
Communication by Sampling
in Time-Sensitive Distributed Systems ∗

Albert Benveniste† Benoı̂t Caillaud Luca P. Carloni Paul Caspi
Alberto L. Sangiovanni-Vincentelli Stavros Tripakis

ABSTRACT
In time-sensitive systems writing to and reading from the
communication medium is on a purely time-triggered but
asynchronous basis. Writes and reads can occur at any time
and the data are stored and sustained until overwritten. We
study how to maintain data semantics when the duration of
the actions change from specification to implementation.

In doing so, we rely on tag systems formerly introduced by
the authors. The flexibility of tag systems allows handling
the problem in a formal, yet tractable way.

Categories and Subject Descriptors: C.3.3 [Special-
purpose and application-based systems]: Real-time and em-
bedded systems.

General Terms: Theory.

Keywords: Heterogeneous reactive systems, tagged sys-
tems, distributed deployment, scheduling.

1. INTRODUCTION
Complex real-time control systems pose serious challenges

to the design community as they require with increased fre-
quency a distributed implementation. In a distributed im-
plementation, choosing the communication architecture is
often the most critical design step as communication char-
acteristics ultimately determine efficiency and correctness of
the design. Latency and blocking behavior of communica-
tion may introduce unforeseen effects on the behavior of the

†A. Benveniste and B. Caillaud are with INRIA/IRISA,
Campus de Beaulieu, 35042 Rennes cedex, France,
{Albert.Benveniste,Benoit.Caillaud}@irisa.fr; L.P. Carloni
is with the Department of Computer Science of Columbia
University in the City of New York, NY 10027, USA,
luca@cs.columbia.edu; P. Caspi is with CNRS/Verimag,
Centre Equation, 2, rue de Vignate, F-38610 Gieres,
France, Paul.Caspi@imag.fr; A. Sangiovanni-Vincentelli
is with U.C. Berkeley, Berkeley, CA 94720, USA, al-
berto@eecs.berkeley.edu; S. Tripakis is with CNRS/Verimag
and Cadence Berkeley Labs, 1995 University Ave, Suite 460,
Berkeley, CA 94704, USA, Stavros.Tripakis@imag.fr.
∗This research was supported in part by the European Com-
mission under the projects ARTIST2, IST-004527, by the
NSF ITR CHESS, and by the GSRC.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’06, October 22–25, 2006, Seoul, Korea.
Copyright 2006 ACM 1-59593-542-8/06/0010 ...$5.00.

overall system. Choosing a communication architecture that
can be formally analyzed and/or guaranteed to maintain the
ideal behavior of the system is an active research area and
of great industrial interest.

A system designer typically performs the following se-
quence of steps, as part of the overall design process:

1. System issues generally set the most important con-
straints on the overall system architecture. This is
why the latter is defined first (even if it may need to
be revised later), as a set of allowed architectural com-
ponents, the platform, including communication struc-
tures and composition rules. This delimits the space
of architectural exploration. The components include
processors, communication media, and peripherals as
well as middleware such as compilers, operating sys-
tems and device drivers that determine the way the
hardware is used by the application software.

2. The system functions are given using mathematical
models or executable code. These specifications may
involve a combination of discrete mode changes and
continuous signal processing and control functions. The
functional specifications do not carry the notion of
physical quantities such as time and power. They are
usually analyzed formally or simulated extensively in
closed loop to uncover potential algorithmic design er-
rors.

3. A set of cost and constraint functions involving the
quantities of interest for determining the quality and
correctness of the design is given. Among those, timeli-
ness requirements to ensure that the plant is controlled
at the proper bandwidth and reaction time are of par-
ticular interest for control system design.

4. When the implementation platform includes one or
more processors, functions are in general packaged into
tasks which must be scheduled and/or distributed.

When the resources of the architecture are limited, the dis-
tribution of the tasks to the architectural elements requires
a careful scheduling and assignment step. For example, if
two or more concurrent functions are assigned to the same
sequential processing element, we need to determine an or-
der according to which the functions must be executed. By
the same token, if a number of communication requests are
made to a limited interconnect structure such as a bus, an
arbitration protocol determines the order with which the
communication requests are served. In a realistic scenario,

152

architectural elements do take time to compute and to serve
communication requests. Satisfying timeliness constraints
requires clever assignment of functions to computing and
communication elements. In addition, if the scheduling al-
gorithm is not carefully designed, we may run into a dead-
lock situation that would impact in a catastrophic manner
system behavior.

Schedulability analysis, a very hard problem in the gen-
eral case, aims at answering questions related to the correct
behavior of the implementation when compared to the func-
tional specification. Because of its conservative nature and
of its computational complexity, engineers are used to per-
forming approximate analysis but in doing so, there is no
guarantee that the final implementation would be always
executing correctly, a very serious problem indeed for safety
critical systems. Since the duration of tasks may vary de-
pending on the execution platform characteristics, the func-
tional semantics can be lost, unless rigid policies such as
TTA or the one advocated by Giotto [6] are used.

An alternative approach to schedulability analysis as ad-
vocated by Kopetz with its Time-Triggered Architecture
(TTA) [7] is to use physical time to coordinate communi-
cation allowing the implementation of the real-time peri-
odic synchronous model in a distributed way. Using this ap-
proach, correctness of a distributed implementation can be
analyzed rigorously with formal techniques. However, this
approach carries cost and timing penalties that at times are
non acceptable for the application considered. For this rea-
son, there has been growing interests in less constrained ar-
chitectures such as the Loosely Time-Triggered Architecture
(LTTA) used in the aerospace industry and studied in [2, 4,
5, 8].

