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ABSTRACT
Embedded system design is inherently domain specific and
typically model driven. As a result, design methodologies
like OMG’s model driven architecture (MDA) and model
integrated computing (MIC) evolved to support domain spe-
cific modeling languages (DSMLs). The success of the DSML
approach has encouraged work on the heterogeneous com-
position of DSMLs, model transformations between DSMLs,
approximations of formal properties within DSMLs, and
reuse of DSML semantics. However, in the effort to pro-
duce a mature design approach that can handle both the
structural and behavioral semantics of embedded system de-
sign, many foundational issues concerning DSMLs have been
overlooked. In this paper we present a formal foundation
for DSMLs and for their construction within metamodel-
ing frameworks. This foundation allows us to algorithmi-
cally decide if two DSMLs or metamodels are equivalent, if
model transformations preserve properties, and if metamod-
eling frameworks have meta-metamodels. These results are
key to building correct embedded systems with DSMLs.
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1. INTRODUCTION
Embedded systems are application specific, and this af-

fects the embedded system design process at a fundamental
level. Embedded hardware must be designed to meet the
constraints imposed by the physicality of the application
(power, size, weight, etc...), and embedded software must
be written to respect assumptions about the application en-
vironment. This pressure to design for a specific application
results in brittle designs that are not easily ported to other
application contexts. Researchers recognized this problem
and proposed a solution: Define the application context (i.e.
constraints, communication mechanisms, and time models)
before implementing the application.

Domain specific modeling languages (DSMLs) were pro-
posed for specifying the application contexts of embedded
systems [7]. A DSML encapsulates a context, also called a
domain, by providing:

1. A set of components or constructs with which embed-
ded hardware/software can be modeled.

2. A set of constraints that enforce proper use of compo-
nents.

3. A set of semantic mappings that generate simulation
traces, embedded code, and verifications results from
models.

A sizable repository of tools support the construction and
utilization of DSMLs. For example, the modeling tool GME
allows users to construct models that belong to a particular
domain [2]. It also enforces domain constraints at modeling
time, and we previously showed how this helps to design cor-
rect embedded systems [14]. The tool MetaGME [13] allows
users to quickly specify new domains. The model transfor-
mation tool GReAT [8] allows models from one domain to
be transformed into models in another domain. Finally, the
previous work on semantic anchoring allows semantic map-
pings to be formally defined [15].

Though the development of DSML-based embedded sys-
tems has been quite successful, we still have little formal
understanding of DSMLs. This means, for example, that we
cannot tell if two domains are the same. We do not know
if model transformations preserve properties (deadlock free-
dom, determinism). Without a formal understanding, our
designs remain inextricably tied to the tools with which they
were built. However, if DSMLs can be formalized, then their
meanings becomes precise and independent of specific tools.
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In this paper we present a formalization of DSMLs that ad-
dresses these issues. Section 2 provides an abstract math-
ematical framework for formalizing DSMLs. In Section 3
we describe a restricted, yet powerful concretization based
on Horn logic. We also discuss techniques for analysis and
verification of DSML properties. We conclude in Section 4
by discussing how our formalism impacts current and future
design tools.

2. ABSTRACT MODEL

2.1 Domains And Structural Semantics
Every application context is expressed by a domain, which

is the set of all structurally well-formed models for that con-
text. A common domain is shown in the the foreground
of Figure 1. The basic building blocks of this domain are
the the hardware components (ASICs and cards) that can
be plugged into the circuit board. Each block on the cir-
cuit board encodes a restriction on the actual ASIC that
can be placed in a particular location. For example, the
block labeled CPU encodes the constraint that a CPU, not
a RAM module, must be placed at that point. Constraints
can be more complicated than simple placement rules. For
example, Figure 1 also requires that if a CPU of type A is
placed on the board, then a RAM module of type B cannot
be placed on the board. A model is a description that has no
remaining degrees of freedom, e.g., every place on the cir-
cuit board has some hardware assigned to it. A well-formed
model is a model that satisfies all the constraints imposed on
its construction. The set of all well-formed models contains
all the meaningful structures of a domain. It is important
to note that the set of well-formed models can be defined
without giving a meaning to the constructs that participate
in the model. For example, we do not need to give any de-
tails about what CPUs, RAMs, and Buses do in order to
check well-formedness of a circuit board.
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Figure 1: Example of two domains.

The set of well-formed models defines the structural se-
mantics of domain. Another way to phrase this is to say
that the structural semantics of a domain is a decision pro-
cedure for checking model well-formedness1. The structural
1This assumes that well-formedness is decidable; we require
this to be the case.

semantics serves the single purpose of identifying the impor-
tant models within a larger set of models. Later on we will
attach more precise meanings to well-formed models; these
other meanings are also called “semantics”. A domain and
its structural semantics are given by:

1. a set Υ of concepts, components, or primitives from
which models are built,

2. a set RΥ of all possible model realizations,

3. a set of constraints C over RΥ.

The model realizations in RΥ are all the ways that models
can be built from the available primitives. The set of well-
formed models in a domain is the set of all models that
satisfy the constraints. We write this set as

D(Υ, C) = {r ∈ RΥ | r |= C}. (1)

The notation r |= C can be read as “r satisfies the con-
straints C”.

