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ABSTRACT
The key to increasing performance without a commensurate
increase in power consumption in modern processors lies in
increasing both parallelism and core specialization. Core
specialization has been employed in the embedded space
and is likely to play an important role in future heteroge-
neous multi-core architectures as well. In this paper, the face
recognition application domain is employed as a case study
to showcase an architectural design methodology which gen-
erates a specialized core with high performance and very low
power characteristics. Specifically, we create ’ASIC-like’ ex-
ecution flows to sustain the high memory parallelism gener-
ated within the core. The price of this benefit is a signif-
icant increase in compilation complexity. The crux of the
problem is the need to co-schedule the often conflicting con-
straints of data access, data movement, and computation.
A modular compiler approach that employs integer linear
programming (ILP) based ’interconnect-aware’ instruction
and data scheduling techniques to solve this problem is then
described. The resulting core running the compiled code de-
livers a 1.65x throughput improvement over a high perfor-
mance processor (Pentium 4) while simultaneously achieving
an 80x energy-delay improvement over an energy-efficient
processor (XScale) and performs real-time face recognition
at embedded power budgets.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]:
Real-time and embedded systems; D.3.4 [Processors]: Op-
timizations

General Terms
Algorithms, Design, Performance
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1. INTRODUCTION
Due to the emergence of power consumption as a first

order design constraint, embedded and mainstream micro-
processors are now faced with the problem of providing a
significant increase in performance without a commensu-
rate increase in power or energy consumption. The need
for increased performance at reduced power levels has pri-
marily motivated the recent trend towards multi-core pro-
cessors, e.g. Intel Core Duo, AMD Opteron, TI OMAP.
The problem is further exacerbated in the embedded do-
main where a significant component of the application mix
consists of rapidly evolving complex streaming media ap-
plications which are inherently real-time programs. Speech
recognition, face recognition, and wireless cellular telephony
algorithms fall into this application space. Typically, they
consist of a sequence of compute-intensive phases (kernels)
connected by relatively short setup phases.

While general purpose processors (GPPs) are well suited
to execute sequential setup/control codes, application spe-
cific integrated circuits (ASICs) are often used for compute
intensive kernels to meet the power and performance con-
straints of embedded systems. ASICs are highly special-
ized fixed function devices and therefore complex applica-
tion suites require multiple ASICs. They are expensive and
time-consuming to design, and their inflexible nature im-
plies redesign if the algorithms change. This is problematic
given the dynamic nature of embedded system algorithm
development. Using digital signal processors (DSPs) or gen-
eral purpose processors (GPPs) handles the ASIC inflexibil-
ity problem but often fails to meet both performance and
power constraints. We believe that the keys to solving this
dilemma are specialization and parallelism while retaining
flexibility through programmability. We call such devices
domain specific architectures (DSAs).

This paper presents the design of a DSA (ArcFace) spe-
cialized for the face recognition domain. Human face recog-
nition is a complex task given the diverse range of facial
features and skin color variations. The face recognition do-
main includes all the processes involved in real time face
recognition including flesh toning, segmentation, face detec-
tion, and face identification (often referred to as recognition
in literature). These processes are generalized object recog-
nition methods and can be adapted to perform other visual
recognition tasks. To increase the algorithmic diversity of
the domain, we evaluate two fundamentally different tech-
niques for face identification. A detailed characterization
(Section 2) of the compute, control, and data access charac-
teristics of all the kernels is performed to create the ArcFace
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Figure 1: Heterogeneous Multiprocessor Organiza-
tion

DSA. To our knowledge, this is the first study that compares
and contrasts two different face recognition algorithms with
respect to their computational complexity and architectural
needs.

The memory architecture of the DSA (section 3) is de-
signed to support the data access, communication, execution
unit and control characteristics in the face recognition suite.
Specifically, our memory system consists of hardware sup-
port for multiple loop contexts that are common in the face
recognition suite. In addition, the hardware loop unit and
address generators provide sophisticated addressing modes
which increase IPC since they perform address calculations
in parallel with operations performed in the execution units.
In combination with multiple dual-buffered SRAM memo-
ries, this results in very high memory bandwidth sufficient
to feed the multiple execution units.

The architectural model is effectively a long word (VLIW)
approach but each bit in our program word directly corre-
sponds to a binary value on a physical control wire. This
very fine grained approach was inspired by the RAW project
[26]. This allows multiple execution units to be chained
together to provide ”ASIC-like” computation flows by con-
trolling data movement through the communication fabric
between execution units, pipeline registers, and the global
interconnect. The result is a programmable DSA (Section
3) whose energy-delay characteristics approach that of an
ASIC while retaining most of the flexibility of more tra-
ditional programmable processors. Figure 1 illustrates the
complete system architecture. The heterogeneous system
consists of a GPP that executes the sequential setup code
while the DSA performs kernel acceleration. Other work [15,
10] has demonstrated the effectiveness of a similar approach
for the speech recognition and the wireless telephony do-
mains. However, these studies required that the architec-
tures be manually scheduled at the machine language level.
In this work, we address the compilation problem as well.