All modern real-time distributed architectures share the
viewpoint that communications should not be blocking. One
way to achieve this is by triggering actions and communica-
tions by dates, thus resulting in what we call time-sensitive
systems. Recent work [1, 9, 10, 11] has considered, for these
architectures, the problem of maintaining proper functional
semantics while performing task scheduling.

Tracking how functional semantics may be skewed in this
context requires a formal approach that captures causality
dependencies and logical delays across the tasks of the func-
tional specification as well as the resource availability and
effective execution times that characterize its implementa-
tion on a given platform. Ultimately, this translates into
the problem of guaranteeing that all the individual inter-
task data exchanges occurring in the final implementation
are consistent with those defined in the original specifica-
tion. We address the hybrid nature of this problem, more
formally defined Section 3, using the framework of tag sys-
tems, which were proposed to cope with this kind of hetero-
geneity [2, 3] and which are briefly reviewed in Section 2.
Specifically, we first deal with a simplified version of the
problem (Section 4) which is applicable only to ideal system
implementation. The simplified version assumes that the
starting time of the execution of each task always coincides
with the instant of its activation.

Then, in Section 5 we present our results for the more re-
alistic case where some time may actually pass between the
activation instant of a task and the starting of its execution.
For both scenarios, we formally derive an operational pro-
tocol that guarantees the preservation of data semantics as
we move from the specification to a particular implementa-

tion. This is accomplished through the insertion of a proper
number of compensating logical delays in the inter-task com-
munication channels. A subtle but important point is that
to perform this operation correctly and optimally, we need
to account for the possible presence of original logical de-
lays in the specification. Furthermore, sometimes it may be
necessary to revisit the original specification in order to cor-
rect it by increasing the “delay budget” between some tasks
to match the constraint imposed by a given implementation
platform. A practical contribution of this paper is to provide
formal means to guide the designers through this process.

2. BACKGROUND ON TAG SYSTEMS
Tag systems will provide us with the adequate framework

for our study. We now collect a small subset of the results
from [2]—we shall not need compositionality aspects of this
framework.

Definition 1 (tag structure). A tag structure is a
preorder (T ,≤), where T is called the set of tags.

We assume an underlying set of variables V with domain D.
All systems will have V as set of variables but will indeed
involve only finitely many of them, whereas the behavior
attached to other variables will remain free. A T -signal is
a finite or infinite sequence of pairs (τ, x) ∈ T × D. Given
a T -signal s and a natural number n ∈ N, s(n) denotes
the n-th element in the sequence defined by s. The set of
T -signals is denoted by ST . A behavior is an element:

σ ∈ V �→ ST , (1)

meaning that, for each v ∈ V, the n-th occurrence of v
in behavior σ has tag τ ∈ T and value x ∈ D. For σ a
behavior, an event of σ is a tuple e = (v, n, τ, x) ∈ V ×N×
T × D such that σ(v)(n) = (τ, x). We shall require that,
for any two events e = (v, n, τ, x) and e′ = (v, n′, τ ′, x′)
belonging to the same behavior, if n ≤ n′, then τ ≤ τ ′.
Thus we can regard behaviors as tuples of signals, where
signals are totally ordered chains of events associated with
a same variable.

Definition 2 (tag systems). A tag system is a pair
P = (T , Σ), where T is a tag structure, and Σ a set of
behaviors.

By abuse of notation, we shall write σ ∈ P to mean σ ∈ Σ,
i.e., that σ is a behavior of tag system P .

3. PROBLEM FORMULATION

Interactive Tasks
The system considered in this paper consists of a set of
possibly concurrent interactive processes called tasks, V =
{v1, v2, . . . , vk}. Task occurrences are characterized by three
dates:

the dates a of activation, s of start, and t of termination.

While the task activation occurs at will (i.e., is controlled by
the external environment), the execution of a task can start
only when certain conditions are satisfied, e.g., the proces-
sor is ready to handle it. We do not assume periodicity nor
any particular activation policy. Tasks interact by exchang-
ing data after they have completed their execution. Tasks

153

may or may not take time. The different occurrences of a
same task are totally ordered by their start date, but may
otherwise overlap, meaning that a new occurrence may start
prior to the previous one having completed (i.e., we do not
assume that tasks are serialized).

Communication Model
Each task v has a channel chanv where it outputs its re-
sults. When task v writes in chanv, the written value is
sustained and available for reading until the next writing by
v occurs. Reading of the current content of chanv can be
performed by any task at any time. Reads and writes occur
asynchronously and are therefore non blocking.

Remark 1. This communication abstraction that we call
communication by sampling is a widely used communication
scheme in distributed system design, especially for time-
sensitive architectures. This scheme has not been given by
the academic community the attention it deserves though
it is a very natural one. For instance, readers familiar with
Simulink diagrams would easily recognize that the commu-
nication scheme depicted in Figure 1 appears very frequently
in their designs. In this diagram, the producer block writes
“value” at the rate of its triggering clock and the consumers
sample this “value” at the rates of their respective triggering
clocks. These clocks may be periodic but also non periodic
and then correspond to event triggered systems.

value

Producer

value

Consumer 2

value

Consumer 1

3

clock consumer2

2

clock consumer1

1

clock producer

Figure 1: Communication by sampling in a Simulink
diagram

Remark 2. An important consequence of using this model
of communication is that tasks are activated on a local basis,
regardless of the environment of the task.