DSML tools make significant use of the structural seman-
tics, so it must be formalized carefully. The first essential
issue is how the set of all model realizations RΥ relates to
the set of concepts Υ. The most obvious formalization is
to let Υ be a set of sets, where each set enumerates all ob-
jects of a particular type. This approach is analogous to
multi-sorted algebra [18] where the signature of the alge-
bra is given by a set of types A, called the index set, and a
collection of sets (Ai)i∈A that are called the carriers of the
algebra. Each carrier set Ai contains all the objects of type
i ∈ A. A model is some subset of objects taken from each
carrier:

Υ = 〈A, (Ai)i∈A〉
RΥ = �i∈A (P(Ai))

(2)

Though reasonable, this approach makes it difficult to define
objects that are relations on other objects. For example,
many domains are graph-based wherein some objects are
treated as vertices and others as edges. Typically, an edge
set E is a binary relation on vertices, i.e. Ei,j ⊆ Ai × Aj .
In the multi-sorted algebra approach a relation is defined on
top of the carrier sets, and this makes relations less basic
than non-relations. The matter is further complicated by
objects that may be relations of objects that are themselves
relations. For example, edges and vertices may be “con-
tained” inside of another object by a containment relation.
In general, we must support arbitrary n-ary relations over
objects that may themselves be relations.

Formal logic provides a natural way to specify relations
and gives a well-known construct to generate all possible
uses of these relations, which are the models. However, be-
fore presenting the formal notation, we will give an example
to build intuition about this construct. Figure 2 shows a
model that belongs to a domain for Digital Signal Process-
ing (DSP) systems. We will work backwards from this single
model to the domain of all DSP models. To begin, we must
extract the primitive concepts used to build DSP systems.
Examining Figure 2, we see that this model has inputs and
outputs at the far left and right side, as well as a number
of DSP primitives (FFT, phase/magnitude extraction, and
signal demultiplexing). The zoomed in box shows that the
primitives have interfaces, which are sets of uniquely iden-
tifiable ports. In order to capture these concepts, we will
provide the names for a set of n-ary relations for encoding
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Figure 2: Detailed view of a DSP model.

the modeling concepts. The names are called function sym-
bols in formal logic, and they form the set of concepts Υ.
Importantly, Υ does not contain an enumeration of the re-
lations; only the names of the relations. Below are the basic
concepts of the DSP domain written as n-ary function sym-
bols.
Primitives of DSP Domain

Υ =

�����������
����������

insig(X) : X is an input signal

outsig(X) : X is an output signal

prim(X) : X is a basic DSP operation

iport(X,Y ) : X has an input port Y

oport(X,Y ) : X has an output port Y

inst(X,Y ) : X is the DSP operation Y

flow(X1, Y1, X2, Y2) : Data goes from oport Y1

on X1to iport Y2on X2

The function symbols clearly encode the concepts avail-
able to the DSP modeling language. These functions are
defined over a set of object names and values; the places
where the functions are defined gives information about the
support. For example, Figure 2 shows that there is an FFT

primitive in the DSP domain. We capture this by writing
prim(FFT), where the constant FFT is a name or constant
from some underlying support set. The fact that prim(X)
is defined at the constant FFT indicates that an FFT is a
primitive. A model is just a listing of all the places where
the functions are well-defined. In the terminology of formal
logic, we consider a model to be a set of variable-free def-
inite clauses. The table below shows a partial encoding of
the DSP model as variable-free definite clauses2.
Partial Encoding of Figure 2

Primitives prim(FFT), prim(Splitter), prim(Phase)

FFT Ports
iport(prim(FFT), Real), . . . ,
oport(prim(FFT), Imag)

Inputs insig(In1), insig(In2)

Outputs outsig(Ab1), outsig(Ph1), . . . , outsig(Ph2)

Instances
inst(FFT, prim(FFT)), . . . ,
inst(AbsPhase1, prim(Phase))

Flows
flow(insig(In1), insig(In1),
inst(FFT, prim(FFT)), iport(prim(FFT), Real)),
. . .

Formally, function symbols stand for n-ary functions over
the strings of some finite alphabet Σ. It is not necessary

2In order to simplify the encoding, we assume that every
input/output is also a port with the same name as the in-
put/output.

to explicitly define the functions; instead we assume they
are one-to-one with disjoint codomains, and then indicate
the points where the functions are defined. For example,
v(A), v(B) indicates that v is defined at A and B, and v(A) �=
v(B). This definition also permits nesting of the symbols as
in e(v(A), v(B)). When a symbol is used as a logical predi-
cate, it returns true if its arguments are defined at the point
of evaluation, and false otherwise. These are common as-
sumptions made for function symbols in formal logic.

A model is encoded as a set of variable-free definite clauses,
therefore the set of all models RΥ contains all possible sets
of variable-free definite clauses that can be formed from Υ
and Σ∗. This set can be defined in terms of the well-known
Herbrand Universe [11], which is a construction of all the
variable-free definite clauses.

Definition 1. Given a set of n-ary function symbols Υ and
a finite alphabet Σ, the Herbrand Universe H(Υ,Σ) is de-
fined with the following induction:

1. if s ∈ Σ∗, then s is in H
2. if f ∈ Υ is an n-ary function symbol and t1, . . . , tn are

in H, then f(t1, . . . , tn) ∈ H.

The set of all models is the set of all subsets of H, i.e., the
powerset of H, P(H).

Definition 2. Given a set of n-ary function symbols Υ and
a finite alphabet Σ:

RΥ = P � H(Υ,Σ)
�

(3)

Notice that RΥ contains the cross product style models that
are found in the multi-sorted algebra approach, but it also
contains all possible mixing of n-ary relations. These types
of models are not basic for multi-sorted algebras. Gurevich
et al [10] designed Abstract State Machines (ASM) around
a similar use of function symbols. We have generalized this
by using the Herbrand Universe, which we believe provides
an elegant approach to the structural semantics of DSMLs.

