X

i=1

UTIL (Pi)

!

where UTIL(Pi) is the hit rate (utilization) of task Ti assigned
to its cache partition Pi . This is clearly the goal of the proposed
technique, as we want to maximize the cache utilization after par-

titioning it amongst the tasks in the system. The set of partitions P
must satisfy:

Pi

T

Pj = ∅, for i �= j
N
X

i=1

COST (Pi) ≤ COST (Cache)

V ALID(Pi) = TRUE for all i

The first condition ensures that the partitions are non-overlapping.
The second constraint specifies that the sum of all cache partitions
must not exceed the total cache; here COST(Pi) refers to the size of
the partition Pi. The third condition simply constraints the cache
partitions to what is implementable by the underlying configurable
cache. This is a combinatorial optimization problem with exponen-
tial complexity as it is a form of the NP-complete minimal set-cover
problem. Systems of 2 or 3 tasks combined with a limited number
of cache configurations (in the tens) are feasible to solve through an
exhaustive search. However, the complexity of the problem quickly
rises with more configurations and tasks. To solve this problem we
offer a heuristic algorithm. The pseudocode of this algorithm is
outlined in Figure 7.

Our heuristic approach starts by setting all tasks to have the
smallest partition possible and adding them to an active list. The
solution space is explored as shown in figure 8 by the GROW func-
tion. We start from the smallest partition and first increase size,
then associativity. Circles with the same color signify partitions
that are equal in size while the white circles have no equal parti-
tions. Each partition is simultaneously grown until the tasks utility
is greater than BASE ∗ T . BASE function is the sum of nor-
mal and interference misses from the multitasking profile - it cor-

203

1 P = Pi, where Pi is partition of task Ti

2 for all Pi = Smallest V alid Partition
3 Set tolerance value T
4 Add all P i to ActiveList
5
6 while(ActiveList ! = Empty AND COST (P) < COST (Cache))
7 for(Active P i)
8 if(UTIL(Pi) > BASE(Pi) ∗ T)
9 Remove Pi from ActiveList
10 else
11 GROW (Pi)
12 if(COST (P)) > COST (Cache))
13 // Partitions can no longer grow
14 Option 1: BREAK
15 Option 2: Decrease T; Re-Iterate
16 if(ActiveList == Empty)
17 //Done or Improve Solution
18 Option 1: BREAK
19 Option 2: Increase T; Re-Iterate
20 END

Figure 7: Heuristic partitioning algorithm Figure 8: Exploration of partition space

responds to the baseline configuration where all the tasks share the
cache. The tolerance value T ∈ [0 : 1] represents how close the
task must be to the baseline hit-rate; a value of 1 enforces that the
baseline hit-rate must be met or improved. Once a partition reaches
this point, it is removed from the active list and becomes associated
to its corresponding task. If all partitions are removed from the task
list then we have a configuration that performs within the tolerance
interval of miss-rate impact for all the tasks. At every iteration the
GROW function must check for partition validity as simply using
less space than the entire cache does not guarantee validity.

4.3 Relaxed Partitioning
In many systems it is possible that only a subset of the tasks must

meet real-time deadlines while other tasks are non-critical. For ex-
ample, speech codecs must guarantee deadlines are met to ensure
quality but image compression may occur offline. In this case, in-
terference between non-critical tasks can be tolerated to provide
larger partitions for more critical tasks.

The approach of relaxed partitioning is similar to strict partition-
ing with the difference that a subset of non-critical tasks is treated
as a single task and assigned to a single cache partition. In essence,
the main distinction is that we relax the policy of non-overlapping
partitions. Tasks are divided into critical and non-critical tasks.
Critical tasks are treated as before given their own partition. In
the relaxed partitioning, non-critical tasks are assigned to share
the cache partition. In this way applications with no real-time
constraints but large memory footprints such as the mp3-encoder
LAME, the video compression MPEG, and image compression JPEG,
are associated to one large cache partition. The relaxed partitioning
method allows us to focus resources on the most important tasks.
We again use a tolerance value in order to ensure that more than
marginal gains are being achieved by increasing the cache parti-
tion. The set of non-critical tasks are treated as a single task and its
cache utilization is profiled like a single task would be. In this way,
the relaxed partitioning problem is reduced to the strict partitioning
after which the heuristic presented above is used.