Program scheduling for this architecture is a complex task
for several reasons. The program is effectively horizontal mi-
crocode which requires that all of the control points (register
output or load enables, execution opcodes, multiplexer se-
lect lines, address context updates, etc.) be concurrently
scheduled in space and time to create efficient and highly

parallel and pipelined flow patterns. To solve this prob-
lem, we have created the CoGenE compiler that employs In-
teger Linear Programming (ILP) based interconnect-aware
scheduling techniques to map the kernels to the DSA. In
summary, this paper makes the following contributions:

• We perform workload characterization for the face recog-
nition application domain and analyze two different
face identification applications: The Elastic Bunch
Graph Matching (EBGM) algorithm and the Principle
Component Analysis-Linear Discriminant Analysis
(PCA/LDA) algorithm, and describe how domain anal-
ysis drives the design of the Face Recognition DSA.

• We present the CoGenE compiler framework that em-
ploys ILP based interconnect scheduling to map the
face recognition applications to the DSA, which solves
the programming complexity problem.

The result is an application driven design methodology ca-
pable of creating domain specific accelerators which exhibit
superior power/performance characteristics.

2. FACE RECOGNITION DESCRIPTION
While the importance of face recognition has motivated

numerous algorithms and recognition accuracy evaluation
efforts [17], we are particularly interested in face recogni-
tion using cheap, low-resolution cameras compatible with
low cost embedded systems. Images may be poorly lit, con-
tain occlusions, and may not contain frontal views. Figure 2
shows the major steps involved in our face recognition sys-
tem. The input for our system is a stream of 320x200 pixel
frames arriving at a rate of 5-10 frames per second. The
stream is processed one frame at a time and we maintain
state to perform motion tracking. The process is a pipeline
of kernels, and the goal is to process them in real time.

From a high level perspective, face recognition can be
viewed as two sequential phases: face detection and face
identification. After initial preprocessing, face detection an-
alyzes video or camera frames to produce a set of normal-
ized skin-tone patches which likely contain a face. Eye lo-
cation pinpoints the probable eye location candidates and
normalizes the patch to meet the Face Recognition Tech-
nology (FERET) [17] normalization requirements. It also
creates a boundary description for the patch. Face identi-
fication then tries to match the probable facial patch to a
face in the database. The goal is to minimize the number of
false positives and negatives.

The CSU face recognition group has analyzed a variety of
face identification algorithms [4]. We choose two algorithms
(PCA/LDA and EBGM) from their evaluation suite due to
their superior recognition accuracy and relatively high com-
putational parallelism. The PCA+LDA algorithm recog-
nizes faces by performing holistic image matching while the
EBGM algorithm compares known features (eyes, nose, etc.)
of different faces. Because of the fundamental difference in
the two algorithms, the execution, data access and control
flow patterns are diverse. We now provide a brief description
of the different components in a complete face recognition
system followed by a study of the execution characteristics
of the system and its memory requirements.
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Figure 2: Processing Kernels in a Face Recognition System

Preprocessing: Flesh Toning and Segmentation.
Flesh toning looks for patches of skin toned pixels. Skin

colors are more tightly clustered in the HSV color space.
Pixels are therefore converted from RGB space to the HSV
color space. To improve accuracy, we employ the consen-
sus of two separate flesh toning algorithms based on the
Normalized Color Coordinated and the HSV color spaces
respectively [14]. The output of this stage is a bit mask of
the image marking where the pixel color is a viable flesh
tone.

Image Segmentation is the process of clumping together
individual pixels into regions where the face might be found.
Because our face detection mechanism requires rectangular
regions for its operation, we perform two simple mathemat-
ical operators: erosion and dilation. An erosion operator
examines each pixel and blacks it out unless all its neigh-
bors in a 3x3 pixel map are set [9]. This removes small
occlusions and dilation then lights up the pixel if any of its
neighbors in a 4x4 window are set.

Viola-Jones Face Detection.
The face detector phase is based on the Viola-Jones ap-

proach which is a variant of the AdaBoost algorithm [22,
25]. The AdaBoost strategy is to employ a series of increas-
ingly discriminating filters so that weaker/faster filters need
to look at larger amounts of data and the stronger/slower fil-
ters examine less data. Viola-Jones takes a similar approach
but rather than cascading filters, their approach is to use
multiple parallel weak filters to form a strong filter. Viola-
Jones achieves a 15x speedup over the Rowley detector [21].
The Viola-Jones code is proprietary but the algorithm was
published and a version of this algorithm was developed at
the University of British Columbia (UBC). We modified the
UBC code to suit our stream based approach. The Ad-
aBoost algorithm also provides statistical bounds on train-
ing and generalization errors. Common operations are sum
or difference operations between pixels in adjacent rectangu-
lar regions. Face detection involves computing the weighted
sum of the chosen rectangles and applying a threshold. A
24x24 detector is swept over every pixel in the image and
the image is rescaled. A detection will be reported at sev-
eral nearby pixel locations at one scale and at corresponding
locations in nearby scales. We then employ a simple voting
mechanism to decide the final detection locations. In our
approach, we use a detector which employs 100 different
matching criteria.

Holistic Face Recognition: PCA+LDA algorithm.
Our PCA based face recognition algorithm is based on

[28]. We chose this algorithm over the Eigenfaces tech-
nique [14] due to the increased recognition accuracy in the

original FERET study. In the first step, we build a PCA
subspace where the face images are projected onto a feature
space defined by the eigenvectors of a set of faces. The LDA
algorithm is then employed to perform image classification.
All the training images from the PCA subspace are grouped
according to subject identity and basis vectors are computed
for each subject. A test image is then projected onto the
PCA+LDA subspace and two distance measures are calcu-
lated between each pair of images. The distance measures
are then used to label the test image for comparison with
known persons in the database.