Embedding the structural semantics inside of formal logic
also provides a natural framework for specifying and evalu-
ating well-formedness rules. A model realization r is a con-
junction of variable-free definite clauses, i.e r =

�
ti, ti ∈

H(Σ,Υ). Therefore, we can compose a model with a set C
of logical statements via conjunction, r ∧ C, and this yields
another perfectly good set of logical statements. We will
use this composition mechanism to deduce well-formedness
of a model r. To do this, we construct a set of constraints
C so that the composition r ∧C can be used to deductively
prove well-formedness or malformedness of any model in RΥ.
Specifically, we assume that there is a special function sym-
bol wellform(·) /∈ Υ, such that a model r is well-formed if
wellform(X) can be proven for some value of X. We can
then utilize the relevant inference procedure 	 to prove well-
formedness. Not all logical styles are closed under negation,
so we may have to define a domain in terms of malformed-
ness. In these cases there is a symbol malform(·), and a
model is malformed if malform(X) can be proved true for
some X. We call domains with constraints like the former
positive domains and the latter negative domains.

Our approach highlights the second essential issue of struc-
tural semantics: How expressive should the structural se-
mantics be? We can answer this question by observing that
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the logic chosen for constraints also controls the expressive-
ness of the structural semantics through the relevant infer-
ence procedure. The table below lists multiple candidate
logics and lists the properties of their inference procedures:
Candidate Logics

Logic 2nd Order 1st Order Horn Horn+NAF

Decidability Undecid. Semi. Decid. Decid.

Monotonicity Yes Yes Yes No

Inference Algo. Varies Unit SLD SLD

Complexity Varies NP Poly Poly

Soundness Varies Yes Yes No

Completeness Varies Yes No No

Expressive logics like first or second order logic yield do-
mains with complex properties. However, the expressive-
ness of these logics can also cause well-formedness to be-
come semidecidable or undecidable. We must therefore use
a more restricted logic where decidability is guaranteed. In
Section 3 we will concretize our abstract discussion by choos-
ing a highly decidable subset of first order logic, called Horn
logic [12]. Other work using Horn logic to domain specific
semantics has been presented in [9]. These observations also
hold for other types of formalisms. For example, if we had
used λ-calculus to formalize constraints, then we would not
be able to decide if two sets of constraints are equivalent, as
this is undecidable in λ-calculus.

2.2 Semantics and Model Transformations
Domains carry meaning beyond that of structure. For

example, the model in Figure 2 describes a computational
apparatus that operates on a continuous stream of data.
Though the meaning of this diagram may appear obvious
because of the way the model is drawn, we cannot rely on
this obviousness as a definition of how a model defines a
system. Instead, we must explain precisely how DSP mod-
els define computational systems. This is typically done by
specifying a code generator that produces an implementa-
tion from a model. A code generator might map models
from the DSP domain to models of a C++ domain. Thus,
meaning is affixed to a domain by specifying a mapping from
models in one domain to models in another domain. We call
such a mapping an interpretation.

Definition 3. An interpretation � � is a mapping from the
models of one domain to the models of another domain.

� � : RΥ 
→ RΥ′ (4)

A single domain may have many different interpretations,
and these form a family of mappings (� �i)i∈I . For some

model r ∈ RΥ, we denote the ith interpretation of r as �r�i.
The interpretations capture the semantics of a domain. For
example, verification tools map a non-trivial class of mod-
els onto the boolean domain {true, false}. We can think
of this verification tool as an interpretation � �V erify that
maps models onto a domain containing exactly two mod-
els. Similarly, simulators map models onto execution traces.
The set of all traces can be collected together into a do-
main of well-formed traces, and a simulator can be expressed

as the mapping � �Sim onto this trace domain. (Trace do-
mains often have interesting constraints that separate the
well-formed traces from the malformed ones [5].) Our ap-
proach also shows that there is no difference between se-
mantics and model transformations. Any framework that
supports model transformations also supports specification
of semantics. Finally, notice that Definition 3 is weak be-
cause interpretations are defined over all model realizations,
which may include malformed models, but we will show how
this can be strengthened. We can now define a DSML:

Definition 4. A domain specific modeling language (DSML)
L is a four tuple comprised of its domain and a (possibly
empty) set of interpretations.

L =
�

Υ, RΥ, C, (� �i)i∈I

	
. (5)

This definition differs from those presented elsewhere [7] be-
cause we expose the components of the structural semantics,
while ignoring all together the “concrete syntax”. But, other
than this emphasis, there is little conceptual difference be-
tween our definition and others.

Every domain has at least one interpretation, which is
its structural interpretation. Let ΥB contain two nullary
(arity 0) function symbols {true, false}, and let the set of
well-formed models be


 {true}, {false} �. The structural
interpretation of a domain � �struc is a mapping onto RΥB

according to:

(�r� = {true}) ⇔ (r |= C)
(r |�= C) ⇔ (�r� = {false}). (6)

The structural interpretation maps a model r to the true
model if r satisfies its structural constraints. Otherwise r is
mapped to false.

The framework of formal logic can also be used to specify
interpretations. Recall that a model is just a set of variable-
free definite clauses. Given a model r and some logic state-
ments τ , we can deduce more definite clauses from r ∧ τ .
If τ is correctly defined, then the new variable-free definite
clauses derived from r ∧ τ are the transformed model. We
will make this more precise by first defining a transforma-
tion.

Definition 5. A transformation T is a three tuple:

T = 〈Υ,Υ′, τ〉 (7)

where Υ,Υ′ are sets of n-ary function symbols, and τ is a
set of logical statements.

A model r ∈ RΥ is transformed to a model r′ ∈ RΥ′ by
first combining r with τ (r ∧ τ), and then by generating all
possible deductions from this set of sentences. The resulting
set of deductions is projected onto the function symbols of
Υ′, producing a model purely in RΥ′ . This can be described
more precisely in terms of fixed-points.

Definition 6. Given a transformation T , a transforma-
tional interpretation � �T is a mapping:

� �T : RΥ 
→ RΥ′

�r�T =
�
ψ ∩H(Υ′,Σ)

�
,

(8)

where ψ is a maximum set such that (r ∧ τ) 	 ψ.