4.4 Design Flow for Cache Partitioning
The proposed technique is applied in the following sequence of

steps. First, tasks are compiled and run through a memory trace
generator. The use of traces allows for faster simulation and study-
ing a larger design space. The traces contain information regarding

both memory accesses and execution progress. Next, traces are pro-
filed in two ways. The single task profiling consists of profiling the
application with a cache simulator for all possible configurations
allowed by the underlying cache architecture. The second profile is
based on our approach used to study interference - it provides the
baseline miss-rate and interference statistics when the tasks share
the cache. The last step performed off-line is the execution of the
cache partitioning heuristic. This heuristic is executed on the set of
tasks deemed to require separate partitions, possibly after merging
the non-critical tasks to implement the relaxed partitioning scheme.

The final step comes in the run-time implementation of setting
the control registers to configure the cache. The configurations for
each task must be maintained by the OS to guarantee the cache is
configured correctly during preemption. Each task configuration
could be stored in hardware but the overhead in performing the
reconfiguration would be negligible. A w bits would be needed for
w-ways and 2*s bits for set configuration (size mask and mapping).
This amounts to a load and a reconfigure instruction that moves
the information to the cache control registers. While we do not
look at the interference of the OS, the kernel task could also be
given a cache partition. As the embedded kernels do not exhibit
large working sets a minimal cache partition dedicated to the kernel
would often times suffice.

5. CACHE PARTITIONING EVALUATION
We have evaluated the proposed cache partitioning techniques

(strict and relaxed) on the set of multitasking benchmarks described
in Section 3.2. We have profiled all the tasks for cache configu-
rations covering all possible partitions including associativity sets
from 512/1024 to 4096/8192 bytes and associativity ways from 1
up to 4/8 depending on the baseline cache architecture. Subse-
quently, the cache partitioning heuristic is performed with tolerance
value T=1; if no valid solution for that value is found, the heuristic
is re-executed with a relaxed value of T.

5.1 Performance Impact
Figure 9 shows the absolute difference in miss rate of the strictly

partitioned cache from the baseline cache for the various configu-
rations. In most cases, the difference for the 8-way set associative
caches is lower since it is more configurable than its 4-way coun-
terpart. Partitioning on the 32KB cache is better than that for 16KB
cache for every benchmark. Not only does the larger cache allow
for more configurations, it also allows partitions to be closer to the

204

Figure 9: Difference of miss-rate for strict partitioning vs. base configuration

Figure 10: Difference of strict partitioning and overlapped partitioning vs. base configuration

point of marginal gains from increased cache. Benchmarks B1, B4,
and B9 show increases in miss rate in all configurations. This can
be attributed to the poor cache behavior of LAME, JPEG and EPIC
encode. As discussed before these tasks are cache starved and par-
titioning forces the miss rate to increase significantly. This increase
is especially high for caches with only 4-ways. Most of the oppor-
tunity for reconfiguration with a 4-way cache is by sets which is
at a much larger granularity then adjusting ways. The high miss
rate mitigates any gain from reducing interference. Our partition-
ing scheme performs very well for Benchmarks 2 and 7 because of
MMUL streaming nature. By partitioning the cache, MMUL does
not interfere with the other tasks, where as if allowed to use the
entire cache, it would produce a significant interference.

Figure 10 compares the difference between the strict partition-
ing and relaxed partitioning for each configuration for benchmarks
B4, B9 and B10. The speech applications (ADPCM, GSM, G721)
were classified as the critical tasks while JPEG, EPIC and MPEG2
were classified as non-critical. In general our overlapped partition-
ing technique had performance similar to the strict partitioning with
the added benefit of increasing the response time of critical tasks.
In many cases the overlapped partitioning had better performance
than simple strict partitioning. This can be attributed to the fact that
the non-critical applications do not exhibit strong temporal locality.
As a result the amount of interference in the non-critical applica-
tions is not as significant as the normal misses and the tasks benefit
from the increased cache size offered by overlapping cache. This
is consistent with our study of interference in which these applica-
tions suffered more from normal misses than interference.

