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ABSTRACT
Video kiosks increasingly contain powerful PC-like embed-
ded processors, allowing them to display video at a high
level of quality. Such video display, however, entails signifi-
cant energy consumption. This paper presents an approach
to reducing energy consumption by adapting the CPU clock
frequency. In contrast to previous approaches, we exploit
the specific behavior of a video kiosk. Because a kiosk plays
the same set of movies over and over, we choose a CPU
frequency for a given frame based on the computational re-
quirements of the frame that were observed on earlier it-
erations. We have implemented our approach in the legacy
video player MPlayer. On a PC like those that can be found
in kiosks, we observe increases in battery lifetime of up to
2 times as compared to running at the maximum CPU fre-
quency on a set of high resolution divx movies.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-purpose
and application-based systems—Real-time and embedded sys-
tems

General Terms
Algorithms, Performance, Measurement

Keywords
Dynamic voltage scaling, multimedia application, embedded
systems

1. INTRODUCTION
Video kiosks are becoming commonplace in bus stops, air-

ports, and other public places where people need entertain-
ment and information. Because such kiosks run continu-
ously, power management is critical, both to reduce costs
and to allow the use of limited energy sources such as so-
lar power for outdoor kiosks and battery power for mobile
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ones. Video kiosks, however, have high computational re-
quirements, as they must be able to display complex videos
at a level of quality that meets audience expectations. These
computational requirements entail a high rate of CPU power
consumption.

An effective strategy for reducing CPU power consump-
tion is to reduce the CPU voltage, which leads to a quadratic
energy savings [4]. Nevertheless, reducing the voltage im-
plies a corresponding reduction in the CPU frequency, which
slows application execution. Because applications can tol-
erate such a slowdown to a varying degree, recent proces-
sors allow dynamic voltage scaling (DVS), i.e., changing the
voltage during program execution [10]. A number of power
management strategies have been developed around this fa-
cility [5, 11, 13, 14, 18, 19]. These strategies dynamically
choose the minimum frequency that will allow an applica-
tion to meet its timing requirements, and have been shown
to result in significant energy savings for a variety of appli-
cations, including MPEG video [5, 11, 13].

The difficult part of a DVS strategy is to anticipate the
computational requirements of the application. General-
purpose approaches observe recent CPU load and assume
that upcoming load will be similar [5, 17, 18]. Video codecs,
however, use compression strategies that imply that frames
vary significantly in their complexity, meaning that recent
computational requirements are a poor predictor of upcom-
ing behavior [8]. While some success has been achieved for
MPEG and MPEG-2 video using such predictive approaches
[5], the problem is compounded for modern codecs such as
divx, which offer a very high compression ratio. To avoid
the problems of generic prediction, other approaches have
resorted to modifying the video decoding algorithm or the
operating system (OS), in order to obtain more precise infor-
mation about computational requirements [15, 19]. These
approaches, however, are not easily portable, and require
substantial expertise to implement.

This paper. In this paper, we propose a new power man-
agement approach, History-based DVS (HbDVS), that takes
advantage of the specific properties of video kiosks. As com-
pared to general-purpose video players, a video kiosk typ-
ically plays the same set of videos over and over. Thus,
our approach predicts a frame’s computational requirements
based not on recent behavior in the current iteration, but
on the behavior for the same frame in a previous iteration.
We show furthermore that when the video player is the only
application, as is the case in a kiosk, the variance in the
computation time for a given frame between different itera-
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tions of a video is very low. Thus, our approach chooses a
frequency for each frame in the early iterations of the video,
and then uses the chosen frequency subsequently.

Our approach offers the following advantages:

• It requires adding only a few lines of code to the mul-
timedia player and no modifications to the OS. Thus,
it can be integrated easily into legacy systems.

• It is independent of the video format, and thus re-
mains applicable as new, more efficient, formats are
developed. In our tests, we use divx videos, as this
format is widely used and provides a high compression
ratio, reducing the duration of I/O when reading from
the disk, which provides further energy savings.

• It is online and thus does not require prior access to
the installed hardware. This property is crucial when
a video kiosk network uses diverse hardware platforms.

• It is effective on both high resolution and low resolu-
tion videos, increasing battery lifetime by up to 109%
as compared to the maximal frequency and 40% as
compared to the Linux tool powernowd, with no per-
ceptible loss of quality.

The rest of the paper is as follows. Section 2 describes pre-
vious work on DVS, focusing on approaches that have been
applied to multimedia applications. Section 3 investigates
properties of divx video that have an impact on power man-
agement. Section 4 presents our solution, Section 5 evaluates
the resulting energy savings, and Section 6 concludes.