The set ψ is a fixed-point generated by repeated application
of the relevant inference procedure 	. The properties of
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ψ depend on the style of logic for τ . For example, cyclic
logic or logic with recursion may yield an infinite number of
deductions. Non-monotonic logics may yield multiple fixed-
points. To avoid these problems, transformations should
be specified with a set of acyclic statements in a monotonic
logic, but this is not a requirement of our abstract formalism.

Interpretations that preserve the structural semantics of
domains are particularly important to embedded system de-
sign. An interpretation preserves the structural semantics if,
whenever a model r is well-formed, the transformed model
�r�T is also well-formed:

∀r ∈ RΥ, (r |= C) ⇒ (�r�T |= C′) (9)

Correct-by-construction (CbC) design is a design approach
wherein structurally correct models are also behaviorally
correct models with respect to certain properties. For exam-
ple, the time-triggered language Giotto [21] requires a sys-
tem to be described as a set of harmonically periodic tasks
that communicate through single place buffers. This class
of systems is provably free from communication deadlock,
so designs meeting these well-formedness rules need not be
checked for deadlock freedom. Of course, there are non-
periodic systems without communication delays that are
also deadlock free, but these systems require hard analysis
algorithms and cannot be specified in a language like Giotto.
Therefore, CbC tools exclude some good systems, consider-
ing them to be improper, as shown in Figure 3. Structure

NO YES NO YES

Proper
Designs

Design
Space

Deadlock free Schedulable

Figure 3: A correct-by-construction DSML.

preserving maps into CbC DSMLs inherit the properties of
the DSML. If a structure preserving map � �T transforms
models from a domain D to the Giotto domain DGiotto, then
every well-formed r is guaranteed to be deadlock free as in-
terpreted by � �T . This observation is significant because it
means that structure preserving maps can become property
preserving maps (where “property” implicitly means an im-
portant behavioral property of the system). For restricted
classes of logic, we can automatically verify if a map is struc-
ture preserving. If structure implies behavioral correctness,
as is the case for CbC DSMLs, then our verification proce-
dures are equivalent to verifying property preservation.

2.3 Metamodels and Metamodeling
DSML structures and interpretations provide the most ba-

sic foundations for model-based embedded system design. In
this section we formalize more advanced DSML design prin-
ciples using our formalization as a foundation. Specifically,
we formalize the metamodeling process by which new do-
mains are rapidly defined via the construction and interpre-
tation of metamodels. A metamodel is a model that belongs
to a special DSML called a metamodeling language. For

example, GME supports a metamodeling language, called
MetaGME, based on UML class diagrams. The metamod-
eling language provides an interpretation that maps meta-
models to domains. This process allows users to concisely
“model” their domain, and then generate the domain con-
cepts and constraints from the model.

src
0..*

dst0..*

0..*
0..*

StartState

fieldAction :
fieldTrigger :

Transition

boolIsAndState :

State

Figure 4: MetaGME metamodel for HFSM.

Figure 4 shows a MetaGME metamodel for hierarchical
finite state automata. The boxes in the model are class
definitions, and class members are listed under the class
names. For example, the Transition class has Trigger

and Action members, both of type field (or string). The
metamodel also encodes a graph class by associating some
classes with vertices and other classes with edges. The State
and StartState classes correspond to vertices; instances
of the Transition class are edges. The diagram also de-
clares which vertex types can be connected together, and
gives the edge types that can make these connections. The
solid lines passing through the connector symbol (•) indi-
cate that edges can be created between State vertices, and
the dashed line from the connector to the Transition class
indicates that these edges are instances of type Transition.
The diagram encodes yet more rules: Lines that end with
a diamond indicate hierarchical containment, e.g. State in-
stances can contain other states and transitions. Lines that
pass through a triangle (�) identify inheritance relation-
ships, e.g. a StartState inherits the properties of State.

This example illustrates two important points about meta-
modeling languages. First, a small metamodel can define
a rich domain that may include a non-trivial inheritance
hierarchy, a graph class, and other concepts like hierar-
chical containment and aspects. Metamodels are concise
specifications of complex domains. Second, the meanings
of metamodeling constructs are tedious to define, and the
language appears idiosyncratic to users. This problem is
compounded by the fact that competing metamodeling lan-
guages are “defined” with excessively long standards: The
GME manual [13], much of which is devoted to metamod-
eling, is 224 pages. The Meta Object Facility (MOF) lan-
guage, an OMG standard used by MDA and UML, requires
a 358 page description [19]. These long natural language de-
scriptions mean that tool implementations are likely to differ
from the standards, and that the standards themselves are
more likely to be inconsistent or ambiguous.

We hope to alleviate some of these problems by formal-
izing the metamodeling process. A metamodeling language
Lmeta is a DSML with a special interpretation � �meta (called
the metamodeling semantics) that maps models to domains:

Lmeta = 〈Υmeta, RΥmeta , Cmeta, (� �struc, � �meta)〉 (10)

The interpretation � �struc is the usual structural semantics
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that indicates if a metamodel r is a well-formed model. If r
is well-formed, then �r�meta maps r to a new domain. There
is one technical caveat: Interpretations map from models of
one domain to models of another domain. In order to make
a mapping from models to domains, we need to create a
domain of domains. In another words, we must create a
structural semantics for domains. We will show this in more
detail in Section 3.

Though our formal specifications are not necessarily any
less tedious to define, they serve as more than just defini-
tions. For example, given two different metamodeling lan-
guages Lmeta and L′

meta we can sometimes translate a meta-
model in Lmeta to an equivalent metamodel in L′

meta [17].
When this can be done automatically, domains and mod-
els can be correctly exchanged between competing tools. If
� �meta is defined transformationally, then the definition can
be automatically turned into an implementation according
to Equation 8. Some metamodeling languages are meta-
circular, meaning there exists a metamodel rm such that
�rm�meta is the same domain as the metamodeling language.
The model rm is called a meta-metamodel, and it can serve
as a concise piece of documentation for the metamodeling
language. Our approach also leads to algorithms for auto-
matically proving the existence of a meta-metamodel and
for deriving a meta-metamodel.

