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ABSTRACT
The advances in semiconductor technologies have placed MP-
SoCs center stage as a standard architecture for embedded ap-
plications of ever increasing complexity. Efficient utilization
of the ample hardware resources requires applications to be
decomposed into fine-grained threads, engendering in turn a
large amount of interprocessor communications. While fine-
grained on-chip interconnects can reduce the data transfer over-
head, the traditional synchronization mechanisms, such as spin
locks and barriers, still cause significant contention in polling
shared variables. To overcome this issue, in this paper we
propose a light-weight distributed synchronization mechanism
which statically encodes the semantically correct order of ac-
cesses to each shared variable. A sharp reduction in the num-
ber of code bits is attained through a reference coloring algo-
rithm, which furthermore enables an implementation within
negligible hardware overhead.

Categories and Subject Descriptors: C.2.0 [Computer-
communication Networks]: General –Data communications

General Terms: Performance

Keywords: Synchronization, interprocessor communication

1. INTRODUCTION
As the advances in VLSI fabrication technologies offer a

tremendous amount of computational power, Multiprocessor
System-on-Chip (MPSoC) [1, 2] is quickly becoming a stan-
dard organization for high-end embedded systems. Unlike tra-
ditional single processor architectures, this decentralized exe-
cution model aims to exploit more coarse-grained parallelism,
thus requiring applications to be explicitly parallelized into
multiple threads either by the programmer or by the com-
piler. However, this parallelization of programs usually im-
poses interprocessor communication and synchronization, at
a frequency and volume increasing super-linearly as the num-
ber of threads grows. Current MPSoCs usually employ an
on-chip network or a global shared memory [3] to implement
interprocessor communications. Unfortunately, both commu-
nication schemes typically impose a significant overhead of
hundreds or even thousands of clock cycles [4, 5], thus consti-
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Figure 1: Limited application parallelism: inter-VOP

dependences in MPEG-4

tuting a significant bottleneck for this decentralized execution
model.

Because of the significant communication overhead associ-
ated with current MPSoCs, the decomposition of an applica-
tion has traditionally accorded a high priority to the reduc-
tion of communication frequency, resulting in the inability of
coupled applications to fully utilize the scaling number of on-
chip Processing Elements PEs available in future MPSoCs.
This crucial limitation can be illustrated more clearly by con-
sidering a representative embedded application, MPEG-4 [6],
in which a video stream is composed of a sequence of video
object planes (VOPs) that display strong inter-VOP depen-
dences. More specifically, VOPs can be classified into three
types: intraframe (I-) VOPs, forward predicted (P-) VOPs,
and bidirectional-predicted (B-) VOPs. A typical coding pat-
tern is presented in Figure 1, with arrows representing the
inter-VOP dependences. As can be seen, the strong depen-
dences preclude the independent encoding/decoding of each
VOP, thus significantly limiting the amount of parallelism
than can be exploited by the traditional application paral-
lelization strategy.

To accelerate the execution of coupled applications, a cheap
yet efficient communication scheme should be provided. Re-
cent advances in network-on-chip (NoC) [7] have enabled siz-
able reductions of data transmission overhead. However, inter-
processor communication still displays significant overhead as
it employs traditional synchronization mechanisms, such as
spin locks and barriers, to ensure mutual exclusion through
continuous polling of a shared variable. These synchronization
mechanisms not only impose large contention on the on-chip
network, but also require memory accesses to be serialized,
thus creating significant overhead in communication.