Of course, which data are exchanged between the different
task occurrences critically depend on when reads and writes
occur. If we refer to the design process described in the in-
troduction, then the functional specification of the system of
interacting tasks, together with the constraints, determine
logical read and write dates associated to each task occur-
rence. When the implementation process has ended, the
dates associated to the tasks are determined by the charac-
teristics of the architectural elements e.g., by task execution
times and communication delays. Then the problem we are
addressing in this paper is to ensure that data exchanges
specified at the abstract design stage are consistent with
the data exchanges occurring at the implementation stage,
i.e., we are looking for a robust implementation scheme that
does not affect original specifications.

Design Scenario
While our approach can also handle the preservation of data
semantics between two asynchronous executions when the
task (or communication) duration changes, the following de-
sign scenario is of particular interest and will serve as a sup-
port for our presentation:

1. At the functional specification stage, we assume ideal,
atomic tasks, of zero duration i.e., we assume that the
functional design paradigm is fully synchronous.

2. When implemented, tasks take some non zero duration
and may become non atomic; this is often referred to as
the “asynchronous” execution mode. This may change
the actual values read by the tasks. If this happen, we
say that data semantics is not preserved.

4. THE “SIMPLE TASK” PROBLEM
To ease the presentation of our approach, we begin with

a simple case of system of interacting tasks where

the date of activation and start coincide, i.e., a = s

Hence, each task is characterized by a pair of dates (s, t).
In the next section, we deal with the more general case of
pre-emptable tasks.

4.1 Task systems as tag systems
We consider a finite set V ⊆ V of task names or tasks

for short; tasks are generically denoted by the symbols v or
u. Call events the successive occurrences of a task. Thus
events e have the form

e = (v, n, τ, x)
= (task, occurrence, tag, output data)

(2)

Tag structures
Now we must define what the tag τ in (2) should be.

Task dates. We already know that each event possesses a
pair (s, t) of start and termination dates, such that s ≤ t.
We shall therefore use the following tag structure of task
dates:

R2
> =def {(s, t) ∈ R2 | s ≤ t}. (3)

where R is the set of real numbers augmented with −∞.
R2

> is equipped with the restriction of the product order
defined on R2:

(s, t) ≤ (s′, t′) iff s ≤ s′ and t ≤ t′

Note that this does not require that t ≤ s′.

Usage tag. Next, we need to indicate:

1. which other tasks outputs the considered event uses
for its completion, and

2. what the associated logical delays are.

Regarding 1, we consider the binary tag b : V �→ {0, 1},
defined by

b(u) = 1 if v uses u, otherwise b(u) = 0.

Regarding 2, note first that logical delays are often used in
the functional specification (for example, to compare two
successive values of a same signal to a threshold). Logical

154

delays are meant to be used at Stage 1 of the design scenario
of Section 3. They are typically statically defined. Logical
delays are captured by tag

mv = (muv)u∈V :d(u)=1

which specifies the logical delay in the communication from
u to v, for each task u whose output is used by v (notice
that mv is a vector).

Package the pair (b, mv) into a tag

d =def (b, mv) (4)

called usage tag, and call D the resulting tag structure.
Equip D with the trivial preorder such that d ≤ d′ for any
two d and d′. The reason for using this trivial preorder is
that nothing should prevent two successive events for a same
task v from using outputs from another task u in reverted
order.

Data dependency. The usage tag is adequate to specify
the exchange of data between tasks at specification stage
(stage 1 of the design scenario of Section 3). This type of
tag is, however, not appropriate to describe which data is
communicated when the application is deployed over the
actual distributed architecture—we already mentioned that
the functional semantics is generally not robust to physical
delays in time-sensitive distributed systems.

To achieve this, we need to specify which data are com-
municated in a more explicit way, independent from actual
execution mode. This is captured by another type of tag
called data dependency. Let N−∞ =def N ∪ {−∞}. Define
a data dependency to be a map: δ : V �→ N−∞, and let Δ
denote the set of all dependencies:

δ(v) = m means that the event with the consid-
ered tag uses outputs of the m-th occurrence of
task v; δ(v) = −∞ means that the considered
event does not use the results from v.

Equip Δ with the trivial preorder such that δ ≤ δ′ holds for
each pair (δ, δ′).

Δ describes which data a given task occurrence uses as
its inputs—assuming tasks are functions, this entirely deter-
mines the actual output of the considered task occurrence.
Thus, Δ keeps track of data semantics in a rigid way, re-
gardless of actual execution mode.

Note that, unlike the usage tags, data dependencies are
not appropriate for functional specifications since their de-
scription is not finite (it explicitly uses the infinite event in-
dex n ∈ N). They will, however, be essential for the deriva-
tion of our protocol and associated mathematical analysis.

Summary. Our task systems are modeled as tag systems
of the form

P = (T , Σ) (5)

Corresponding events have the form

e = (v, n, τ, x), where τ = ((s, t); (b, mv); δ) (6)

where we recall that:

• (s, t) are the start and termination dates;

• b(u) = 1 if v uses u, otherwise b(u) = 0; muv is the
logical delay from u to v when completing this event;

• δ codes explicit data dependencies.