2. RELATED WORK
The two main categories of DVS algorithms are interval-

based algorithms and task-based algorithms [16]. In addi-
tion, some video-specific approaches have been proposed.

2.1 Interval-based algorithms
Interval-based algorithms monitor the CPU load at var-

ious time intervals. According to the observed load, the
algorithm changes the CPU frequency and voltage.

One such algorithm is PAST [17], which is implemented in
the Linux powernowd tool. PAST is based on the assumption
that upcoming CPU requirements will be similar to recent
ones. Thus, if the previous interval was mostly idle (load
under 50%), PAST decreases the CPU speed, and if the
previous interval was mostly busy (load over 70%), PAST
increases the CPU speed. Variants have been proposed that
weight the observed loads in various ways [7].

Interval-based algorithms are typically simple and appli-
cation independent. Nevertheless, experiments that test
these algorithms in practice [8, 13] show that CPU utiliza-
tion by itself does not provide enough information about
application timing requirements to ensure both meeting ap-
plication quality of service requirements and saving energy.

2.2 Task-based algorithms
While interval-based algorithms consider the entire CPU

workload within an interval, task-based algorithms distin-
guish between the computational requirements of individual
tasks.

Vertigo is a task-based voltage manager for Linux [5]. It
uses information collected at the OS level to classify tasks

as interactive or periodic. For each category of task, Ver-
tigo provides a specific strategy for accumulating a task’s
recent computational requirements and choosing an appro-
priate frequency. This approach has been successfully ap-
plied to playback of MPEG videos. Nevertheless, by the
published measurements, playback of these videos exhibits
a large percentage of idle and sleep time, suggesting that
they are not as demanding as the divx videos we consider.
Furthermore, the approach requires modifications to the OS.

Weissel and Bellosa [18] use hardware events as the ba-
sis for choosing the clock frequencies for different process.
The motivation is that the rate at which a process gener-
ates various hardware events indicates its performance and
energy dissipation. Unfortunately, in the case of video, the
work done for each frame varies considerably, and thus can-
not easily be predicted from the resource requirements of
previous frames.

PACE [11] is a strategy for improving existing DVS al-
gorithms by replacing the use of a constant frequency by
a speed schedule, which begins with a lower frequency and
gradually increases the frequency, if needed. This approach
saves energy when a task completes earlier than expected.
PACE is well-adapted to applications where computational
requirements vary, as is the case for video, but introduces
many frequency changes in the more demanding parts of the
computation.

GRACE-OS also uses a speed schedule, but uses a video-
specific analysis to compute it [19]. GRACE-OS is fur-
thermore built into the process scheduler, and thus requires
modifying the OS.

2.3 Video-specific algorithms
Finally, several video-specific approaches have been pro-

posed. A key issue in applying DVS to video is the large
variation between the computational requirements of the
different frames [8]. These approaches estimate these re-
quirements online, on a frame-by-frame basis.

Burchard and Altenbernd [3] propose to separate the pro-
cessing of a video into two phases. The first phase decodes
enough of each frame to determine the elements it contains,
and the second phase completes the decoding by processing
each of these elements. Worst-case execution time (WCET)
analysis is integrated into the first phase, to estimate the
cost of completing the treatment of the various identified
elements of each frame in the second phase. This approach
requires a major reorganization of the video player.

Pouwelse proposes a process scheduler that performs DVS
based on the estimated execution times of each process [15].
For a H.263 video player, he obtains the estimated execution
time from a combination of the frame type and the frame
size. As H.263 video frames do not contain size information,
this must either be calculated by a preprocessing phase or
estimated by the player from the decoding of a portion of
the frame. Both approaches require knowledge of the video
format and the latter also requires modifying the decoder.

Im and Ha [9] observe that latency is not a critical issue
in video playback, as long as the frame rate is respected.
They thus propose to buffer a few upcoming frames in the
player, and to begin the treatment of these buffered frames
during the any slack time of the current frame. Because the
treatment of a buffered frame can then stretch over a longer
period, e.g. the slack time of the current frame plus the
frame time of the upcoming frame, it can be carried out at
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Video Resolution Frames/sec. Frame time (ms.) Frames Playing time
Madagascar preview 1280×720 24 41.67 2758 1mn 54 sec

Jarhead preview 1024×728 23.98 41.71 3159 2mn 11sec

Harry Potter and the Goblet of Fire preview 640×272 24 41.67 3379 2mn 20 sec

X-Men 3 preview 420×748 30 33.37 3112 1mn 43 sec

Figure 1: Videos and their properties

a lower frequency. Choosing the frequency and the buffer
size, however, requires knowing the WCET of each frame.