To overcome this issue, in this paper we propose a light-
weight distributed synchronization mechanism for shared mem-
ory MPSoCs. Rather than explicitly inserting synchronization
variables to serialize the transmission of data through a shared
memory location, we propose a mechanism to encode depen-
dence information within each memory access, thus enabling
synchronization to be combined together with data communi-
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P1 P2
/* Assume initial values of A and flag are 0 */

A = 1;
while (flag == 0) ;  
print A;

flag = 1;

P1
/* Assume initial value of A is 0 */

A = 1;

print A;
−− BARRIER (b1) −−−− BARRIER (b1) −−

P2

(b) Synchronization through barriers (a) Spin lock−based synchronization 

Figure 2: Explicit event synchronization to impose memory access order

cation. Furthermore, by utilizing statically extracted applica-
tion information, a sharp reduction in the number of code bits
needed is attained through the proposed reference coloring al-
gorithm, thus enabling an implementation within negligible
hardware overhead.

The remainder of this paper is organized as follows. Section
2 discusses the limitations of current synchronization tech-
niques. The conceptual idea and the hardware implementa-
tion of the proposed light-weight synchronization mechanism
is presented in detail in sections 3 and 4, respectively. Section
5 provides an experimental evaluation of our work. Section 6
summarizes this paper and discusses possible future research
avenues in this domain.

2. BACKGROUND AND MOTIVATION
In a decentralized architecture, the accesses to a shared vari-

able emanating from different processors may be performed
out-of-order, thus requiring explicit synchronization points to
be inserted by the programmer into a parallel program to cor-
rectly serialize accesses to shared resources. Figure 2 presents
two common synchronization primitives used by parallel ap-
plications, the spin locks which ensure atomic access to the
data, and the barriers which ensure that a group of cooper-
ating threads all have reached the barrier before any of them
can advances.

Given the serializing nature of synchronization operations,
their performance often limits the achievable concurrency of
parallel applications. Unfortunately, one crucial limitation
of traditional synchronization mechanisms is that they en-
sure mutual exclusion through continuous polling of a shared
variable, such as the read of flag and b1 from P2 in Fig-
ure 2. This mechanism not only imposes large contention on
the on-chip network, but also requires memory accesses to
be serialized. To reduce this polling overhead, a number of
optimization techniques have been proposed in the conven-
tional multiprocessor arena. For instance, simple spin locks
can be optimized by delaying each consecutive probe of the
lock [8], or by buffering the threads waiting for the lock [9].
For barriers, efficient implementations in large scale distrib-
uted systems have been proposed in [10], which propose the
representation of a single synchronization variable by means
of a set of variables organized in a tree data structure, thus
enabling a group of threads to be synchronized from the tree
leaves in parallel.

While these optimization techniques can reduce network
contention, the polling of shared variables cannot be com-
pletely eliminated because it directly derives from the funda-
mental nature of the traditional synchronization mechanisms,
that is, the use of explicit synchronization variables to serial-
ize the transmission of data in communication. On the other
hand, a detailed examination shows that the serialization of
data communication accesses does not necessarily require the
use of explicit synchronization variables. More specifically, be-

cause each communication is composed of a write operation
followed by a read operation to the same memory location,
the dependence information between these memory accesses
can be statically extracted and explicitly encoded. These code
words can be written/read together with the data in transfer
(variable A in Figure 2). Furthermore, a dynamic checking of
the encoded dependence information enables the identification
of the status of the data in communication, based on which
the read operation can be suspended to achieve semantically
correct communication. In this way, the accesses to explicit
synchronization variables, such as flag and b1 in Figure 2, can
be completely eliminated.

Statically encoding data dependences of each communica-
tion to reduce synchronization overhead is eminently suitable
for embedded systems, as the compiler can effectively exploit
the limited set of well-defined applications. However, an ef-
fective encoding mechanism is still necessitated in order to
capture the dependences within a highly constrained num-
ber of code bits, as otherwise the overhead of writing/reading
the code words would be comparable to the overhead of writ-
ing/reading an explicit synchronization variable. Previous
studies [11] have shown that most applications display highly
similar and static communication patterns in that each thread
regularly communicates with a small and fixed subset of the
rest of the threads. More crucially, a large portion of the
communication is performed via point-to-point communica-
tion, that is, consistent communication between the same two
processors. This property of restrictive communication pat-
terns enables the design of a highly effective encoding mech-
anism. In this paper we propose a novel reference coloring

algorithm, which can encode global dependence information
in arbitrary access contexts within only a 2-bit overhead for
each memory access in a point-to-point communication. This
negligible encoding overhead furthermore enables an easy in-
corporation of the proposed synchronization scheme into most
embedded system architectures by a slight extension of the
data transfer instructions.