Now we are ready to formalize communication by sampling.

producer u � �

buffer of size muv

... consumer v

Figure 2: Illustration of Assumption 1.

Communication by sampling
This mode of communication is captured by the following
assumption.

Assumption 1 (communication by sampling).

For any event e = (v, n, τ, x) of P of the form (6) , tag τ
must satisfy the following condition:

b(u) = 0 ⇒ δ(u) = −∞ (e does not use u)
b(u) = 1 ⇒ δ(u) = nt(u, s) − muv

(7)

where we recall that integer muv is the logical delay in the
communication from u to v when completing e, and, for
r ∈ R,

nt(u, r) =def max{k | t(u, k) < r} (8)

In (8),

• t(u, k) denotes the termination time of the kth occur-
rence of u in the considered behavior;

• nt(u, r) is the number of times task u has completed
prior to current time r.

Figure 2 illustrates Assumption 1. One can think of a
buffer of size muv between the producer u and consumer v.
The buffer is a FIFO and when it is full its first element (the
oldest written) is removed. Thus, at each write operation,
all elements are “shifted” to the right. The consumer reads
the right-most (oldest) element but does not remove it.

Note that we do not require that, for two successive oc-
currences e−, e of a same variable v, t− ≤ s holds. In other
words, it is possible, for a task, to start a new occurrence
prior to having completed its previous one.

4.2 Semantics preserving
Clearly, variations in the duration of tasks may change

the actual data tasks expose at a given date. Due to As-
sumption 1 regarding the MoCC, this may result in other
tasks reading wrong data for their execution. The idea is
to use variable delays to compensate for this mismatch and
thus ensure the preservation of data semantics. To achieve
this, we first need to formally define what we mean by
“preserving data semantics”.

Notation. Events have the form (6). To shorten notations,
we shall write a dot for fields that are irrelevant for the point
being discussed. For instance, e = (v, ., ((s, t); .; .), .) focuses
on v, and the pair (s, t). Also, whenever convenient, we shall
denote by ve, ne, τe, etc, the components of event e.

Definition 3 (data equivalence). Say that two be-
haviors σ and σ′ over tag structure T are data equivalent,
written

σ ∼data σ′

155

iff there exists a bijection χ, from the set of events e of σ
onto the set of events e′ of σ′, such that

e′ = χ(e)

⇓ (9)

ve′ = ve, ne′ = ne, and ∀u ∈ V : δe′(u) = δe(u)

In particular, δe(u) = −∞ iff δe′(u) = −∞. In words, two
behaviors are data equivalent iff they read their inputs from
the same events—assuming that tasks are functions, data
equivalent behaviors will output the same stream x1, x2, . . .
of data, for each variable v, whence the term of data equiv-
alence.

Using characterization (7,8) of the MoCC, the last state-
ment of condition (9) rewrites as follows, for every u ∈ V
such that δ(u) �= −∞:

n′
t(u, se′) − m′

uv = nt(u, se) − muv (10)

where the prime in n′ refers to counting in the context of
σ′. Now, rewriting (10) as

m′
uv = muv + n′

t(u, se′) − nt(u, se)

reveals that m′
uv must vary with e′ in order to compen-

sate for the varying discrepancy n′
t(u, se′)−nt(u, se). Thus,

whenever convenient, we shall write

m′
uv(se, se′)

to explicit this fact.
With some overloading, say that two tag systems P and

P ′ over T are data equivalent, written P ∼data P ′, iff there
exists a bijection Θ between their respective sets Σ and Σ′

of behaviors, such that Θ(σ) ∼data σ.

The problem we want to solve can now be formalized as
follows. We are given a tag system P as in (5). Suppose
we modify the behaviors σ of P by changing the duration of
task occurrences and the logical delays as follows:

e = (v, n, ((s, t); (b, m); .), .) (11)

is replaced by e′, where

e′ = (v, n, ((s, t′); (b, m′); .), .) where t′ �= t, m′ �= m.

Remark 3. Note that s and b are not changed. Reasons
for this are:

1. s, the date of activation, is set locally (cf. Remark 2),
and is the same for the specification and the imple-
mentation;

2. b is a rigid part of the functional specification.

Replacing every event e of P by e′ as above yields a new
system P ′. With this modification, P ′ is generally not data
equivalent to P .

Notation. In the sequel, we shall systematically use un-
primed symbols to refer to entities from P and primed sym-
bols to refer to the corresponding entities from P ′. For σ
a finite behaviour, nu the length of the u-signal in σ, and
e = (u, nu, ., .) an event, σ ⊕ e denotes the behavior σ ex-
tended with e. Finally, for e an event having termination
date t and logical delay m, we denote by e[t/t′, m/m′] the
event e in which t and m have been replaced by t′ and m′,
respectively.