Topology based Face Recognition: EBGM algorithm.

The EBGM algorithm works on the premise that all hu-
man faces have a topological structure and was originally
developed by the USC/Bochum group [27]. Faces are rep-
resented as graphs, with nodes positioned at facial features
such as eyes, nose, etc. and the edges are represented by dis-
tance vectors. Distances between the nodes are then used
to identify faces. The computational complexity of the al-
gorithm is dependent on the number of feature nodes to be
compared. We use a re-implementation of the EBGM algo-
rithm provided by the CSU research group [4]. The EBGM
advantage is that it performed well in the original FERET
studies on facial images that were not frontal views.

The output of eye location is normalized, smoothed, and
rescaled to increase the efficiency of landmark localization
in the face recognition step. The normalized image and the
landmark locations are used to create face graphs for every
image in the database. The final step is to produce a dis-
tance matrix for the images. Face identification is based on
nearest neighbor classification. In the original CSU imple-
mentation, real-time performance was not a goal. Hence,
our version employs sufficient code motion and reordering
to process the image on a real-time frame-rate basis.

2.1 Workload Characterization
Figure 3 shows the relative execution profiles for the face

recognition system with the PCA/LDA and the EBGM al-
gorithms respectively. The native profiling results were ob-
tained using SGI SpeedShop on a 666 MHz R14K proces-
sor. The face detection kernel accounts for more than 50%
and face identification consumes 25% of the total compu-
tation cycles. This implies that detection and identification
(PCA/LDA and EBGM) are the most time-intensive kernels
and are therefore, the key targets for acceleration.

Memory Characteristics.
Memory and execution characteristics studies are based

on the SimpleScalar [2] simulation framework with architec-
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Figure 4: L1 cache miss rates

tural parameters chosen to model an out of order processor
(1.7 GHz) similar to a Alpha 21264. We simulate a baseline
machine with four integer and floating points units each in
order to provide sufficient execution resources, a 2MB L2
cache, and a 600 MHz DRAM interface. In addition, we
vary the size of the caches and the number of integer and
floating point units for sensitivity analysis.

Figure 4 shows the L1 data cache miss rates for four dif-
ferent configurations: i) complete detection pipeline with
PCA/LDA identification, ii) complete detection pipeline with
EBGM identification, iii) PCA/LDA face recognition with-
out detection, and iv) EBGM recognition without detec-
tion. All the configurations achieve 99.4% hit rates in the
ICache. We observe good cache locality for all configurations
with a small 8KB data cache which indicates that small self-
managed SRAMs are likely to be a good fit for these codes.
A 320x200 pixel color image is 188 KB in length while the
corresponding gray scale version is about 64 KB. While the
image will not directly fit in the L1 cache, the flesh toning
kernel requires only one pass over every pixel and hence, data
can be accessed in a stream based manner. This provides a
64 KB bitmap image that is processed in at most two passes
in the segmentation phase. Good cache locality results be-
cause the phase accesses at most two rows at a time. Face
detection and recognition kernels process even smaller win-
dows (50x50 pixels or 2.5 KB) on this data multiple times
and good cache locality is observed for the whole system.
Figure 5 shows the L2 cache (unified) hit rates for the same
configurations. We measure the L2 hit rates as the number
of hits in the L2 cache divided by the total number of hits
for the application. The very low hit percentages suggest
that an L2 cache will be prohibitive in terms of energy and
area while providing minimal performance improvements.

IPC Saturation.
While the cache behavior of the domain seems to be a good

match for embedded processors with limited cache resources,
the performance numbers seem to indicate a different view.
Table 1 shows the instructions committed per cycle (IPC)
for four different configurations as we increase the number
of integer and floating point function units. It can be ob-
served that adding more functional units does not provide a
commensurate increase in performance. The configuration
with 4 integer and floating point units outperforms the one
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Figure 5: L2 cache hit rates

with 2+2 units by a marginal 5%. In addition, we observe
a saturation of IPC beyond six units (3+3). Table 2 shows
the speedup or slowdown of the four configurations over ac-
tual real time corresponding to 5 frames per second. It can
be observed that executing a complete face recognition ap-
plication is at least 2 times slower than real time when we
have less than 2+2 functional units. At best, the applica-
tions run 1.78 times slower than real time by adding more
resources. Executing the identification algorithms alone can
achieve real time performance with sufficient resources. The
performance improvement comes at the cost of a significant
increase in power dissipation. The power dissipated by an
out of order core like the Alpha is likely in tens of watts and
this exceeds the power budgets available for embedded sys-
tems. This motivates the search for a non-GPP approach to
provide real-time face recognition at power levels compatible
with the embedded space.

There are four reasons for the low performance. First, the
face recognition kernels perform a lot of computations of the
form Z[i] = Z[i−1]+

Pm

j=0 X[j]∗Y [W [j]] and this introduces
loop carried dependencies. Second, the problem is further
exacerbated in multi-level loops where such computations
entail complex indirect accesses. Third, a large number of
loop variable accesses compete with the actual array data
accesses, causing port saturation in the data cache. Since
the ratio of array variable accesses is high compared to the
number of arithmetic operations, contention is a big issue.
Finally, the slow real time rate indicates that instruction
throughput is low. Even when functional units are available,
dependences and memory contention significantly reduce the
actual IPC.