2.4 Summary
Figure 5 shows a modern view of embedded systems design

that is prototypical of platform-based design [6], [16]. The
middle plane (Plane II) contains a DSP model with an as-
sociated simulation semantics. This semantics is just one of
the many interpretations of the DSP model. Another inter-
pretation is obtained by transforming the DSP model into
a concurrent automata model, as shown in bottom plane
(Plane III). If this transformation is structure preserving,
and the target class of automata have known good prop-
erties, then the DSP model also inherits these properties
through the model transformation. The DSP and automata
domains are concisely defined with metamodels shown in the
top plane (Plane I). The arrows from the metamodels to the
lower planes indicate that the domains within these planes
were generated by application of the metamodeling seman-
tics � �meta. All of the components in Figure 5 are unified
into a coherent mathematical whole using our formalization
of DSMLs. In the next section we will derive a version of
this formalization based on a restriction of first order logic.
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Figure 5: Modern embedded systems design.

3. DSMLS WITH HORN LOGIC
In this section we will develop a version of our formal-

ism where we require well-formedness to be decidable in
polynomial time. This is a reasonable requirement, because
without this constraint any decision problem (e.g. deadlock
freedom, schedulability, etc...) can be made into a well-
formedness rule. Intractable well-formedness rules would
lead to domains wherein large models cannot be constructed.
This would break the scalability of model-based design. The
formalism we develop is based on a restricted form of first
order logic called Horn logic.

Horn logic is a subset of first order logic with well-known
polynomial time inference procedures, so domains defined
with Horn logic will be scalable. A Horn clause is a disjunc-
tion of literals with at most one non-negated literal. Horn
clauses can be written in the familiar implicative normal
form with implicit universal quantification over variables:

L1 ∧ L2 ∧ . . . ∧ Ln ⇒ H (11)

The literals L1, . . . , Ln are called the tail of the clause. The
literal H is called the head of the clause. We further restrict
the logic to be acyclic, meaning that there does not exist a
sequence of sentences such that3:

L1
1 ∧ L1

2 ∧ . . . ∧ L1
m1 ∧Hn ⇒ H1

Li
1 ∧ Li

2 ∧ . . . ∧ Li
mi

∧Hi−1 ⇒ Hi

Ln
1 ∧ Ln

2 ∧ . . . ∧ Ln
mn

∧Hn−1 ⇒ Hn
(12)

Cycles of this form a similar to algebraic loops; in logic they
can lead to an infinite number of conclusions, so they are not
suited for our purposes. Horn logic is already implemented
in programming languages like Prolog, usually with the SLD
resolution algorithm [3]. For simple problems, like checking
well-formedness, we can directly use these existing tools.
However, most of the analysis problems we encounter require
more sophisticated tools. For these tasks we have developed
new tools specifically for analyzing DSMLs. We will now
concretize our formalism with Horn logic.

3.1 Domains and Structural Semantics
Domains defined with Horn logic inherit all of the formal-

ism that we previously described. In this section we show
how to define the DSP domain with Horn logic, which means
writing the constraints in the proper form. There are a num-
ber of constraints on the DSP domain. For example, legal
DSP models do not have dataflow connections that start
(end) on system outputs (inputs). (This is not true for in-
terfaces.) The following rules capture this malformedness
criteria:

flow(x1, y1, x2, insig(y2)) ⇒ malform(insig(y2))
flow(x1, outsig(y1), x2, y2) ⇒ malform(outsig(y1))

(13)
Unfortunately, not all constraints can be written as pure
Horn clauses. For example, each instance of a DSP primi-
tive (inst(x, y)) must identify a properly defined DSP prim-
itive (y = prim(y′)). If we define the positive constraint
inst(x, prim(y)) ∧ prim(y) ⇒ wellform(x), then models
with at least one correctly declared instance will be iden-
tified as correct. The constraints should express that ev-
ery occurrence of inst(x, prim(y)) must have an occurrence

3The superscript is the sentence number and the subscripts
order the terms within a sentence
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of prim(y), but this requires a unique constraint for each
inst(x, prim(y)) and makes the set C dependent on r.

We must extend Horn logic in order to handle these types
of constraints, and two well-known extensions are possible:
lists and negation-as-failure. Lists allow smaller proofs to
be accumulated into larger proofs. For example, if we could
build a list of all occurrences of wellform(x) and a list of
all occurrences of inst(x, prim(y)), then the model would be
well-formed if the lists were the same length. This extension
works well for proving well-formedness of a given model r.
However, our goal is also to find the existence of models that
satisfy certain properties, and lists significantly complicate
existence proofs because their lengths cannot be bounded.

The other option is to introduce a form of negation so that
the constraint would become inst(x, prim(y))∧¬prim(y) ⇒
malform(x). In another words, a model is malformed if for
some inst(x, prim(y)) there does not exist a corresponding
prim(y). The negation used here is not typical negation,
but negation-as-failure (NAF). In order to distinguish NAF
from true negation, we will use the (non-standard) symbol
!. Negation-as-failure means that !L is true if the positive
literal L cannot be proved. Negation-as-failure has a signifi-
cant disadvantage: If used improperly, the proof techniques
of Horn logic become unsound and can make incorrect de-
ductions. In order to avoid this, we permit a restricted form
of NAF, though we will not prove its soundness here:

Remark 1. Given r, C, (with r ∧ C acyclic) and a sen-
tence (. . . , !Li, . . . , Lj , . . . ⇒ H) ∈ C, the following proper-
ties must hold4:

1. There exists some variable x in !Li such that x is also
in a positive literal Lj , (i �= j)

2. If variable y is in !Li and y is not in a positive literal Lj ,
then y cannot not appear in another negative literal
!Lk, (k �= i).