Problem 1. Regard the modification t �→ t′ as given.
Can we adjust the delay m′ in e′ in order to recover data
equivalence and thus compensate for the change in duration
of events? Formally,

for every (σ, σ′) such that σ′ ∼data σ
find m′ such that σ′ ⊕ e[t/t′, m/m′] ∼data σ ⊕ e

(12)

The reason for considering the modification t �→ t′ as given
is that this modification captures a change in the timing
characteristics of the computing system and therefore it is
not controlled. Using Assumption 1, Definition 3, and (10),
Problem 1 can be reformulated as the following

Problem 2. For event

e = (v, ., ((s, t); (b, mv); .), .)

as in (12), find, for each u such that v uses u, a compensat-
ing logical delay m′

uv(s, s) satisfying the balance equation:

n′
t(u, s) − m′

uv(s, s) = nt(u, s) − muv (13)

Note that start dates are not changed under the substitu-
tion e → e′ in (11), so that the same start date s occurs
on both sides of (13). Observe that, in general, the com-
pensating logical delay will vary with the index of the task
occurrence, even if the original logical delay was fixed in the
specification. By (10), (13) ensures data equivalence of e′

and e and justifies replacing Problem 1 by Problem 2. We
focus on solving Problem 2.

4.3 The protocol preserving data semantics
This protocol is based on formula (13). It aims at preserv-

ing the data semantics when the duration of events changes,
from specification to implementation.

The protocol
We develop the protocol for the particular case where the
specification P has zero-duration events, i.e., for any event
e = (v, n, ((s, t); (b, mv); .), .) of P ,

s = t holds. (14)

When moving from specification to implementation, the du-
ration of events becomes positive:

t is replaced by t′ > t (15)

Note that in this case, for every task u, we have nt(u, s) −
n′

t(u, s) ≥ 0. Hence, by (13), in order to compensate for
(15) we must point to a smaller buffer index when reading
the value from u in order to produce a new event for v.

For r ∈ R, define

n′
st(u, r) =def n′

s(u, r) − n′
t(u, r) (16)

Lemma 1. Under (14) and (15), we have

∀r ∈ R : nt(u, r) − n′
t(u, r) = n′

st(u, r)

Proof. Indeed, nt(u, r) counts the number of completed
occurrences up to date r, for the original system P ; by
(14), termination times equal start times, hence nt(u, r) =
ns(u, r). On the other hand, by (11), start times are iden-
tical for P and its modification P ′; therefore, ns(u, r) =
n′

s(u, r). This proves the lemma. �
As we have seen, solving Problem 2 amounts to construct-

ing the compensating logical delay as in (13). Our protocol
performs this incrementally.

156

Considering (13), while recursively extending behavior σ′

as requested by Problem 1, we shall continuously maintain
the following doubly indexed family of functions, for r ∈ R:

m′
uv(r) = muv − n′

st(u, r) (17)

where v, u ∈ V are tasks such that v uses u.

Protocol 1. For each pair (v, u) of tasks, m′
uv is up-

dated on-line according to the following rules ordered by de-
creasing priority:

1. Each time sv a new occurrence for task v is started
(in P ′ or, equivalently, in P), in completing this oc-
currence of v for P ′, insert m′

uv(sv) compensating log-
ical delays between u and v, where m′

uv(sv) is given by
(17).

2. each time s′u a new event for u ∈ V starts for P ′,
update:

lim
r↘s′u

n′
st(u, r) := n′

st(u, s′u) + 1 (18)

3. each time t′u a new event for u completes for P ′, up-
date:

lim
r↘t′u

n′
st(u, r) := n′

st(u, t′u) − 1 (19)

If cases 2 and 3 happen simultaneously, do not change m′
uv.

Notation limr↘s′u n′
st(u, r) is a right limit, i.e., a limit when

r tends to s′u from above. Formula (18) indicates that we
set the value of the considered counter to be n′

st(u, s′u) + 1,
immediately after s′u(= su) occurred. The same holds for
(19).

Warning. So far we used m-delayed tasks for any integer
m, positive of negative. This was for the purpose of reason-
ing. However it should be clear that

1. for causality reasons we cannot use negative m’s (out-
puts cannot be used before being actually produced);
and,

2. we cannot let m be unbounded, just because real-time
applications require bounded buffering.

These two points are the subject of the next section.

4.4 Buffer size and causal feasibility
Consider (17). Index muv is part of the specification.

Therefore, the set {muv | v ∈ V } is bounded and contained
in N ∪ {0}.

On the other hand, n′
st(u, r) is nonnegative because gen-

erally a smaller number of occurrences for task u complete
in a given time interval. Hence we already know that the
index m′

uv(r) is bounded from above when r ∈ R and the
underlying behavior ranges over the set of all behaviors of
P ′.

Now, n′
st(u, r) is not bounded in general. Therefore, it

may be that m′
uv(r) becomes negative, a nonsense since

m′
uv(r) should be a buffer index. To control this, we con-

sider the following assumption, where we have made the
underlying behavior σ′ of P ′ explicit:

Assumption 2. For each task u, a finite upper bound

M(u) ≥ max
σ′∈P ′,r∈R

�
n′

s(σ
′, u, r) − n′

t(σ
′, u, r)

�

is known.

Note that Assumption 2 only involves the sparsity and du-
ration of events, not the data semantics.

Under Assumption 2, we can avoid the risk of m′
uv(r) be-

coming negative by having, in the synchronous “zero time”
specification, a budget of M(u) + 1 registers on the output
channel of each task u. Having this budget of registers will
ensure that Protocol 1 will never lead to a negative buffer
index. Of course, if, for functional reasons, the synchronous
specification requires M ′ logical delays for communication
between the two tasks u and v, then the number of registers
required is max(M ′, M(u) + 1).