2.2 Architectural Implications
Increasing the number of SRAM ports in the system can

address the problem of port saturation. However, multi-
ple ports increase the access time, area, and power con-
sumption of the SRAM block. Given that an 8KB cache
provides good locality in a conventional cache-based system
and the L2 miss rate is high, this motivates a choice to use
self managed SRAMs. We chose to use three distributed
8KB SRAMs (input,output, and scratch) for the ArcFace
DSA. The input and output SRAMs can be double-buffered
to allow simultaneous communication with the host and the
execution cluster. The scratch SRAM is used for holding
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Number of Execution Units PCA/LDA complete EBGM complete PCA/LDA alone EBGM alone
1+1 0.651 0.623 0.780 0.757
2+2 0.703 0.683 0.830 0.793
3+3 0.727 0.712 0.897 0.877
4+4 0.729 0.720 0.905 0.890

Table 1: Instructions per Cycle (IPC) for baseline alpha configuration with varying number of execution units
intermediate data. In addition, each SRAM is dual ported
to support the needs of the multiple execution units. The
system mimics a distributed 24KB cache with 6-ports but
does so more efficiently in terms of area, power, and latency.

Multi-level Loop based Addressing.
As with most real-time applications, face recognition loops

run for a fixed number of iterations and loop indices are
used in data address calculations. The predominant data
access pattern consists of 2D array and vector accesses. Ex-
tracting parallelism across multi-level nested loops requires
complex addressing modes. We employ a loop unit, a pro-
grammable hardware structure that provides support for
multiple simultaneous loop contexts for efficient data access.
The loop unit automatically updates the loop nest indices in
the proper order and our implementation is similar to [15].
The Viola/Jones detection kernel requires a maximum of
three simultaneous loop contexts. Hence, the ArcFace loop
unit supports 3 contexts. Increasing the number of contexts
further increases the area, complexity, and power dissipa-
tion while providing little performance improvements for the
face recognition domain. In addition, the loop unit provides
hardware support for modulo scheduling.

Sophisticated Addressing for Memory Parallelism.
The problem of contention between address calculations

and actual data computations is only partially solved with
distributed memory. The use of programmable Address
Generator Units (AGUs) on each SRAM port allows mul-
tiple address calculations to be done in parallel with arith-
metic operations which improves IPC. Each AGU effectively
services the needs for a particular execution unit. The AGUs
use the index values provided by the loop unit to facilitate
data delivery to the execution units. Hence, the memory sys-
tem for our DSA consists of a loop unit, three distributed
8KB SRAMs with two ports each, and associated AGUs.
This system provides very high memory parallelism by de-
coupling address and data computations, reducing port sat-
uration, and provides hardware support for the compiler to
restructure loops and handle loop carried dependencies.

Execution Back-end: ’ASIC-like’ flows.
In a traditional super-scalar processor, instructions are

fetched, decoded, issued and retired. Function units receive
operands from a register file and return results to the reg-
ister file. This represents a huge amount of overhead which
then gets amortized over a very small piece of function unit
work. The challenge is to amortize the overhead over more
work in order to increase performance and reduce power
consumption. ASICs are complex computational pipelines
which transform input data into results with almost no over-
head but they lack generality and flexibility. Our execution
back-end mimics the ASIC approach while preserving pro-
grammability. The use of programmable multiplexers allows
function units to be linked into ’ASIC-like’ pipelines which
persist as long as they are needed. The outputs of each
MUX stage and each execution unit is registered which al-
lows value lifetime and value motion to be under program
control. This removes the need for a large multi-ported reg-
ister file which saves significant power with no reduction in
performance. Flexibility is preserved by providing the abil-
ity to specify interconnect routes via MUX configurations
under program control.

The execution resources need to support a large amount of
floating point calculations in the face recognition kernels. In
addition, integer arithmetic is also required to support ad-
dress calculations in cases where the AGUs cannot handle
these duties autonomously. Our execution units comprise
four floating point units and three integer functional units.
As will be seen, this provides a good balance between per-
formance and energy consumption.

SIMD vs VLIW trade-offs.
A SIMD approach also delivers high data parallelism and

reduces register file complexity by clustering the register file
and thereby reducing port complexity. Our VLIW approach
provides high instruction level parallelism by performing
memory operations and data computations simultaneously,
albeit with a larger control overhead due to the width of the
instruction word. Our execution back-end is less dependent
on a centralized register file. Moreover, the vast difference
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Number of Execution Units PCA/LDA complete EBGM complete PCA/LDA alone EBGM alone
1+1 2.310 2.560 1.530 1.610
2+2 2.050 2.107 1.378 1.383
3+3 1.800 1.870 1.040 1.160
4+4 1.780 1.784 0.978 1.003

Table 2: Speedup/slowdown over real time corresponding to 5 frames per second (real time is scaled to 1

Figure 6: Organization of the ArcFace architecture

in the type of data and address computations performed
in a cycle in the face recognition domain makes the SIMD
approach less efficient. From performance and energy per-
spectives, a VLIW approach is more beneficial and is our
choice for ArcFace.