Maxiaguine, Chakraborty and Thiele [12] also consider a
buffering video player, and adjust the frequency in response
to buffer fill levels. The choice of frequency depends on
offline WCET analysis complemented with on-line monitor-
ing. This approach again relies on WCET analysis and on
a specific strategy for implementing the video player.

3. THE POTENTIAL FOR REDUCTION IN
CPU POWER CONSUMPTION

Decoding video using recent divx codec is more compu-
tationally intensive than decoding the MPEG video used
in previous DVS experiments. Nevertheless, as processor
power has increased, we show in this section that there is still
substantial room to reduce energy consumption in this case.
Our measurements were done on an Intel Pentium 4M based
Dell Inspiron laptop, with available frequencies 1700, 1400,
1200, 800 and 600 MHz. Processors such as the Pentium
4M are increasingly being used in embedded systems, and
are often necessary to display high-resolution videos. We
use the video player MPlayer (http://www.MPlayerhq.hu),
running under the Linux 2.6.12 kernel.

Figure 1 summarizes the divx videos used in our tests.
All were obtained from http://www.divx.com. Regardless
of the resolution used by the video, all videos are displayed
at a resolution of 1400x1050, corresponding to the maxi-
mum resolution of the screen of our test machine. These
videos contains both static scenes, such as titles, and highly
dynamic live-action scenes. This variety evaluates multiple
kinds of situations, since the computational requirements of
a frame depend on both the resolution and the number of
pixels that have changed since the previous frame.

3.1 The effect of frequency adaptation on
perceived quality

A power management strategy must allow the applica-
tion to maintain an appropriate quality of service. To mea-
sure the perceived quality, we use MPlayer-specific quantity
audio-video delay (A-V) which indicates the difference in
time between the end of the audio and the end of the video
display for a given frame. MPlayer gives a warning that the
processor is too slow for the video when the delay is greater
than 0.5 seconds, and thus in the analysis below we consider
this as a threshold that should not be reached.

Figures 2 through 5 present the impact of the CPU fre-
quency on the A-V delay for the videos described in Figure 1.
As shown by these figures, the behaviors fall into three cate-
gories: 1) At the higher frequencies, there is no or negligible
delay. Any overrun due to a complex frame is quickly amor-
tized by the slack time in the treatment of subsequent sim-
pler frames. For videos encoded at a high resolution, such
as Madagascar, this behavior is only achieved at the high-

est frequencies, while for videos encoded at a low resolution,
such as X-Men 3, this behavior is possible at as little as 800
MHz. 2) As the frequency decreases, the computation time
increases and there is more overrun and less slack time. An
overrun is not amortized by the next few frames and the de-
lay begins to accumulate, eventually reaching the 0.5 second
threshold. Nevertheless, the computational requirements of
frames vary greatly and, as shown by the case of Madagascar
at 1200 MHz or Jarhead at 800 MHz, the delay eventually
returns to an acceptable level. 3) When the frequency is too
low to support the requirements of the movie, overruns are
never amortized. As illustrated by Jarhead and Harry Pot-
ter at 600 MHz, the delay increases linearly until the audio
runs out, and then falls off sharply as the player displays the
rest of the frames as fast as possible.

The A-V delay gives us an externally defined metric against
which to measure the quality of service, but is specific to
MPlayer. Another, more generally applicable, perspective
on the same information is the execution time for each frame.
Figure 6 shows the execution times of frames 300-400 of Jar-
head, which include first an action sequence and then a static
title (the region circled in Figure 3). Just as the A-V delay
shown in Figure 3 indicates that the video can be played
with essentially no delay, the execution time shown here in-
dicates that most of the frames are treated within the frame
time of 41.7ms, and those that are not are quickly amortized
by later ones. At 1000 MHz, the treatment of the frames in
the action sequence always exceeds the frame time, but as
shown in Figure 3, the accumulated overrun is not enough
to cause an excessive delay. The situation changes at 800
MHz, where the treatment times are further above the frame
time and the A-V correspondingly rises to unacceptable lev-
els. Finally, at 600 MHz the treatment times of both the
action sequence and the static title are far above the frame
time, and the delay rises correspondingly. We furthermore
observe that the execution time is quite stable, with an av-
erage variance of at most 2ms over 30 runs of the video, as
shown by the right y axes in Figure 6.