3. ENCODING-BASED SYNCHRONIZATION
As PEs in shared memory MPSoCs communicate through

accessing the same memory location, the data dependences
between memory accesses can be classified into two types:
local dependences that occur in instruction pairs lying within
the same PE, and global dependences that exist between load/
store instructions accessing the same memory location from
different PEs. Due to unpredictable run-time events, such as
cache misses in the data subsystem and branch execution in
the control subsystem, two PEs may access the shared data
out of order. To guarantee semantically correct communi-
cation, all the global dependent instructions emanating from
different PEs should be executed in order.

In general, a pair of global dependent memory access in-
structions can be composed of either a store and a load (RAW
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Figure 3: Encoding of global data dependences

dependence), or a load and a store (WAR dependence), or a
store and a store (WAW dependence). Considered from the
aspect of interprocessor communications, a RAW dependence
ensures that the read operation in each communication ob-
tains the correct data, while a WAR dependence ensures that
the data of an incomplete communication will not be overwrit-
ten by a write operation in a subsequent communication. A
WAW dependence between consecutive memory accesses, on
the other hand, implies a redundant usage of the shared mem-
ory location, as the value stored by the first write operation
is not consumed by any read operation.

Redundant accesses to a shared memory location may cause
threads to unnecessarily wait on each other, thus necessitating
their elimination to avoid performance degradation. In the
proposed synchronization framework, the redundant usage of
global shared memory locations is presumed to be eliminated
by the compiler. In general two types of access patterns can
be classified as redundant usage of a global shared memory
location:

• Two consecutive store instructions. As the value
stored by the first store is not consumed by any load
instruction, the first store is redundant.

• Multiple load instructions from the same PE that

depend on the same store. Because the first load
instruction will load the data in communication into a
local register of that PE, subsequent load instructions
emanating from the same PE are redundant.

3.1 Encoding of global data dependence
Once the two redundant cases have been eliminated, de-

pendent threads executed on different PEs will communicate
by using the store/load instructions in an alternating order

to access a shared memory location. This property can be
observed clearly in Figure 3a, which presents an instruction
sequence executed on PEs P I and P II to access the mem-
ory location MEM [r10]. More crucially, this highly regular
access pattern enables a highly efficient encoding technique to
preserve the data dependence information. Figure 3b presents
the incorporation of the proposed static encoding technique
into standard data transfer instructions.1 As can be seen, our
static encoding technique uses one bit to distinguish global

1The format of the data transfer instructions shown in the
figure is used by a wide range of embedded architectures [3],
such as ARM, Hitachi SuperH, and Mitsubishi M32R.

load/store instructions, together with two additional bits to
encode global RAW and WAR dependences.

To preserve semantic correctness of a RAW dependence, a
read operation (e.g. Inst 4 in Figure 3a) should be blocked if
it attempts to access the data earlier than the corresponding
producer (e.g. Inst 3 in Figure 3a). This can be achieved
through forcing each producer to write a distinct “signature”
together with the data in communication, and forcing each
read to verify the proper signature before it obtains the data.
One straightforward solution would consist of the explicit spec-
ification of the address of the corresponding producer in each
read. However, the encoding overhead of this solution is non-
trivial, as the instruction address typically incurs at least a
32-bit overhead. Furthermore, writing/reading a 32-bit signa-
ture at run-time may impose an overhead comparable to the
write/read of an explicit synchronization variable.