3. THE ARCFACE DSA
The face recognition DSA (ArcFace), is shown in figure 6.

The memory system includes a loop unit, three 8KB dual-
ported and double buffered SRAMs, and six address genera-
tor units (AGU). A cluster-wide interconnect is constructed
from several layers of multiplexers and connects the mem-
ory system and the execution cluster. The execution re-
sources are a cluster consisting of 8 clock-gated function
units. These include 4 floating point units, 3 integer units,
and a register file. Local bypass paths are provided between
neighboring function units. The function unit is illustrated
in Figure 7. This shows the inherent pipeline structure
where combinational logic is separated by registers. Each
execution unit is an arithmetic unit or possibly a register
file. Arithmetic units could be internally pipelined.

Address generation, loop control, and multiple execution
units all operate concurrently under program control. The
compiler generated microcode controls data steering, clock
gating (including pipeline registers), and function unit uti-
lization, while permitting single-cycle, program-controlled,
reconfiguration of the address generators associated with the
SRAM ports. The general result is a cluster that is tailored
to the face recognition domain and supports multiple appli-
cations, application phases, or interleaved phases of a sin-
gle pipelined application. Energy efficiency is primarily due
to: minimized communication, activity, overhead, ASIC-like
pipeline flows, and fine-grained clock gating.

The Potential for Memory Level Parallelism.
The loop unit and the AGUs drive the SRAMs to facili-

tate efficient communication with the execution cluster. We

Left
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neighbor neighbor
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Unit 
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Pipeline Reg Pipeline Reg
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Figure 7: Functional Unit Architecture

now evaluate the performance of the memory system. Fig-
ure 8 compares the IPC of the baseline alpha machine with
different ArcFace configurations: i) ArcFace with perfect
back-end implies no stalls due to communication or execu-
tion resources, which shows the performance of the mem-
ory system, ii) ArcFace with perfect memory system, which
indicates the performance of the interconnect and execu-
tion cluster back-end, iii) baseline ArcFace configuration
with actual memory and back-end, but with seven functional
units and the register file, and iv) baseline, but with eight
functional units and no register file. It can be observed
that the ArcFace configuration with perfect back-end pro-
vides as much as a 4.5x IPC improvement for face detec-
tion, and around a 10x IPC improvement for face identifica-
tion (EBGM and PCA/LDA) over the Alpha machine. This
shows that the memory system reduces port contention sig-
nificantly and efficiently supports indirect addressing schemes.

The Potential for ’ASIC-like’ flows.
The configuration with perfect memory evaluates the clus-

ter back-end in our system and we observe a 3x improvement
for face detection and 6.7x improvement for face identifica-
tion. The advantage comes from exploiting ”ASIC-like”flows
where scheduling data for high computation to storage ratio
sustains the high memory bandwidth inherent in the sys-
tem. It also serves to demonstrate the effectiveness of the
pipelined registers for storing intermediate values.

Actual Baseline Performance Potential.
The last two configurations in figure 8 show the perfor-

mance of the baseline ArcFace DSA with the actual mem-
ory and actual execution cluster. Here, we also compare
the performance of the system with and without a register
file in order to evaluate the effectiveness of the register file.
In addition, the register file is replaced by an integer func-
tional unit to evaluate performance trade-offs. The baseline
ArcFace system provides as much as a 2.7x performance im-
provement for face detection and a 5.5x-5.8x improvement
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for the face identification kernels when compared to the Al-
pha. The execution cluster and memory system are well
matched in terms of throughput. The combination of ’high
memory parallelism’ and ’ASIC-like’ flows works well for the
face recognition domain. Replacing the register file with an
additional integer functional unit provides a marginal 3-4%
performance improvement. The register file does ease the
difficulty of compiler based scheduling and is a more gen-
erally useful structure than another execution unit if the
algorithms change in a substantial fashion. Hence, we keep
the register file in the subsequent discussion.

Comparing the baseline model to the model with per-
fect memory shows a performance degradation of about 13-
18%. This is explained by the fact that the baseline sys-
tem employs a cluster-wide interconnect for communication
between the memory and the execution units. Due to con-
tention in the global interconnect for data computation and
data access, scheduling delays are introduced and we observe
a subsequent performance degradation. Employing a hier-
archical or separate interconnect will solve the problem, but
at increased power costs. Given that we don’t need more
performance to meet the real time requirements, we make
the power conservative choice.

The Compilation Problem.
The fine grained horizontal microcoded nature of ArcFace

implies that the compiler is responsible for managing all of
the physical resources at an equally fine grained level. Man-
aging different function units, multiple memories and their
associated AGUs, and scheduling data flows through the in-
terconnect is a complex task. The inherent programming
complexity of the architecture makes hand coding a lengthy
and error prone process. Even though the architecture is ca-
pable of impressive performance at low power consumption
levels, it will be a futile effort unless the scheduling task can
be performed automatically by a compiler.

4. THE COGENE COMPILER

4.1 Trimaran to CoGenE
The Trimaran compiler (www.trimaran.org) was the start-

ing point for the CoGenE (Compile Generator Explorer)

compiler development. Trimaran was chosen since it allows
new back-end extensions, and because its native machine
model is VLIW [23]. Significant modifications were needed
to transform Trimaran from a traditional cache-and-register
architecture to meet the needs of our fine-grained cache-less
approach.