We formalize this by stating a condition 1 on the synchro-
nous specification A that will ensure the soundness of Pro-
tocol 1:

Theorem 1.

1. It is always the case that ∀r ∈ R, m′
uv(r) ≤ muv,

whence m′
uv(r) is bounded from above when r ∈ R,

u, v ∈ V , and the underlying behavior ranges over the
set of all behaviors of P ′.

2. If P ′ satisfies Assumption 2, and the Synchronous Spec-
ification P = (T , Σ) is designed in such a way that the
following condition holds:

∀v, u ∈ V : v uses u ⇒ muv > M(u), (20)

then m′
uv(r) ≥ 0 always holds in Protocol 1, ∀r ∈

R, u, v ∈ V .

Condition (20) expresses that M(u) + 1 registers must be
budgeted on the output channel of each task u in the syn-
chronous specification P . Let us now refine Assumption 2:

Assumption 3. M(u) = 1 holds for each task u.

Assumption 3 holds, for example, if tasks are serialized in
P ′, i.e., t′

− ≤ s′ holds for each event e′ = (v, ., ((s′, t′); .), .)

of P ′, where t′
−

denotes the termination date of the event
for v preceding e′ in P ′. Under this assumption, inserting
a double register at the output channel of each task is suffi-
cient.

Optimized buffers
Assumption 2 is in force. Taking a closer look at formula
(17) reveals that buffer size can be optimized by taking ad-
vantage of the range of the function m′

uv(r) for r = sv a
generic start date for task v. To this end, write m′

uv(σ, r) to
make the underlying behavior explicit. Then, consider the
set:

[m′
u] =def

�
m′

uv(σ′, r)
�
� v ∈ V, σ′ ∈ P ′, r ∈ Sv(σ′)

�
(21)

where Sv(σ′) denotes the set of all start times of task v for
behavior σ′. We have

[m′
u] ⊆ [0, . . . , M(u)]

1We distinguish between assumptions that may or may not
hold, depending on the environment, and design conditions
on the considered system, which can be enforced by the
designer.

157

and the inclusion can be strict, for some tag systems P . If a
segment [m, n] ⊆ [0, . . . , M(u)] is a “hole” of [m′

u], i.e., lies
outside [m′

u], then when m′
uv(r) reaches m from below, we

statically know that it will exceed n at the next start time
for any task v using u for its completion. The symmetric
situation holds when m′

uv(r) reaches n from above. There-
fore, the slots of buffer [0, . . . , M(u)] not belonging to [m′

u]
are useless for the output buffer of task u, and can thus be
discarded.

5. THE REALISTIC TASK PROBLEM
We now consider realistic tasks. Each occurrence of a task

is characterized by three (not two) dates, namely, the

activation, start, and termination

of the task. Task activation occurs at will, whereas task
starting can only occur when certain conditions are satisfied,
e.g., the processor is ready to handle the task. Therefore our
tag domain of physical time is now defined by

R3
> =def {(a, s, t) ∈ R3 | a ≤ s ≤ t} (22)

and is again equipped with the product order. On the other
hand, the tag domain Δ of data dependencies (which en-
tirely characterizes the data semantics) is unchanged. Con-
sequently, Definition 3 of data equivalence is not modified.

5.1 Semantics preserving
Formula (11) defining Problem 1 must be replaced by the

following one:

e = (v, n, ((a, s, t); (b, mv); .), .)

is replaced by (23)

e′ = (v, n, ((a, s′, t′); (b, m′
v); .), .), where

s′ �= s, t′ �= t, m′
v �= mv,

whereas a is unchanged. Finally, Problem 1 is replaced by
the following

Problem 3. Regard the modifications s �→ s′ and t �→ t′

as given. Can we adjust the compensating logical delay m′
v in

e′ in order to recover data equivalence and thus compensate
for the change in duration of events? Formally,

for every (σ, σ′) such that σ′ ∼data σ
find m′ such that σ′ ⊕ e[s/s′, t/t′, m/m′] ∼data σ ⊕ e

(24)

Problem 2 is then replaced by the following

Problem 4. For event

e = (v, ., ((a, s, t); (b, mv); .), .)

as in (24), find, for each u such that v uses u, a compen-
sating logical delay m′

uv(s, s′) for the modified event e′ sat-
isfying the balance equation:

n′
t(u, s′) − m′

uv(s, s′) = nt(u, s) − muv (25)

The key difference with Problem 2 is that, now, s′ �= s,
compare (25) with (13). We focus on solving Problem 4 in
the sequel.

5.2 The protocol
The only difference with (13) is the presence of s′ on the

left hand side of (25). This is due to the fact that start times

may now differ, from the original to the modified systems
(s′ ≥ s). To handle this we rewrite (25) as follows:

m′
uv(s, s′) =def muv + (nt(u, s′) − nt(u, s))

muv − (nt(u, s′) − n′
t(u, s′))

=def muv + ∂n̄t(u, s, s′)

muv − ∂n′
t(u, s′) (26)

Having the expression (26) for m′
uv(s, s′), it remains to in-

terpolate the two additional terms on the right hand side of
(26) as follows:

1. We maintain a counter ∂nt(u, r), for r ∈ R; this counter
is reset to zero at each start time s for task v in P ,
and then incremented at each subsequent termination
time for task u in P , until corresponding start time s′

for task v in P ′ is reached; we then set ∂n̄t(u, s, s′) =
∂nt(u, s′).