3.2 The effect of frequency adaptation on
battery lifetime

To be useful, a power management strategy for a single
machine component must give an overall energy savings for
the computation, taking into account all of the relevant com-
ponents, such as the disk, the memory, the screen, etc. To
measure the impact of frequency adaptation on energy con-
sumption, we measure the time required to discharge a fully
charged 1600 mWh battery while playing a video. We have
used a rather old battery to reduce the benchmarking time.
While the absolute lifetime depends on both the compu-
tational requirements of the application and the degree of
wear on the battery, this approach measures directly the ac-
tual experience that a user could have in practice. Figure 7
presents the battery lifetime when playing the Jarhead pre-
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Figure 3: A-V delay for Jarhead
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Figure 4: A-V delay for Harry Potter
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Figure 5: A-V delay for X-Men 3
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Figure 6: Frame time and variance for Jarhead

Static frequency Battery lifetime
1700 18.2 minutes
1400 24.0 minutes
1200 25.0 minutes
1000 26.2 minutes

Figure 7: Battery lifetime when playing Jarhead

view at the frequencies that give acceptable video quality.
Playing the video at 1000 MHz increases the battery lifetime
by 44% as compared to running the CPU at full speed.

3.3 Assessment
Our experiments show that in the context of divx video

playback there is a significant opportunity for reducing power
consumption by scaling the CPU frequency. Divx videos
exhibit a high variability in computational requirements be-
tween frames and across different videos, and thus existing
power management strategies are not well suited to this set-
ting. For example, Figure 8 shows the frequencies chosen
by powernowd (version 0.96, as distributed with Ubuntu).
Powernowd most often selects 1700 MHz for this video even
though our measurements in Figure 3 show that the entire
video can run at 1000 MHz with no perceptible delay. Fur-
thermore, Figure 7 shows that using 1000 MHz rather than
1700 MHz entails a reduction of 44% in energy consumption.

fr
eq

u
en

cy

600

800

1000

1200

1400

1600

frame

Figure 8: The frequencies chosen by powernowd when
playing Jarhead

As compared to ordinary video display, however, the con-
text of a video kiosk provides an additional source of infor-
mation: the behavior of the video on previous iterations.
Our measurements show that in contrast to previously used
metrics, this metric is quite stable. Thus, we propose a solu-
tion, HbDVS, in which the CPU frequency is chosen based
on a stored history of the previous playback of a video.
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4. HISTORY-BASED DVS
Our approach, HbDVS, treats the video in two phases: an

adaptation phase and a post-adaptation phase. The adapta-
tion phase is used in the first few iterations of the video and
creates a frequency plan, containing a frequency for each
frame. The post-adaptation phase is used in all subsequent
iterations of the video and treats each frame of the video at
the CPU frequency indicated in the frequency plan.

4.1 Adaptation phase
The goal of the adaptation phase is to select a CPU fre-

quency for each frame that is as low as possible while main-
taining the video’s timing requirements. In this it uses two
modules: an optimistic frequency selection module and a pes-
simistic feedback module. The frequency selection module
assigns each frame the frequency just below the lowest one
where the player meets its frame rate, optimistically assum-
ing that subsequent frames will absorb the induced overrun.
The feedback modules detects situations where the overrun
has not been absorbed and increases the frequency for some
of the frames causing the overrun, pessimistically assuming
that otherwise it will recur on subsequent iterations.

4.1.1 Frequency selection
The frequency selection module repeatedly runs the video

iterating over the possible frequencies, from highest to low-
est. On each iteration, it identifies the frames that must be
treated at the current frequency to satisfy the video’s timing
requirements. This module uses the following concepts:

F Master: the CPU frequency associated with the current
iteration.

frequency planf : the CPU frequency assigned to frame f
(0 if no frequency has been assigned).

frame time: the amount of time available for the treatment
of each frame, i.e. the inverse of the frame rate.

ETf : the treatment time for frame f .

δ: the expected variance in the treatment time (cf. Fig. 6).

overrun: the accumulated treatment time beyond the frame -
time for the previous frames.

Within a iteration at frequency F Master, the frequency
selection module does the following for each frame f :

• Before treating the frame, the frequency selection mod-
ule sets the CPU frequency to frequency planf , if a
frequency has been assigned for f , and F Master oth-
erwise.

• After treating the frame, the frequency selection mod-
ule checks whether the frame should be assigned the
frequency F Master and updates the overrun. The
frame is assigned F Master if it has not already been
assigned a frequency and if the following holds:

ETf + δ + overrun > frame time

The new overrun is computed as follows:

overrun = max(0, overrun + (ETf − frame time))

We do not record a negative overrun, as the player
should sleep in this case. Furthermore, the overrun
does not contain the variance, as the overrun is a mea-
sure over multiple frames, and the variance at each
frame is thus assumed to cancel out.

frm ET freq over-
run

1 45 1000 4
2 38 1000 1
3 38 0 0
4 25 0 0

frm ET freq over-
run

1 45 1000 4
2 38 1000 1
3 41 800 1
4 30 0 0

frm ET freq over-
run

1 45 1000 4
2 38 1000 1
3 41 800 1
4 34 600 0

Iteration 1: Iteration 2: Iteration 3:
F Master = F Master = F Master =

1000MHz 800MHz 600MHz

Figure 9: A simple example of frequency selection.
Execution time (ET) is in ms. A frequency in italics
is one that is obtained from the frequency plan.