The result is a compiler that takes streaming code, writ-
ten in C, and code generation is parameterized by a machine
description file which specifies: the number of clusters, the
number and type of functional units in each cluster, the
number of levels of inter- and intra-cluster interconnect, and
the individual multiplexer configurations. A new back-end
code generator that is capable of generating object code for
the coprocessor architecture described by the architecture
description file was developed. The code generator includes
a modified register allocator that performs allocation for
multiple distributed register files rather than for a single
register file. Since the compiler controls the programming
of the multiplexers and the liveness of the pipeline registers,
register allocation is inherently tightly coupled with inter-
connect scheduling. Hence, we introduce a separate inter-
connect scheduling process after register allocation and our
scheduling scheme is based on integer linear programming
(ILP) [6] techniques. Before delving into the scheduling de-
tails, we provide an overview of ILP based problem solving.

Integer Linear Programming (ILP).
Computing an optimal solution for an ILP program is NP

complete [6]. Researchers at Saarland University have con-
tributed to significant advances in improving the efficiency of
ILP techniques by reducing the process of enumeration [6].
Integer Linear Programming is the following optimization
problem:

min zIP = c
T
x

x ∈ PF ∩ Z
n

where

PF = {x|Ax ≥ b, x ∈ IR
n
+}, c ∈ IR

n
, b ∈ IR

m
, A ∈ IR

mxn

The set PF is called the feasible region and it is integral
if it is equal to the convex hull PI of the integer points
(PI = conv({x|x ∈ PF ∩ Zn})). In this case, the optimal
solution can be calculated in polynomial time, and hence,
any formulation of the ILP program should find equality
constraints such that PF is integral.

4.2 CoGenE Compiler Flow
Preliminary Control and Data Analysis.

The overall CoGenE flow is illustrated in Figure 9. The
Trimaran loop detection analysis package is used to identify
the loops and calculate the start and end conditions. The
standard Trimaran data flow packages are used to annotate
the dependence graph with variable use and definition loca-
tions. Back substitution is then performed to reduce critical
path length. After this stage, the number of loops and their
characteristics are known.

Modulo Scheduling.
With information from the previous step, we identify the

inner most loop and calculate the lowest bound on the initia-
tion interval, similar to the modulo scheduling approach [19].
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Output code  Interconnect schedulingPost pass scheduling
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Figure 9: Code Generation

If the bound is high enough to cause degradation, loop un-
rolling is performed to improve the results of scheduling fol-
lowed by simple register assignment where the pipeline reg-
isters hold the result.

Interconnection Scheduling.
The main decision variables employed are xk

nt where a
value of 1 means that instruction n is executed in clock cycle
t on execution unit k. The index k of the decision variables
is relevant for instructions that can be executed on several
different execution units. For all address calculations, the
AGUs are paired to a unique execution unit. Let I denote
the set of instructions from the input program. Before for-
mulating the integer linear program, we define an interval
N(n) which is the earliest control step in which instruction
n can be started without violating any data dependencies.
The calculation of the interval N(n) is similar to [11].

The scheduling polytope is composed of different types of
constraints. The assignment constraint ensures that each
instruction is executed exactly once by one execution re-
source. Let R(n) denote the set of execution unit types that
the instruction n can be assigned to:

X

k∈R(n)

X

t∈N(n)

x
k
nt = 1 ∀n ∈ I

The precedence constraint models the data dependencies
within the input program. The dependences can be further
classified into two categories: weak- or anti-dependences
(Write after Read), and strong dependencies (Read after
Write). Write after Write dependencies are not an issue in
this architecture since write targets do not conflict. Weak
dependencies within a group are allowed. Let wmn represent
the minimum number of cycles from start time m to end n
during which the dependence is to be respected, then:

X

k

X

tn≤t

x
k
ntn

+
X

k

X

tm≥t−wmn+1

x
k
mtm

≤ 1

The precedence constraints exclude any ordering of instruc-
tions where data dependences are violated. Until now, the
feasibility function is integral, i.e. the solution can be calcu-
lated in polynomial time. We now add resource constraints
to the system. Resource constrained scheduling is NP com-
plete. Let Rk denote the number of execution units of type
k available in the processor. The resource constraint pre-
vents more than Rk instructions being assigned in a cycle.
It should be noted that resource constraints also implicitly
include the constraints on the multiplexer at the output of
the execution units. If U is the pre-calculated upper bound
on the number of clock cycles for the input program, then:

X

n∈I:k∈R(n)

x
k
nt ≤ Rk ∀k ∧ 1 ≤ t ≤ U

Now, every integer point saturating the constraints corre-
sponds to a feasible solution of the interconnect scheduling
algorithm. The goal is to find a schedule of minimal length
L. The value of L is defined by:

X

k

X

t∈N(n)

tx
k
nt ≤ L ∀n ∈ I

The goal is to minimize the objective function L. So far,
our objective function does not take into consideration the
instructions that take several clock cycles because of inter-
connect constraints. This could produce instruction slots
with no instructions to be scheduled. The objective function
minimizes the execution time as a primary constraint. The
ILP model in our infrastructure was solved by the CPLEX
solver and the solution was efficiently obtained for most ker-
nels. However, the EBGM face graph recognition took tens
of minutes to minimize.