2. Counter ∂n′
t(u, r) is incremented at each termination

time for task u in P , and decremented at each termi-
nation time for task u in P ′.

Accordingly, Protocol 1 is modified as follows:

Protocol 2. For each pair (v, u) of tasks, m′
uv is up-

dated on-line according to the following rules ordered by de-
creasing priority:

1. each time av = sv(= a′
v) a new occurrence for task v

gets activated in P , reset ∂nt(u, .) to zero;

2. each time s′v a new occurrence for task v is started in
P ′, in completing this occurrence of v, insert m′

uv(sv, s′v)
compensating logical delays between u and v, by using
formula (26);

3. each time tu(= a′
u) a new event for u ∈ V completes

in P , update:

lim
r↘tu

∂nt(u, r) := ∂nt(u, r) + 1 (27)

lim
r↘tu

∂n′
t(u, r) := ∂n′

t(u, r) + 1 (28)

4. each time t′u a new event for u completes in P ′, update:

lim
r↘t′u

∂n′
t(u, r) := ∂n′

t(u, r) − 1 (29)

For the sake of clarity the description of the protocol refers
to P , but it is important to notice that in the final imple-
mentation there is no need to simulate or execute P because
av = sv(= a′

v) holds in rule 1 and tu(= a′
u) holds in rule 3.

5.3 Buffer size and causal feasibility
Consider (26). Index muv(r) is part of the specification.

Therefore, the set {muv(r) | v ∈ V, r ∈ R} is bounded and
contained in N ∪ {0}. Hence, by formula (26), the bounds
for the buffer size are obtained by inspecting the range of
variation of

δnt(u, s, s′) =def nt(u, s) − n′
t(u, s′) (30)

In (30), u ranges over the set of all tasks, (s, s′) are the start
dates of (e, e′), where (e, e′) ranges over the set of pairs of
corresponding events for task v in P and P ′, respectively.

158

The situation is more involved than for the simple task
case. We know the following:

∀r ∈ R : nt(u, r) ≥ n′
t(u, r)

on the other hand : s ≤ s′

Hence δnt(u, s, s′) can be positive or negative (unlike for
the simple task case, where the shift in buffer index was
always non positive). For the following assumption, we write
nt(σ; u, s, s′) to make the underlying behavior explicit.

Assumption 4. Finite lower and upper bounds

M−(u, v) ≤ min
σ∈P,(s,s′)

δnt(σ; u, s, s′)

≤ max
σ∈P,(s,s′)

δnt(σ; u, s, s′) ≤ M+(u, v)

are known, where the pair (s, s′) ranges as in (30).

We can now state the following counterpart of Theorem 1:

Theorem 2.

1. If P ′ satisfies the lower bound in Assumption 4, then
m′

uv(s, s′) is bounded from above.

2. If P ′ satisfies the upper bound in Assumption 4, and
the Synchronous Specification P = (T , Σ) is designed
in such a way that the following condition holds:

∀v, u ∈ V : v uses u ⇒ muv > M+(u, v), (31)

then m′
uv(s, s′) ≥ 0 always holds in Protocol 1.

Again, condition (31) indicates that M+(u, v) + 1 registers
must be budgeted on the output channel of each task u in
the synchronous specification P .

The case of serializable tasks.

Assumption 5 (serializability). Tasks are serializ-
able, i.e., tasks can complete before getting re-activated.

Under Assumption 5, with our setting, for each task u of
modified system P ′, we have

t′u
−

< a′
u = tu.

Therefore, for every r ∈ R,

nt(u, r) − n′
t(u, r) ≤ 1 (32)

Regarding start dates, we know the following: for each task
v, we have

a−
v = s−v ≤ s′v

− ≤ t′v
− ≤ a′

v = av = sv, (33)

where the third inequality follows from the serializability as-
sumption. The key remaining step is to bound the quantity:

n′
t(u, s′v) − n′

t(u, sv)

where u and v are fixed, and (sv, s′v) ranges over the start
dates for a pair (e, e′) of corresponding events for v in P and
P ′, respectively.

Let L′
uv be a (finite or infinite) bound of n′

t(u, s′v)−n′
t(u, sv)

over all behaviors σ and all events for v. In essence, L′
uv cap-

tures the maximum number of occurrences of task u in any
interval [a′

v, s′v] (notice that sv = av = a′
v).

We have the following result:

Theorem 3. Under serializability assumption 5, if fur-
thermore L′

uv < +∞ holds for each pair (u, v) such that v
uses u, then Assumption 4 holds (and therefore Theorem 2
applies).

We proceed by discussing some ways which allow us to
obtain a finite bound L′

uv.

Known minimum and maximum inter-arrival times.
Suppose for each task v there is a known minimum inter-
arrival time m(v) and a known maximum inter-arrival time
M(v). This means that m(v) ≤ av − a−

v ≤ M(v).
By (33), an upper bound for the quantity

n′
t(u, av) − n′

t(u, a−
v)

is also an upper bound for n′
t(u, s′v) − n′

t(u, sv). This is

because sv = av = a′
v, therefore, the interval [s−v , s′v

−
] is a

sub-interval of [a−
v , av].