At the end of a iteration at frequency F Master, all of the
frames that cannot be treated before the end of the frame
time have been assigned a frequency, either F Master in the
current iteration or some higher frequency in a previous one.

Example. We illustrate frequency selection with the follow-
ing example. Consider a processor with frequencies 1000
MHz, 800 MHz and 600 MHz, and a video of four frames
with frame time = 41ms. For simplicity, we assume that the
variance is 0. Figure 9 shows a trace for this example.

When the video is played for the first time, F Master
is 1000MHz and overrun is initially 0. The treatment of
frame 1 takes 45ms. This exceeds the frame time, and thus
the frame is assigned the frequency 1000MHz and overrun
is set to 45 − 41, or 4. The treatment of frame 2 takes only
38ms. Adding in overrun, we obtain 42ms, which exceeds
frame time. This frame is thus also assigned the frequency
1000MHz and overrun is set to 42−41, or 1. The treatment
of frame 3 again takes 38ms. Adding in overrun, we obtain
39ms, which is below the frame time. Thus, overrun is set
to 0 and no frequency is assigned to the frame. Finally, the
treatment time of frame 4 is below frame time and there is
no overrun, so no frequency is assigned to this frame.

When the video is played for the second time, F Master
is 800MHz and overrun is reset to 0. Frames 1 and 2 are
each treated at their stored frequency. Treatment of frame
3 requires 41ms, and adding the overrun gives 42ms, so this
frame is assigned the frequency 800MHz. The treatment
time for frame 4 combined with the overrun remains below
frame time and so no frequency is assigned to it.

When the video is played for the third time, F Master is
600MHz and overrun is reset to 0. The first three frames are
each treated at their stored frequency. The treatment time
for frame 4 remains below frame time, but there is no lower
frequency, so this frame is assigned the frequency 600MHz.
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4.1.2 Feedback
The feedback module is triggered when overrun exceeds a

quality threshold, which we take to be the frame time.1 The
goal of this module is twofold: 1) to ensure that the degree
of overrun is not repeated on subsequent iterations of the
video, and 2) to reduce the overrun in the current iteration.

Before treating each frame, the feedback module checks
whether the overrun accumulated by the treatment of the
preceding frames exceeds the quality threshold. If this oc-
curs at some frame f , it means that previous frames have
been treated at a frequency that is too low for their com-
bined computational requirements. To ensure that the prob-
lem does not repeat on subsequent iterations, we increase
the frequency for some or all of these previous frames, as it
is an invariant of the algorithm that the player was able to
maintain the frame rate for these frames at all frequencies
higher than the assigned ones. To restore the frame rate of
the current iteration, the feedback module additionally in-
crements the frequency for subsequent frames by one level,
for the current iteration only, until the overrun is absorbed.

A key issue is the choice of which of the previous frames
should have their frequency increased for subsequent itera-
tions and by how much. To choose the frames for which to
increase the frequency, we observe that increasing the fre-
quency used for a frame gives maximum benefit if there is
more accumulated overrun than the slack time introduced by
the increase, so that all of the introduced slack time is used
to absorb the overrun. This is most likely to be the case for
the frame just before the frame f at which the overrun was
observed to exceed the frame time. Thus, we first increment
the frequency for this frame and work backwards from there,
stopping at the first frame for which the overrun is 0, as in-
crementing the frequency for that frame will only cause the
player to sleep. To determine by how much to increase the
frequency, we assume that increasing the frequency for the
overrun frames will give the same benefit in the subsequent
iterations as increasing the frequency for the frames after f
gives in the current iteration. This assumption is clearly an
approximation, as changing frequency levels does not always
have a uniform effect. If insufficient frames are adjusted,
an overrun will be detected and accounted for on subse-
quent iterations. The algorithm provides no check whether
too many frames are adjusted, however, we have found that
fairly few frames are affected by the feedback module, and
that such a situation would have very little impact on the
overall power consumption in practice.

Finally, a remaining issue is the initialization of the fre-
quency plan for the frames following f . Until the overrun
is absorbed, such frames are treated at a frequency one
level higher than the stored frequency, if available, or one
level higher than F Master, otherwise. This implies that a
frame that does not have a stored frequency is not tested
at F Master. We do not assign a frequency to such frames
and retain the same value of F Master on the next iteration.
This implies that the adaptation phase can consist of more
iterations than there are frequencies, but we have observed
that it reaches a fixed point quickly in practice.