Post Pass Scheduling.
A final pass is done over the code and conflicts in schedul-

ing that can happen due to weak dependencies are distributed
to the register file. In addition, those resources that are not
used are completely turned off when their instruction slots
are empty. For modulo scheduled loops, we check to see if
the loop and the address contexts are correctly programmed
with the initiation interval.

4.3 Efficiency of ’Interconnect-aware’
Scheduling

We now evaluate the efficiency of ’interconnect-aware’
scheduling by comparing it against hand-coded schedules.
We employ utilization rate, a measure of the total fraction of
time for which all the seven functional units in the DSA are
employed, as the comparison metric. Table 3 shows that we
observe around 62-65% utilization rate for the PCA/LDA
and the EBGM face identification kernels. The compiled
code achieves an average utilization rate of 60% and achieves
85% of the utilization capability of manual scheduling (uti-
lization rate of 70% for the first four benchmarks). The 15%
disparity is because weak dependencies introduce conflicts in
scheduling and this causes delays in the compiled code. Fur-
ther, executing at the 1 GHz target frequency necessitates a
longer delay for data transfers across functional units that
are farther away from each other. Addressing these issues
will improve our scheduling algorithm, however, our tech-
nique still delivers a high utilization rate. The high utiliza-
tion rates also demonstrate the effectiveness of ’interconnect-
aware’ scheduling for delivering high instruction throughput.
We observe tens of seconds of compilation time for all the
kernels except for the EBGM kernel in which ILP solving
takes a long time to explore a few feasible schedules from a
large scheduling space.

110



Benchmarks Utilization Utilization Compilation
rate rate time

(Compilation) (Manual) (seconds)
Flesh Tone 0.57 0.74 23

Erode 0.575 0.675 37
Dilate 0.570 0.65 40
Viola 0.69 0.75 60

PCA/LDA 0.62 - 49
EBGM 0.65 - ≥1000

Table 3: Functional unit utilization rate and compilation
time for the different face recognition kernels
5. RESULTS

5.1 Experimental Methodology
The Trimaran framework also consists of a cycle accu-

rate simulator which delivers statistics about memory access
rates, IPC, throughput in terms of frames processed per sec-
ond, and the total execution time in cycles. We also include
a 32-tap FIR filter to broaden the application domain and
to facilitate comparison to an ASIC based design. Our ar-
chitecture (CoGene compiled code running on the ArcFace
DSA) is also compared to three other design options, all of
which were normalized to a 0.13µ process :

1. Software running on a 400 MHz Intel XScale proces-
sor that represents a highly energy efficient embedded
processor. The Xscale does not have floating point in-
structions, and so, we make our comparisons against
an idealized Xscale, where all floating point operations
are replaced by integer operations. The code is then
run on an actual Xscale processor and performance
and power consumption are measured.

2. Software running on a 2.4 GHz Intel Pentium 4 pro-
cessor that can support the real time requirements of
the face recognition kernels.

3. Manually scheduled micro-code implementation run-
ning on the simulated cluster architecture representing
the best performance point. Energy and performance
numbers are calculated using Synopsis Nanosim, a com-
mercially designed spice level simulator, on a fully syn-
thesized and back-annotated Verilog and Module Com-
piler based implementation. The results are then nor-
malized to a 0.13µ process by employing conservative
constant field scaling. The simulated model includes a
full clock tree and worst case wire loads based on as-
signing wire parasitics based on metal 1. Hence, these
results are pessimal since in a fabricated design the
long wires would be routed on larger metal layers.

To effectively compare the different architectures, we em-
ploy throughput measured in terms of the number of input
frames processed per second. We employ the energy-delay
product as advocated by Horowitz [7] product to compare
the efficiency of different processors since both energy and
delay for a given unit of work are conflicting constraints for
the architect and circuit designer.

5.2 Evaluation
The design goal of the instruction scheduling algorithm

is to provide real time performance with minimum energy.
In order to evaluate the throughput and energy control ca-
pabilities of CoGenE, we compare CoGenE against the per-
formance of hand scheduled code and the Pentium 4. The
result is then compared to an XScale based implementation
for energy consumption. Finally, we conclude with a com-
parison of the two face recognition algorithms.
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Figure 10: Throughput comparisons for different
configurations

Figure 10 compares the throughput (number of input frames
processed per second) for the different processors. The hand
coded implementation delivers the best throughput. The
CoGenE version delivers a throughput that is 1.65 times
better than the Pentium 4 processor and 8.64 times bet-
ter than the XScale processor. This underlines the fact that
our CoGenE framework exploits the streaming nature of the
face recognition kernels to deliver the throughput necessary
to achieve real time constraints. CoGenE is able to achieve
85% of the throughput of manually scheduled code which we
feel is satisfactory but also motivates us to further improve
our scheduling approach.

Figure 11 and 12 shows the energy consumption per input
and the Energy Delay product comparison for the different
processors. The CoGenE compiler reduces energy consump-
tion by 9.25x when compared to the low power XScale pro-
cessor. The energy advantage comes from efficient decou-
pling between address and data computations provided by
the loop unit and AGUs, and by minimizing communication
overhead due to the ASIC-like pipeline structures. The re-
sult is a DSA that performs face recognition at embedded
energy budgets. It is noteworthy the energy-delay product
of the Xscale processor is within 35% of the Pentium 4 pro-
cessor, and that our approach provides 80x improvement
over the Xscale. The improvements are consistent across all
the applications in the domain.