5.2 Impact on Dynamic and Leakage Power
We have evaluated the impact of the proposed cache partition-

ing technique on dynamic and leakage power. As only a single
cache partition is active at any moment in time, both dynamic and
leakage power are expected to be significantly reduced. The in-
active parts of the cache are placed in drowsy mode in order to
reduce the cache leakage power. Dynamic and leakage power were
modeled using Cacti-4.2 [23] with 180nm technology. Each cache
partition was modeled as a separate cache and its power charac-
teristics were obtained from Cacti. Caches misses were modeled
as accesses to a 256KB direct mapped cache. Figure 11 shows
the data cache reduction in dynamic energy for the multitasking
benchmarks after applying the proposed cache partitioning. The
baseline configuration is all the tasks share the cache. Even for
benchmarks where the miss-rate was slightly increased due to the
partitioning we see a significant reduction in dynamic energy. In
the worst case, dynamic power is still reduced by 30%. Eight-way
set associative caches showed better improvements over four-way
associative caches since the number of ways being accessed is less
than 8 for most tasks.

The leakage power reduction is even more significant. In our
evaluation of leakage power, we have assumed a drowsy cache im-
plementation as proposed in [8] controlled at granularity levels of
associativity ways and the groups of associativity sets supported
by our cache partitioning approach. Leakage power for the vari-
ous cache partitions used in our multitasking benchmarks was ob-
tained from Cacti-4. The inactive parts of the cache were assumed

205

Figure 11: Dynamic power reduction

in drowsy mode and their leakage power reduced by a factor of 12
[8]. Figure 12 shows the leakage power reductions for our bench-
marks. It can be seen that for all the benchmarks the leakage is re-
duced from 40% upto 65%. The benchmarks with 4 parallel tasks
achieved consistently better leakage reductions, since with more
tasks in the system, the cache had to be divided into smaller parti-
tions which explains the trend of leakage reduction increasing with
more tasks.

6. CONCLUSION
In this paper we have introduced a methodology for inter-task

cache interference elimination through data cache partitioning. Our
methodology leverages recently proposed configurable cache archi-
tectures in order to assign the set of parallel tasks to non-overlapping
cache partitions. We have outlined a compile-time algorithm, which
uses profile-based information regarding the cache behavior of each
task to identify a beneficial partitioning of the cache. The cache
partition information for each task is provided to the OS, which
during context-switch activates the cache partition of the preempt-
ing task while deactivating the one for the preempted task. Our
results demonstrate that the proposed scheme not only eliminates
data cache interference, thus making single-task WCET analysis
algorithms applicable, but also significantly reduces both dynamic
and leakage power of the data cache. The proposed cache partition-
ing facilitates the application of multi-tasking support with shared
data caches in real-time and energy-efficient embedded systems.

7. REFERENCES
[1] A. Agarwal, J. Hennessy, and M. Horowitz. Cache

performance of operating system and multiprogramming
workloads. ACM Transactions on Computer Systems,
6(4):393–431, 1988.

[2] D. H. Albonesi. Selective cache ways: On-demand cache
resource allocation. In International Symposium on
Microarchitecture (MICRO), pages 248–259, November
1999.

[3] M. Alt, C. Ferdinand, F. Martin, and R. Wilhelm. Cache
behaviour prediction by abstract interpretation. In Static
Analysis Symposium (SAS), pages 52–66, 1996.

[4] R. Arnold, F. Mueller, D. Whalley, and M. Harmon.
Bounding worst-case instruction cache performance. In
Real-Time Systems Symposium (RTSS), page 172âĂŞ181,
1994.

[5] T. Austin, E. Larson, and D. Ernst. Simplescalar: An
infrastructure for computer system modeling. IEEE
Computer, 35(2):59–67, February 2002.

[6] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting
inter-thread cache contention on a chip multi-processor
architecture. In International Symposium on
High-Performance Computer Architecture (HPCA), 2005.

[7] H.-C. Chen and J.-S. Chiang. A highly configurable cache
architecture for embedded systems. In Communications,
Computers and signal Processing (PACRIM), pages
315–318, 2001.

[8] K. Flautner, N. Kim, S. Martin, D. Blaauw, and T. Mudge.
Drowsy caches: simple techniques for reducing leakage
power. In International Symposium on Computer
Architecture (ISCA), pages 148–157, May 2002.