We propose instead a more efficient encoding solution by ex-
ploiting the regularity of access patterns for the shared data.
More specifically, because only two PEs are involved in each
point-to-point communication, as long as two adjacent write
operations can be differentiated, RAW violations can be pre-
cluded. Accordingly, we propose a reference coloring algo-
rithm which uses two RAW I-colors alternatingly during the
static compilation process to make sure adjacent write op-
erations have distinct RAW I-colors. This property can be
observed be examining the behavior of Inst 1, Inst 3 and Inst
5 in Figure 3b. During execution, each write operation will
write its RAW I-color together with the data in communica-
tion, enabling each read operation to check the RAW color to
ensure the completion of the execution of its producer. Ac-
cordingly, each read operation is assigned the same RAW I-
color as its producer, as can be observed from Inst 2 and Inst
4 in Figure 3b.

The preservation of WAR dependences encounters additional
challenges, as traditionally each producer may have more than
one consumer. More specifically, traditionally no write op-
eration can be performed until all the read operations in a
previous communication have been executed. However, for
point-to-point communication each producer has a single cor-
responding consumer only, thus enabling a further reduction
in the number of code bits needed. More specifically, WAR
violations can be prevented in the same way as RAW viola-
tions, through the usage of two WAR I-colors. The encoding
results can be observed in Figure 3b, wherein Inst 2 and Inst
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3 share the same WAR I-color, which differs from the WAR
I-color shared by Inst 4 and Inst 5.

A pseudocode for a slight extension to the compiler in or-
der to incorporate the necessary updates for generating the
suggested I-colors can be undertaken as described below.

1. for each memory location used in point-to-point com-
munication {

2. Order all the accesses to that location.

3. if two consecutive accesses are read operations, write
operations, or a write followed by a read emanating from
the same PE, /* they constitute redundant references
that need to be pruned */

4. then prune them.

5. else

6. Mark all the remaining accesses as “inter-PE com-
munication accesses”

7. Assign one RAW I-color and one WAR I-color to
each write operation, with the property that two ad-
jacent write operations have distinct RAW and WAR
I-colors,

8. Color each read operation using the same RAW

I-color as the write operation immediately preceding it,
while using the same WAR I-color as the write opera-
tion just following it.

9. end for

It can be easily seen that for this algorithm no more than
two RAW and two WAR I-colors are needed, implying that
a total of two bits, one RAW and one WAR I-color bit, suf-
fices to encode all the dependences. These two bits, together
with the bit that used to indicate whether a memory access
is involved in inter-processor communication, constitute the
only static encoding overhead of the proposed synchroniza-
tion mechanism.

3.2 Dynamic checking and blocking
The reference coloring scheme discussed in the last sec-

tion explicitly encodes the dependence information between
memory accesses involved in interprocessor communication.
It should be noted that the the applicability of the proposed
encoding-based synchronization mechanism is quite flexible
and broad. The proposed synchronization mechanism can be
incorporated into any type of communication implemented
through accessing a shared hardware resource, for example, a
shared centralized memory, a shared cache, or even registers
shared between PEs, such as the registers used in the Mul-
tiscalar architecture [12], the SKY architecture [13], and the
RAW architecture [14].

Dynamically when a memory access instruction is executed,
if the static encoded “inter-PE comm” bit indicates that the
specific instruction is involved in an interprocessor commu-
nication, the status of the data in communication will be
checked and updated based on the statically encoded I-colors.
More specifically, two extra bits, denoted as the RAW R-color

and the WAR R-color bits, are added to record the status
of the data in communication. This can be clearly in Figure
4. Moreover, in order to eliminate a continuous polling of the
R-color bits, a PEID field is also added to record whether a
PE is waiting to access the data in communication, thus en-
abling a light-weight mechanism to await a blocking PE. As
only two PEs are involved in each point-to-point communica-
tion, at most one PE needs to be blocked, implying that one
PEID field suffices.

Check/Set R colors
Read/Write data for load/store
Record/Obtain waiting PE ID

data PE ID

...... ...
data PE ID

...