Though NAF must be used carefully, it does not lead to un-
bounded search spaces, so analysis problems can be solved.
The following are some constraints for the DSP language
using negation-as-failure.

1. Instances must use primitives that are defined:
inst(x, prim(y))∧!prim(y) ⇒ malform(x),

2. Ports are placed on defined primitives:
iport(prim(x), y)∧!prim(x) ⇒ malform(y),

3. Dataflow connections must start on defined ports:
flow(x, oport(prim(y), z), u, w)∧!oport(prim(y), z) ⇒
malform(z).

We will encounter important analysis problems for Horn
domains. Most commonly, we must decide if two Horn do-
mains define the same set of models. Let ΥC be all the
function symbols used to define the constraints C. Given
two domains with (Υ, C) and (Υ′, C′), we rewrite the con-

straints C,C′ to C,C
′
, such that:

((ΥC ∪ Υ) ∩ (ΥC
′ ∪ Υ′)) − (Υ ∩ Υ′) = ∅ (14)

In another words, we rewrite the constraints so that the only
symbols in common are those of the model primitives. As-
suming that both domains are Negative Horn Domains, we

4There may be additional requirements on ordering imposed
by the particular NAF implementation.

proceed to find a model r that is in the first domain and not

in the second: (C∧C′∧r) 	 (!malform1(x)∧malform2(y)).
If no such r exists then we know that D(Υ, C) ⊆ D(Υ′, C′).
We then try to find a model r′ that is in the second do-

main and not in the first: (C ∧ C′ ∧ r′) 	 (!malform2(x) ∧
malform1(y)). If neither r nor r′ exists, then the domains
must define the same set of models. This method is sim-
ilar to methods for proving the equivalence of two formal
languages. We use D ∼= D′ to denote equivalence of two do-
mains, and C ∼= C′ to denote equivalence of two constraint
sets.

3.2 Semantics and Interpretations
We use Horn logic to define transformational interpreta-

tions by writing transformations as a set of Horn sentences.
The set ψ of Equation 8 becomes the fixed-point of the for-
ward chaining procedure, which is a well-known algorithm
for generating all of the conclusions from a set of Horn sen-
tences. The fixed-point ψ is unique because the logic is
monotonic5 and it can be computed in finite time because
the logic is acyclic.

We now illustrate Horn interpretations with one of the
simplest composition semantics, the asynchronous (shuffle)
product of finite state automata. Given two automata A1,A2,
each with a set of states Qi, a set of initial states Q0

i , a fi-
nite alphabet of events Σi, and a transition relation −→,
the asynchronous product forms a product automata such
that no transition from A1 is simultaneous with a transition
from A2. The rules for composition are:

Σ1,2 = Σ1 ∪ Σ2, Q1,2 = Q1 ×Q2, Q
0
1,2 = Q0

1 ×Q0
2

(s1
α−→1 s

′
1) ∧ s2 ⇒ (s1, s2)

α−→1,2 (s′1, s2)
s1 ∧ (s2

α−→2 s
′
2) ⇒ (s1, s2)

α−→1,2 (s1, s
′
2)

(15)

Before we can give the Horn interpretation, we must give
an encoding of automata so that the interpretation has a
well-defined domain/codomain. Let si(x) denote that x is a
state of Ai, initiali(x) denote that x is an initial state of Ai,
eventi(x) denote that x is an event of Ai, and let ei(x, a, x

′)
denote x

a−→i x
′. Let the input domain be defined by:

Υ =

�
s1(x), s2(x), initial1(x), initial2(x),

event1(x), event2(x), e1(x, a, x
′), e2(x, a, x′)



(16)
and the output domain be defined by:

Υ′ =

�
s1,2(x), initial1,2(x),

event1,2(x), e1,2(x, a, x
′)


(17)

The asynchronous (shuffle) product of automata A1 and
A2 is given by the Horn transformation Tasync = 〈Υ,Υ′, τ〉
where:

τ =

�������
������

event1(x) ⇒ event1,2(x),
event2(x) ⇒ event1,2(x)
s1(x) ∧ s2(y) ⇒ s1,2(x, y)

initial1(x) ∧ initial2(y) ⇒ initial1,2(x, y)
e1(x, a, x

′) ∧ s2(y) ⇒ e1,2((x, y), a, (x
′, y))

s1(x) ∧ e2(y, a, y′) ⇒ e1,2((x, y), a, (x, y
′))

(18)

We now apply this transformation to the two example au-

5This claim is not always true when using NAF, but we will
not discuss this issue here.
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tomatons in Figure 6. Automaton A1 is encoded as:

rA1 =

��
�

event1(e1), event1(e2),
initial1(A), s1(A), s1(B), s1(C),
e1(A, e1, B), e1(A, e2, C)

(19)

Automaton A2 is encoded as:

rA2 =

�
event2(e3), initial2(D),
s2(D), s1(E), e2(D, e3, E)

(20)

The forward chaining of (rA1 ∧ rA2)∧ τ yields the following
additional deductions:

rA1,2 =

���������
��������

event1,2(e1), event1,2(e2), event1,2(e3),
initial1,2(A, D), s1,2(A, D), s1,2(A, E),
s1,2(B, D), s1,2(B, E), s1,2(C, D),
s1,2(C, E), e1,2((A, D), e1, (B, D)),
e1,2((A, D), e2, (C, D)), e1,2((A, D), e3, (A, E)),
e1,2((B, D), e3, (B, E)), e1,2((C, D), e3, (C, E)),
e1,2((A, E), e1, (B, E)), e1,2((A, E), e2, (C, E))

(21)

The deductions in rA1,2 are all in the Herbrand Universe of
the target domain, H(Υ′,Σ), so rA1,2 is the asynchronous

interpretation �rA1 ∧rA2�Tasync . The reader can more easily
verify this by considering the graphical rendering of rA1,2 in
Figure 7.