Kernel Level Analysis.
It is interesting that flesh toning accounts for less than 5%

of the total execution time but consumes an incommensu-
rate amount of the total energy. This is because the floating
point parallelism in flesh toning exceeds the number of float-
ing point units (four) available in the cluster. This means
intermediate results must be saved and retrieved from the
register file which is inefficient. The hand scheduled code
does a better job of vectorizing the code which indicates that
further scheduling improvements are possible. CoGenE does
well on the image segmentation phase (erode and dilate ker-
nels) , and the architecture delivers two orders of magnitude
better energy-delay product than the XScale.
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Figure 11: Energy/input packet comparison
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Figure 12: Energy Delay Product Comparison

The Viola/Jones face detection algorithm is characterized
by a recurrence that involves two adjacent image rows and an
additional row for intermediate for intermediate storage. As
the algorithm sweeps over the image, only a 24x24 window
needs to be operated on. The algorithm then successively
shifts by one pixel position. Pixel value lifetimes are there-
fore high. The architecture benefits as a result and reduces
energy consumption by as much as 22x over the XScale.

The CoGenE FIR version delivers two orders of magnitude
energy-delay product improvement over the XScale proces-
sor and is only 24x worse than the ASIC implementation.
This is partly because the ASIC possesses significantly more
functional units than our architecture.

PCA/LDA vs EBGM.
One of the goals of this study is to compare two funda-

mentally different face recognition algorithms and to identify
the algorithm that is better suited for hardware implemen-
tation. The PCA/LDA algorithm is a holistic image com-
parison algorithm as opposed to the EBGM algorithm. The
EBGM algorithm requires an additional normalization step

after face detection to increase the accuracy of the algorithm.
This adds computational complexity in the algorithm and
contributes to the 9% performance advantage of PCA/LDA
algorithm. The PCA-LDA algorithm also has a 17% advan-
tage in energy and a 30% advantage in energy-delay product.
We then reduced the number of facial feature nodes in the
EBGM algorithm in order to reduce complexity but found
that accuracy immediately fell to unacceptable levels. We
conclude that the PCA-LDA algorithm is superior for our
architecture and compilation approach.

6. RELATED WORK
Mathew et al. [14] perform a detailed characterization of

a feature recognition system based on the Eigenfaces algo-
rithm. In contrast, to our knowledge, this is the first study
that compares and contrasts the hardware needs of different
recognition algorithms. Improving performance or power via
VLIW techniques is a common theme in modern embedded
systems [1] including mapping and instruction scheduling
techniques [13, 24]. However, these efforts do not address
low-level communication issues.

High-performance compilation techniques have also been
investigated: RAW [12], CGRAs [16], Imagine [20], and Mer-
rimac [5]. The RAW machine has demonstrated the advan-
tages of low-level scheduling of data movement and process-
ing in function units spread over a two dimensional space
and this work motivates our fine-grained resource control
approach. The main difference is that our approach also
tries to minimize energy consumption as a first order design
constraint. Mahlke’s group has also developed automated
techniques for identifying candidate code blocks for copro-
cessor acceleration and for generating customized instruc-
tion set extensions to control those processors [3]. A similar
approach by Pozzi also provides graph-based optimizations
for micro-architectural constraints such as limited register
ports [18]. The main differences between these efforts and
our work is that our coprocessor model is more autonomous
and attempts to co-optimize performance and energy con-
sumption rather than just performance.

Tensilica’s Xtensa system [8], ARM’s OptimoDE proces-
sor, and IBM’s Cell processor are all current commercial ap-
proaches in the high performance, energy-efficient embedded
systems domain. The main difference is that the user de-
signs a custom VLIW machine by specifying a customized
instruction set. Our approach is driven by an application
suite and our architecture provides a richer set of options
than a traditional more coarse grained VLIW approach.

7. CONCLUSION AND FUTURE WORK
We have presented the workload characterization of a com-

plete face recognition system employing two fundamentally
different face identification algorithms. This characteriza-
tion was then used to create a face recognition DSA using
a novel architectural approach, albeit with increased pro-
gramming complexity. The solution to this dilemma is the
CoGenE compiler which employs ILP-based ’interconnect-
aware’ scheduling schemes to solve the constraints imposed
by the highly concurrent scheduling of functional, commu-
nication, and storage resources in the DSA. The result is a
face recognition system which is capable of delivering more
throughput than a Pentium 4 while simultaneously consum-
ing less energy than an XScale. In conclusion, we leverage
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architectural design and compilation efficiency to perform
real time face recognition at embedded power budgets.

During the course of this effort, we have uncovered nu-
merous opportunities for future research. Register and in-
terconnect scheduling can be done in either order and the
second process is limited by decisions made in the first. We
intend to investigate an integrated approach. While the Co-
GenE compiler does a good job of automating our previous
biggest problem, e.g. manual instruction scheduling, the end
goal of this research is to automate as much of the DSA de-
sign process as possible. This implies automating the two
remaining manual phases: architecture description creation
and splitting the application suite into host and streaming
components amenable to DSA acceleration. We believe that
the CoGenE compiler can automatically create the archi-
tecture description file and subsequently modify it during
design space exploration via the simulation infrastructure.
Automatic splitting of the original application codes will be
a harder task and an interactive tool that significantly aids
the process is more likely to succeed.
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