Now, an upper bound for n′
t(u, av) − n′

t(u, a−
v) is clearly

the ratio M(v)/m(u), that is, the maximum number of oc-
currences of u between two successive occurrences of v. Thus,

M(v)

m(u)
is a valid (finite) value for L′

uv.

Notice that the case of periodic tasks is a special case of this
case, where the minimum and maximum inter-arrival times
are both equal to the period of a task. This is the case dealt
with in [9].

Same, plus known worst-case execution times. Sup-
pose again that minimum and maximum inter-arrival times
are known. If worst-case execution times of tasks are also
known, the above bound can be made tighter. Let W (v)
be the worst-case execution time of task v. Thanks to the
serializability assumption, and supposing also that the set
of tasks is schedulable, this means that

s′v
− ≤ a′

v − W (v)

(i.e., the task must start early enough in order to be able
to finish before the next instance arrives). Then, the ratio
M(v)/m(u) can be replaced by the ratio

M(v) − W (v)

m(u)

which is a better (i.e., smaller) value for L′
uv.

6. CONCLUSION
We addressed problems occurring in distributed time-sens-

itive architectures where communication is by sampling.
These architectures are widely used in industrial distributed
control systems since they naturally offer good features for
fault tolerance (communication is not blocking) but have
not caught enough attention as yet from both computer and
control scientists.

In particular, we investigated how the functional seman-
tics of an application can be preserved when deployed over a
time-sensitive architecture. Since communication is by sam-
pling, the functional semantics is sensitive to communication
delays and action latencies, unless proper counter-measures
are considered. Along the lines of [1, 9, 10, 11] we investi-
gated a simple mechanism of controlled buffer to compensate
for this.

159

Tracking how functional semantics is skewed due to the
use of communication by sampling requires combining dates,
logical time (via registers), and pointers to encode data ex-
change between tasks. The hybrid characteristic lends itself
to the use of tag systems [2, 3]. This approach allowed us to
highlight the essence of the problem without the need to con-
sider details of scheduling mechanisms. Consequently, our
framework applies to distributed and/or sequential tasks, or
a combination thereof. Further, the use tag systems allows
us to take into account other views of the system such as
risk analysis by fault propagation, or resource consumption,
or scheduling constraints. This aspect will be considered in
forthcoming publications.

7. REFERENCES
[1] Baleani, M., Ferrari, A., Mangeruca, L., and

Sangiovanni-Vincentelli, A. Efficient embedded
software design with synchronous models. In 5th
International Conference on Embedded Software,
EMSOFT05 (2005), W. Wolff, Ed., ACM press.

[2] Benveniste, A., Caillaud, B., Carloni, L.,

Caspi, P., and Sangiovanni-Vincentelli, A.

Heterogeneous reactive systems modeling: capturing
causality and the correctness of loosely time-triggered
protocols. In 5th International Conference on
Embedded Software, EMSOFT04 (2004), G. Buttazzo,
Ed., ACM.

[3] Benveniste, A., Carloni, L., Caspi, P., and

Sangiovanni-Vincentelli, A. Heterogeneous
reactive systems modeling and correct-by-construction
deployment. In 3rd International Wokshop on
Embedded Software, EMSOFT03 (2003), R. Alur and
I. Lee, Eds., vol. 2855 of Lecture Notes in Computer
Science.

[4] Buttazzo, G. Scalable applications for energy aware
processors. In 2th International Conference on
Embedded Software (EMSOFT02) (2002),
A. Sangiovanni-Vincentelli and J. Sifakis, Eds.,
vol. 2491 of LNCS, Springer Verlag, pp. 153–165.

[5] Caspi, P., and Salem, R. Threshold and
bounded-delay voting in critical control systems. In
Formal Techniques in Real-Time and Fault-Tolerant
Systems (September 2000), M. Joseph, Ed., vol. 1926
of Lecture Notes in Computer Science, pp. 68–81.

[6] Henzinger, T. A., Horowitz, B., and Kirsch,

C. M. Giotto: A time-triggered language for
embedded programming. Proceedings of the IEEE 91
(2003), 84–99.

[7] Kopetz, H. Real-time Systems - Design Principles for
Distributed Embedded Applications. Kluwer Academic,
1997.

[8] Kossentini, C., and Caspi, P. Mixed delay and
threshold voters in critical real-time systems. In
Formal Techniques, Modeling and Analysis of Timed
and Fault-Tolerant Systems: joint international
conferences on Formal Modeling and Analysis of
Timed Systems (FORMATS 2004), and Formal
Techniques in Real-Time and Fault-Tolerant Systems
(FTRTFT 2004) (Grenoble, Sept. 2004).

[9] The Mathworks. Models with Multiple Sample Rates
(Real-Time Workshop).
www.mathworks.com/access/helpdesk/help/toolbox/rtw/ug.

[10] Scaife, N., and Caspi, P. Integrating model-based
design and preemptive scheduling in mixed time- and
event-triggered systems. In Euromicro Conference on
Real-Time Systems (ECRTS’04) (Catania, June
2004), IEEE Computer Society.

[11] Tripakis, S., Sofronis, C., Scaife, N., and Caspi,

P. Semantic-preserving and memory efficient
implementation of inter-task communication on
static-priority or EDF schedulers. In 5th International
Conference on Embedded Software, EMSOFT05
(2005), W. Wolff, Ed., ACM press.

160