1Note that this quality threshold is much more stringent
than that of MPlayer, as a typical frame time of 41-42ms
is less than 10% of MPlayer’s A-V threshold of 0.5 seconds.
We choose a more stringent threshold to ensure that the
reduced power consumption does not come at the cost of
playback quality.

Example. The behavior of the feedback module is illus-
trated by the example in Figure 10 for a video with a frame
time of 41ms and a maximum frequency of 1000 MHz. On
the first iteration, F Master is 1000 MHz and all of the
frames are treated within the frame time. On the second
iteration, F Master is 800 MHz. An overrun has accumu-
lated in the part of the video preceding the frames shown
in the example, and at the end of frame n the overrun has
passed the frame time. Thus, the feedback module is trig-
gered before the treatment of frame n+1. The frequency for
frame n is increased by one level in the frequency plan, and
the frequency for frame n + 1 is set to one above F Master
for the current iteration. While this causes the overrun to
decrease, it is not sufficiently absorbed and the feedback
module is triggered again on frame n + 2. This time, it is
the frequency for frame n − 1 that is increased by one level
in the frequency plan, working backwards towards the start
of the overrun. Frame n + 2 is also run at the frequency
above F Master for the current iteration, which causes the
overrun to go below the frame time. Finally, the third itera-
tion uses F Master as 800 MHz again, because frames n + 1
and n+2 have not been tested at that frequency. This time,
frames n − 1 and n are run at 1000 MHz, according to the
updated frequency plan. Overall, the overrun remains below
the frame time within these frames on this iteration.

Figure 10: Feedback example

4.2 Post-adaptation phase
After the adaptation phase completes, the variance im-

plies that it is possible, although unlikely, that a sequence
of frames will accumulate a delay that exceeds the quality
threshold. As the adaptation phase has ensured that the
video can normally be displayed according to the frequency
plan with acceptable quality, we do not make further mod-
ifications to the frequency plan in the post-adaption phase.
Nevertheless, this phase includes a watchdog that detects
such overruns and treats subsequent frames at higher fre-
quencies within the current iteration until the delay has re-
turned below the quality threshold.

The goal of the watchdog is to absorb the overrun as
quickly as possible while minimizing the extra power con-
sumption. Accordingly, subsequent frames are run at in-
creasingly high increments above their stored frequency, un-
til the overrun returns below the frame time. Specifically,
the nth frame f after the overrun was first observed is treated
at the nth frequency above frequencyf , up to the maximum
frequency available on the machine.
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This strategy is illustrated in Figure 11, again for a video
with a frame time of 41ms. Although all frames are treated
within an acceptable amount of time at 600 MHz in the
first iteration, in the second iteration the overrun exceeds
the frame time at the end of frame n. In this case, the
watchdog is triggered first at frame n+1, and then, because
the overrun is not sufficiently absorbed, it is triggered again
at frame n+2. For frame n+1, a frequency one level higher
than the stored frequency is used, while for frame n + 2,
a frequency two levels higher is used. At this point, the
overrun goes below the frame time, and subsequent frames
are again treated at their stored frequency. Finally, on the
third iteration the frames are all treated at 600 MHz, as the
increases to the frequency in the second iteration were for
that iteration only, and have no effect on the frequency plan.

Figure 11: Watchdog example

4.3 Implementation
Our approach is implemented in MPlayer as a library pro-

viding the functions init dvs, first frame dvs, start -

frame dvs, and end frame dvs, which behave as follows:

• init dvs: This function initializes the various struc-
tures used by the algorithm, including setting F Master
to the highest frequency and the elements of the fre-
quency plan to 0.

• first frame dvs: This function resets the various struc-
tures used by the algorithm at the start of a new itera-
tion of the video. In particular, during the adaptation
phase, F Master is set to the next lower frequency if all
of the unassigned frames have been tried at the current
value of F Master in the preceding iteration.

• start frame dvs: In the adaptation phase, this func-
tion executes the feedback module, and in the post-
adaptation phase, it executes the watchdog, both based
on the behavior of the previous frame. This function
then uses the Cpufreq userspace governor [2] to set
the CPU frequency to the one chosen for the current
frame, if the CPU is not already at that frequency.

• end frame dvs: During the adaptation phase, this func-
tion executes the frequency selection module, which
uses the treatment time of the frame to decide whether
the frame should be assigned the frequency F Master.
This function does nothing in the post-adaptation phase.

Figure 12: MPlayer architecture. Introduced func-
tion calls are shown in grey.