Processor

Memory

Operations:

RAW I−color WAR I−color

RAW R−color WAR R−color

Figure 4: Hardware extension and operations

In the process of executing a global load/store instruction,
two synchronization functions need to be performed in or-
der to record the status of the data in communication: the
checking and setting of the R-colors. Furthermore, if an
instruction attempts to access the data in a semantically in-
correct order, two extra synchronization functions need to be
performed: the blocking and unblocking of the specific in-
struction. The following two cases delineate the detailed func-
tions performed when executing load and store instructions,
respectively.

Load instruction: Before reading the data, the PE checks
if the RAW R-color bit has the same color as the RAW I-

color statically encoded in the load instruction. If so, the
instruction can proceed to execution. Otherwise the instruc-
tion needs to be stalled, and the PE’s ID will be recorded in
the PEID field. The blocking of the load continues until a
subsequent store instruction has updated the RAW R-color.

Once the execution of the load instruction has been com-
pleted, the PE sets the WAR R-color bit of the memory
location to the WAR I-color encoded in the load instruction.
Furthermore, if the PEID field shows that a store instruction
emanating from the alternative PE is waiting to update the
data, the store will be unblocked.

Store instruction: Before reading the data, the PE checks
if the WAR R-color bit has the same color as the WAR I-

color statically encoded in the store instruction. If so, the
instruction can proceed to execution. Otherwise the instruc-
tion needs to be stalled, and the PE’s ID will be recorded in
the PEID field. The blocking of the store continues until a
subsequent load instruction has updated the WAR R-color.

Once the execution of the store instruction has been com-
pleted, the PE sets the RAW R-color bit of the memory lo-
cation to the RAW I-color encoded in the store instruction.
Furthermore, if the PEID field shows that a load instruction
emanating from the alternative PE is waiting to obtain the
data, the load will be unblocked.

4. EVALUATION
Since the commercial absence of the associated compiler

technology precludes a precise analysis of the ensuing ben-
efits, we evaluate the proposed light-weight synchronization
mechanism by theoretically comparing the number of mem-
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ory accesses necessitated in the proposed synchronization to
the number of memory accesses necessitated in conventional
spin-lock and barrier synchronization presented in Figure 2.
We randomly generate a sequence of 1000 point-to-point com-
munications, of which the average communication latency is
computed for each synchronization scheme.

In general, the communication latency is a function of the
memory access latency, the total number of memory accesses
involved in communication, as well as the number of extra
cycles waited by the consumer thread. In our experimental
framework, the memory access latency is varied from 5 to 30
cycles, while the average number of extra cycles waited by
the consumer thread is varied from 0 to 50. The results are
plotted in Figures 5 and 6. As can be seen, the proposed
synchronization scheme outperforms both the spin-lock and
the barrier synchronization schemes in reducing communica-
tion overhead. This is because the proposed encoding-based
synchronization scheme significantly reduces the number of
memory accesses needed in point-to-point communications.
As all the memory accesses involved in synchronization and
communication need to be serialized through sequential bus
transactions which require tens of cycles, the significant re-
duction in the number of memory accesses directly implies a
significant performance improvement enabled by the proposed
encoding-based synchronization scheme.

5. CONCLUSION AND FUTURE WORK
We have described a light-weight distributed synchroniza-

tion mechanism to accelerate the inter-processor communica-
tions for shared memory MPSoCs. The synergistic collabora-
tion between the compiler, responsible for statically identify-
ing and encoding global data dependences between memory
accesses involved in inter-processor communication, and the
hardware extension of the conventional storage organization
provides a novel synchronization framework for future MP-
SoCs. The proposed light-weight synchronization mechanism
approach not only reduces the control and communication
overhead associated with global storage architectures, but also
allows dependent threads to frequently exchange data during
execution, in turn enabling the exploration of fine-grained par-
allelism for applications with strong dependences.
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