A1

A

B C

A2

e1 e2 D Ee3

Figure 6: Two example automata.

A1xA2

AE BE

CE CD

AD BD

e1

e1e2

e3

e2

e3e3

Figure 7: Asynchronous product via � �Tasync .

3.3 Metamodeling Semantics
Correctly formalizing metamodeling requires us to address

a technical, but important issue. Interpretations map mod-
els to models, but the metamodeling semantics maps mod-
els to domains, which are (infinite) sets of models. On the
surface it would appear that our notion of an interpretation
cannot handle this concept. However, we also know that our
domains are defined by a finite set of symbols along with a
finite set of constraints. The key is to exploit the fact that

domains can be finitely represented, and then to build a do-
main where finite models are isomorphically related to finite
sets of constraints. We will call this domain DHorn, because
it must represent domains with constraints written as Horn
clauses. Models that are transformed onto DHorn can be
related to a domain through this isomorphism. Semantics
built from other logical styles require developing other iso-
morphisms, but we do not believe this to be difficult.

Before we define DHorn, we will build the reader’s intu-
ition by showing the conversion of a set of Horn Clauses into
a model that only has variable-free definite clauses. We use
this following isomorphism δ to convert clauses into models.

Definition 7. Let Υ∗ be a set of n-ary function symbols
such that {constraint, neg, var} ⊂ Υ∗. The domain repre-
sentation function δ is a mapping from a set of Horn sen-
tences C to a set of variable-free definite clauses according
to the following structural induction:

1. Let si ∈ C, then δ(s1, s2, . . . , sm) =
�

i δ(si)

2.
δ
�
L1, . . . , !Li, . . . , Ln ⇒ H

�
=

constraint(δ(H), δ(L1), . . . , neg(δ(Li)), . . . , δ(Ln))

3. δ
�
f(. . . , x, . . .)

�
= f(δ(. . .), var(x), δ(. . .)), where x

is a variable, x is a constant in Σ∗, and f ∈ Υ∗.

4. δ
�
f(. . . , c, . . .)

�
= f(δ(. . .), c, δ(. . .)), where c is a

constant in Σ∗.

This definition assumes that each sentence is the same length,
but this is not a problem because sentences can be padded
with the nullary function true. Consider some of the con-
straints from the DSP language:

C =
flow(x1, y1, x2, insig(y2)) ⇒ malform(insig(y2)),

inst(x, prim(y))∧!prim(y) ⇒ malform(x)

According to the structural induction of Definition 7, we
conclude that:

δ(C) =

constraint

�
malform(insig(var(y2))), f low(var(x1),
var(y1), var(x2), insig(var(y2))), true

�
,

constraint

�
malform(var(x)), inst(var(x),
prim(var(y))neg(prim(var(y)))

�

If we make a simplifying assumption that the symbols neg,
var, and constraints are only used to encode Horn sen-
tences, and are not used in any other domains, then it is
easy to see that the inverse δ−1 exists and maps models
back to sets of constraints. (We do not need to make this
assumption.) From the encoding given by δ, we also see
that the set of function symbols Υ∗ must contain the func-
tion symbols of all domains. We therefore construct Υ∗ so
that it contains all possible function symbol names Σ∗6. The
well-formedness rules of the domain eliminate models that
do not encode to well-formed Horn sentences. We will not
describe all of these rules here.

We can now define a metamodeling semantics transforma-
tionally by writing a transformation Tmeta from metamodels
to models of the Horn domain DHorn. The actual domain is

6This does not correctly handle the arity of functions. Han-
dling this requires a more complicated encoding that de-
tracts from the simplicity of the δ shown here.

60



recovered by applying δ−1. We abbreviate this process with
the notation meta(r), where r is a well-formed metamodel.

meta(r) 
→ 〈ΥC , RΥC , δ
−1(�r�Tmeta)〉 (22)

Several important observations come from our formaliza-
tion of the metamodeling process. Two metamodels are
equivalent if the domains they define are equivalent:

Definition 8. Given two metamodels r and r′, the meta-
models are said to be equivalent, written r ∼= r′ if:

δ−1(�r�Tmeta) ∼= δ−1(�r′�Tmeta) (23)

The process for checking this equivalence was given in Sec-
tion 3.1. Another important property is metacircularity.
UML [20], MOF, and MetaGME all assume this property,
but it has never been formally verified in the literature.
With Horn logic, we can formally define and check for this
property:

Definition 9. A metamodeling language Lmeta is metacir-
cular if:

∃rm ∈ Dmeta, δ
−1(�rm�Tmeta) ∼= Cmeta (24)

The model rm is called the meta-metamodel.

Proving metacircularity is harder than proving equivalence
of two metamodels, because the search algorithms that find
rm must account for all possible encodings of Cmeta inDHorn.
In another words, it is not sufficient to search for metamod-
els that map to δ(Cmeta); one must also search for meta-
models that map to any other δ(C′) such that C′ ∼= Cmeta.
This problem is decidable if additional care is taken in defin-
ing the encoding δ and in writing the transformation Tmeta.
However, we will not discuss these details further.

Our formalism also has interesting implications on current
standards like MDA, UML, MOF, and MetaGME. To vary-
ing degrees, these standards use the term meta-metamodel
synonymously with “the definition of the metamodeling lan-
guage”. However, we have shown that a meta-metamodel is
not a definition of the metamodeling semantics. Rather, it
is a consequence of the metamodeling semantics, and this
is why it can be automatically discovered. This recognition
is more profound than just misuse of terminology, because
today’s metaprogrammable modeling tools are hard-coded
with a particular metamodeling language. If the metamod-
eling semantics is viewed as just another model transfor-
mation, then there becomes no reason to hard-code a tool
around a particular meta-metamodel. The fundamental con-
cepts that should be fixed are the way primitives are com-
posed into models (i.e. via the Herbrand Universe) and the
style of logic used to write constraints and transformations.
Tools built up from this foundation could simultaneously
support many different metamodeling languages, and new
metamodeling languages could be arbitrarily created with-
out rewriting the tool. Even without rebuilding tool infras-
tructure, metamodels should be viewed as formal entities,
and as such, it should be possible migrate them across dif-
ferent tools while preserving their structural semantics.