[9] M. Guthaus, J. S. Ringenberg, D. Ernst, T. Austin, T. Mudge,
and R. Brown. Mibench: A free, commercially representative
embedded benchmark suite. In WWC-4: Workshop on
Workload Characterization, pages 3–14, December 2001.

[10] R. Heckmann, M. Langenbach, S. Thesing, and R. Wilhelm.
The influence of processor architecture on the design and the

206

Figure 12: Leakage power reduction

results of wcet tools. Proceedings of the IEEE, 91(7):1038–
1054, July 2003.

[11] J. Hu, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin.
Analyzing data reuse for cache reconfiguration. ACM
Transactions on Embedded Computing Systems,
4(4):851–876, 2005.

[12] R. Kirner and P. Puschner. Transformation of path
information for wcet analysis during compilation. In
Euromicro Conference on Real-Time Systems (ECRTS),
page 29, 2001.

[13] C. Lee, M. Potkonjak, and W. H. Mangione-Smith.
Mediabench: A tool for evaluating and synthesizing
multimedia and communications systems. In International
Symposium on Microarchitecture (MICRO), pages 330–335,
December 1997.

[14] Y. S. Li, S. Malik, and A. Wolfe. Cache modeling for
real-time software. In IEEE Real-Time Systems Symposium,,
pages 148–157, 1997.

[15] A. Malik, B. Moyer, and D. Cermak. A low-power unified
cache architecture providing power and performance
flexibility. In International Symposium on Low Power
Electronics and Design (ISLPED), pages 241–243, 2000.

[16] J. Mogul and A. Borg. The effect of context switches on
cache performance. In International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 75–84, 1991.

[17] F. Mueller. Compiler support for software-based cache
partitioning. In Languages, Compilers, and Tools for
Embedded Systems (LCTES), pages 125–133, 1995.

[18] M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. N.
Vijaykumar. Gated-vdd: a circuit technique to reduce
leakage in deep-submicron cache memories. In International
Symposium on Low Power Electronics and Design
(ISLPED), pages 90–95, 2000.

[19] M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. N.
Vijaykumar. An integrated circuit/architecture approach to
reducing leakage in deep-submicron high-performance
i-caches. In International Symposium on High-Performance
Computer Architecture (HPCA), pages 147–157, 2001.

[20] J. Starner and L. Asplund. Measuring the cache interference
cost in preemptive real-time systems. In Languages,
Compilers, and Tools for Embedded Systems (LCTES), pages
146–154, 2004.

[21] Y. Tan and I. V. J. Mooney. Wcrt analysis for a uniprocessor
with a unified prioritized cache. In Conference on
Languages, Compilers, and Tools for Embedded Systems
(LCTES), pages 175–182, 2005.

[22] K. Tanaka. Fast context switching by hierarchical task
allocation and reconfigurable cache. In Innovative
Architecture of Future Generation High-Performance
Processors and Systems (IWIA), 2003.

[23] D. Tarjan, S. Thoziyoor, and N. Jouppi. Cacti 4.0: An
integrated cache timing, power and area model. Technical
report, HP Laboratories Palo Alto, June 2006.

[24] X. Vera, B. Lisper, and X. Jingling. Data caches in
multitasking hard real-time systems. In Real-Time Systems
Symposium (RTSS), pages 145–165, 2003.

[25] S. Wang and L. Wang. Thread-associative memory for
multicore and multithreaded computing. In International
Symposium on Low-Power Electronics and Design
(ISLPED), pages 139–142, 2006.

[26] A. Wolfe. Software-based cache partitioning for real-time
applications. Journal of Computer and Software
Engineering, 2(3):315–327, 1994.

[27] S.-H. Yang, B. Falsafi, M. D. Powell, and T. N. Vijaykumar.
Exploiting choice in resizable cache design to optimize
deep-submicron processor energy-delay. Symposium on
High-Performance Computer Architecture (HPCA), 00:0151,
2002.

[28] C. Zhang, F. Vahid, and R. Lysecky. A self-tuning cache
architecture for embedded systems. ACM Transactions on
Embedded Computing Systems, 3(2):407–425, 2004.

[29] C. Zhang, F. Vahid, and W. Najjar. A highly configurable
cache architecture for embedded systems. In International
Symposium on Computer Architecture (ISCA), pages
136–146, 2003.

207

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