These functions amount to around 200 lines of code. The
only change to the existing MPlayer source code is to add
calls to these functions during initialization and before and
after the treatment of each frame, as illustrated in Figure
12. There is no modification to the OS or to the video codec.

5. EVALUATION
We measure various properties of the video display when

using HbDVS. All of the tests are carried out on the Intel
Pentium 4M architecture described in Section 3.

Energy consumption. Figure 13 presents the power con-
sumption for one iteration of each video. In the case of Hb-
DVS, we use an iteration from the post-adaptation phase,
in which the frequency plan has already been created. Mea-
surements are taken according to the strategy used by Bel-
losa [1]. An ATMIO-16 E10 card is connected to the power
supply of the Dell Inspiron laptop, and is used to mea-
sure the power consumption at a rate of 1000 Hz. In each
case, the total power consumption with HbDVS is less than
the power consumption at the minimum static frequency at
which the video can be displayed correctly.
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Figure 13: Power consumption for one iteration nor-
malized to 1700 MHz

In practice, however, it is the battery lifetime that is im-
portant to the user, and this quantity is only indirectly to
related to the measured power consumption. Figure 14 il-
lustrates the effect of our algorithm on battery lifetime. We
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Video Policy Battery lifetime
(min)

HbDVS gain over
other approaches

Power consumption for one iteration in
the post-adaptation phase (joules)

Madagascar 1700 Mhz 18.5 1.30 3254
1400 Mhz 17.2 1.40 2977
powernowd 17.2 1.40 -
HbDVS & adaptation 21.4 1.12 -
HbDVS 24.0 1.00 2916

Jarhead 1700 MHz 18.2 1.54 3763
1000 MHz 26.2 1.07 3177
powernowd 22.0 1.27 -
HbDVS & adaptation 26.2 1.07 -
HbDVS 28.0 1.00 3103

Harry Potter 1700 MHz 21.0 1.48 3560
800 MHz 25.0 1.24 2950
powernowd 25.6 1.21 -
HbDVS & adaptation 29.0 1.07 -
HbDVS 31.0 1.00 2884

X-Men 3 1700 Mhz 16.3 2.09 -
600 Mhz 34.5 0.99 -
powernowd 34.0 1.00 -
HbDVS & adaptation 32.5 1.05 -
HbDVS 34.0 1.00 -

Figure 14: Battery lifetime and Power consumption. “HbDVS & adaptation” includes both the adaptation
phase and the post-adaptation phase, while “HbDVS” refers to our approach using a previously computed
frequency plan (the post-adaptation phase).

obtain an improvement of up to 109% as compared to the
maximum frequency of the machine, up to 40% as compared
to the minimum fixed frequency at which the entire video
can be displayed with no perceptible loss of quality (see Fig-
ures 2 through 5), and 40% as compared to powernowd. In-
deed, the only case where we obtain no improvement as
compared to the minimum fixed frequency and powernowd

is X-Men 3, which can run at the lowest frequency with no
perceptible loss of quality (see Figure 5). We conjecture that
if lower frequencies were available on the Intel Pentium 4M,
our algorithm would take advantage of them, and we could
further improve the battery lifetime in this case.

The frequency plan. Figure 15 shows the frequencies se-
lected by our algorithm for each video and Figure 16 summa-
rizes the percentage of frames treated above, at, and below
the minimum fixed frequency. For a given video, our algo-
rithm assigns up to 93% of the frames a lower frequency
than the minimum fixed frequency at which the entire video
can be displayed with no perceptible loss of quality.

Our algorithm is very fine-grained, in that it considers a
single frame at a time, unlike powernowd that considers the
load incurred by all of the frames within a give time inter-
val. As a result, the frequency plan contains many changes
in frequency, as illustrated in Figure 17 for Madagascar. The
graph for Jarhead (not shown), is similar. For Harry Potter,
there is frequent alternation between the frequencies 1000
MHz, 800 MHz, and 600 MHz, as shown in Figure 18. For
X-Men 3 the frequency is essentially constant at 600 MHz.
According to the Intel documentation on the Pentium M
architecture [6], changing the frequency on this architecture
incurs a delay of several tens of microseconds. Despite the
many changes in frequency shown in our figures, they occur
at most once per frame, which for our examples amounts to
at most once every 33.37 milliseconds. Even with a frame
rate of 100 frames per second, frequency changes would oc-
cur at most every 10 milliseconds, which is 1000 times the
delay incurred by the frequency change. Thus, the overhead
incurred by changing the frequency is negligible in our case.
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3% < 1%7%

39%
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    MHz     

 Harry   Potter        

Jarhead        Madagascar     
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Figure 15: Frames at each frequency in the fre-
quency plan

Video mff. frames frames frames
> mff. = mff. < mff.