3.4 Analysis and Verification
Unfortunately we have little space to discuss all the details

of analysis and verification. We will try to briefly outline the
approach we have developed in our tool FORMULA (For-
mal Modeling Using Logic Analysis). First, let us describe

in more detail the problems that can be solved in languages
like Prolog. Logic programming languages make the fun-
damental assumption, called the Closed World Assumption
(CWA), that all information known about the world is ex-
plicitly stated. CWA means that we can prove anything
about a given model. In fact, with Horn logic, we can prove
anything in polynomial time. Thus, classical tools work per-
fectly well for answering queries about a single model, such
as “Is the model well-formed?”.

More complicated analysis problems, like checking equiv-
alence of domains, require finding the existence of a world
that satisfies a certain property. Tools that handle these
queries must know about the (infinite) set of all worlds and
the constraints that bound this set. Clearly, this set must be
searched carefully, otherwise algorithms can easily become
undecidable. Classical logic programming is not suited to
solve these problems, though these languages can be used as
a foundation to implement the necessary algorithms. How-
ever, logic programming languages must be used carefully
because they usually come with a rich set of built in func-
tions. For example in Prolog one may write:

f(Y) :- a(X), Y is 4*X;

g(Y) :- b(X), Y is 2*X;

If we wish to find a model r such that r 	 f(Y )∧g(Y ), then
we must solve the linear equation 4x1 = 2x2. An analysis al-
gorithm that handles these innocent looking functions would
require a complete numerical solver. FORMULA does not
handle these built in functions but it does correctly handle
NAF and disequalities ( �=).

FORMULA is given a list of function symbols, function
arities, Horn sentences, and a property φ. It then finds
a model r containing only the function symbols of Υ such
that r 	 φ. The function symbols are divided into three
types in, closed, and private. Function symbols marked in
are members of Υ. Function symbols marked closed are
members of Υ, but their possible values are already given. If
the user marks all symbols of Υ closed , then the user forces
CWA. Function symbols marked private are used only for
calculating constraints and transformations. They will not
be included in the final solution.

Working backwards from the property φ, FORMULA con-
structs a backwards chaining tree that terminates at func-
tion symbols in Υ. If an Υ symbol is reached, and it contains
variables that are not constrained to a constant, then each
variable is given a unique value from Σ∗ that does not appear
anywhere else. If a NAF literal !Li is encountered, then all
permutations of the tail of Li and any heads that unify with
Li that do not prove Li are added to the backwards chain-
ing tree. If not proving Li requires not proving some other
literal L′, then a constraint !L′ is added to the tree. When-
ever this constraint is enabled, it applies globally to all past
and future deductions, and it may cause failure of a possible
solution. In essence, this converts the NAF to a form of con-
structive negation that does not suffer from the soundness
problems of NAF [4]. For this reason, we can also solve for
properties that violate the previous restrictions we placed on
negation (e.g. r 	 malform1(X) ∧ !malform2(Y )). FOR-
MULA also implements backtracking and will search from
every possible restart location before failing. FORMULA
contains built in functions for renaming sets of constraints,
for generating the possible encodings of a set of Horn sen-
tences in the domain DHorn, and for converting back and
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forth from DHorn and sets of Horn sentences. In summary,
it provides a powerful formal foundation for analyzing Horn-
based DSMLs.

4. DISCUSSION AND CONCLUSION
The aim of this paper was to present our formal founda-

tion for DSMLs. Unfortunately, this has not left us room
to show how this formalism is used with existing tools. In
parallel with our formalism, we have been developing a tool
suite called 4ml (pronounced formal) that interfaces with
GME, MetaGME, and the graph rewriting tool GReAT.
Currently we can import and export existing GME models
and metamodels with the tool GME-4mlizer. After a GME
model is converted to a set of definite clauses it can undergo
well-formedness checking and transformations. We are cur-
rently working on formalizing all of MetaGME’s metamodel-
ing semantics so that every existing metamodel can be trans-
formed into its corresponding formal definition. Addition-
ally, we are developing a tool, called the GReAT-4mlizer,
that converts a subset of GReAT graph transformations into
Horn transformations. This process has the added benefit
of formalizing attribute mappings, which are currently infor-
mal in GReAT. As previously described, FORMULA is the
centerpiece tool for analysis of DSMLs. This formalization
also opens up avenues for new tools. For example, given a
polynomial time structural semantics, we can generate do-
main specific real-time constraint checking engines. Such
engines are useful for embedded systems that take models
as input or modify internal models in real-time. These en-
gines can be deployed independently of GME and optimized
for the particular domain from which they were generated.
Our ongoing work is to produce a formal backplane on top
of which existing tools will sit. More detailed information
on our tool suite can be found at [1].

This work has evolved naturally from our previous work
on using separation of concerns for embedded system de-
sign [14] and on the semantic anchoring of DSMLs [15]. Both
of these research strands identified the need for a rigorous
understanding of the modeling and metamodeling process.
In [14], we identified structural constraints that conserva-
tively approximate behavioral properties of synchronous re-
active systems in polynomial time. We now understand that
we actually defined two Horn domains, one with correct-
by-construction properties, and a structure preserving map
between these domains. In the semantic anchoring work
of [15] we transformed domains into ASM datamodels, but
we lacked a precise definition of domains and transforma-
tions. With this formalism, we now understand these con-
cepts and we hope to leverage them to create a more compre-
hensive union between structural and behavioral semantics.
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