Madagascar 1400 MHz 3% 4% 93%
Jarhead 1000 MHz 7% 39 % 54%
Harry Potter 800MHz 25% 43% 32%
X-Men 3 600 MHz 0% 100% 0%

Figure 16: Comparison between the frequency plan
and the minimum fixed frequency (mff.)

The impact of feedback. The frequency actually used on
each iteration is determined by both the frequency plan and
either the feedback module or the watchdog, depending on
whether the iteration is part of the adaptation phase or the
post-adaptation phase. Figure 19 shows the number of times
the feedback module is triggered in each iteration of the
adaptation phase. The feedback module is frequently trig-
gered when F Master first drops to a lower frequency. In
this case, a sequence of frames that is treated at just under
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Figure 17: Frequency plan for Madagascar
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Figure 18: Frequency plan for Harry Potter

the frame time when using the higher frequency is treated
at just over the frame time at the new frequency F Master,
eventually exceeding the quality threshold. In this case, the
feedback module increases the frequency of a few of the pre-
ceding frames. The measurements show that this strategy
is effective, as on subsequent iterations the feedback mod-
ule is triggered quite rarely, and reaches a point where the
overrun remains below the quality threshold within a few
iterations. During the post-adaptation phase, the watchdog
was never triggered in our experiments, showing that the
frequency plan as calculated during the adaptation phase is
adequate for the video.

The perceptible quality. Our algorithm is designed in terms
of the execution time for each frame, while MPlayer mea-
sures quality in terms of the MPlayer-specific A-V delay.
Figure 20 shows that our use of a quality threshold of one
frame time keeps the A-V delay close to 0, with very little
variation in the case of the higher resolution videos Mada-
gascar and Jarhead and nearly no variation in the case of
the lower resolution videos Harry Potter and X-Men 3. In
all cases, the A-V delay is well within the MPlayer quality
threshold of ±0.5.

Space consumption. Our approach requires maintaining a
frequency plan for all videos in the set of videos currently
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Figure 19: The number of frames on which the feed-
back module is triggered at various frequencies in
the adaptation phase
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Figure 20: A-V delay

displayed by the kiosk. This frequency plan has size propor-
tional to the total number of frames in these videos. Each
entry of the frequency plan stores only an indication of the
frequency assigned to the corresponding frame, or 0 if no
frequency has yet been assigned. Four bits per frame are
thus sufficient for a machine that provides up to 15 CPU
frequencies. With this coding strategy, 450KB is sufficient
to maintain the frequency plan for 10 hours worth of distinct
video frames, encoded at 25 frames per second.

6. CONCLUSION AND FUTURE WORK
Video display is an attractive target for DVS because

it has easily identifiable deadlines and there is often slack
time available to absorb the additional computation time
incurred by lowering the CPU frequency. Nevertheless, be-
cause of the high variability in the computational require-
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ments of the various frames, previous mechanisms either are
not highly effective on video, or have resorted to modify-
ing the decoding algorithm or the OS. In this paper, we
have shown how by exploiting a specific property of one
kind of video display, the repetitive display of the same set
of videos as found in kiosks, we can obtain an approach
that is lightweight to implement, but gives results that are
closely tailored to the video’s computational requirements.
In practice, our approach gives substantial improvement in
battery lifetimes, up to 109% as compared to the maximum
frequency on our test machine, up to 40% as compared to
playing the video at the minimum fixed frequency that gives
acceptable results for the entire video, and up to 40% as
compared to the Linux tool powernowd.

We envisage several avenues for future work. In this work,
we have considered an Intel Pentium 4M processor and the
video player MPlayer. Preliminary results on an Intel Cen-
trino with frequencies 600, 800, 900, 1000, 1100, 1200, 1300,
and 1400 MHz are comparable to our results here. Neverthe-
less, we would like to study the approach on a wider variety
of architectures, and with other video players. As presented
here, HbDVS always starts the adaptation phase by treating
every frame at the maximum frequency. Another approach
would be to start from a frequency plan created for another,
similar, machine. This approach would be particularly use-
ful if the video is to be displayed only a few times, but
would still allow the energy usage to adapt to the precise re-
quirements of the host machine. Finally, we are considering
refinements to the feedback strategy, both to consider the ef-
fect of relaxing the quality threshold to allow an occasional
delay of more than one frame and to identify cases where
an overrun is likely to repeat on the next iteration and to
augment the frequency more aggressively in these cases.

Availability. The implementation of our algorithm is avail-
able at http://www.emn.fr/x-info/rurunuel/hbDVS.html
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