
Accurate yet Fast Modeling of Real-Time Communication

Gunar Schirner and Rainer Dömer
Center for Embedded Computer Systems

University of California, Irvine, USA
hschirne@uci.edu, doemer@uci.edu

ABSTRACT
Accurate modeling of communication is a necessary part of
system level design for real-time safety-critical applications.
For efficient prediction of a system’s performance, Transac-
tion Level Modeling (TLM) is often used which increases
the simulation speed by orders of magnitude. The speed
advantage, however, comes at the cost of low accuracy.

In this paper, we use a novel modeling technique, called
Result Oriented Modeling (ROM), which yields 100% accu-
racy in timing, yet approaches the same speed as traditional
TLM. ROM also abstracts away internal details of the com-
munication but, in contrast to TLM, fully maintains accu-
rate timing. ROM optimistically predicts the timing and
retroactively takes corrective measures, if necessary.

In this paper, we compare the ROM technique to TLM
at different levels of abstraction, using a Controller Area
Network (CAN) bus example. Our results show that ROM
yields a simulation speedup close to the traditional TLM,
yet exhibits the same timing accuracy as a bus functional
model. Thus, for safety-critical real-time applications, ROM
is a viable replacement for the inaccurate TLM.

Categories and Subject Descriptors: I.6.5 [Simulation
and Modeling]: Model Development

General Terms: Design, Performance, Measurement.

Keywords: TLM, Transaction Level Model, System Level
Design, ROM, Result Oriented Modeling, CAN, Controller
Area Network, Real-Time Communication.

1. INTRODUCTION
System design faces a gap between the production capabil-

ities and time-to-market pressures. While the improvements
in production capabilities allow an increase in design com-
plexity, shorter product life cycles force at the same time an
aggressive reduction of the time-to-market. Recent system-
level research aims to address this gap, for one by using
abstract models.

Early stages of the design process especially require fast
simulation. This need has pushed Transaction Level Model-
ing (TLM) [5], which utilizes abstract communication mod-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’06, October 22–25, 2006, Seoul, Korea.
Copyright 2006 ACM 1-59593-370-0/06/0010 ...$5.00.

els that execute dramatically faster than synthesizable, bit-
accurate models. However, TLMs usually have the draw-
back of significantly reduced accuracy. At the same time, ac-
curacy is a necessary requirement for modeling of real-time
safety-critical communication. Up to now, this prevented
using fast executing TLMs for real-time communication.

To address this need for accuracy, we apply a novel mod-
eling technique; Result Oriented Modeling (ROM). ROM
delivers similar speed as TLM while retaining 100% timing
accuracy at the same time.

ROM simulates communication, like a TLM, at the level
of user transactions and transfers contiguous blocks of data
with a single memcpy. In order to reach the apparently
conflicting accuracy goal, ROM relies on the the basic as-
sumption that the effects of communication are only visible
at the boundaries of a user transaction. Therefore ROM can
eliminate internal state changes, rearrange events and avoid
costly context switches. It immediately predicts the end re-

sult and retroactively corrects for any disturbing influence.
In this paper, we will describe ROM for the Controller

Area Network (CAN) [12], providing 100% accuracy, as re-
quired by a safety-critical automotive application, at highest
simulation speed. As a result, simulation of real-time com-
munication can now profit from TLM speeds.

1.1 Related Work
System level modeling has become an important research

area aiming to improve the SoC design process. Languages
for capturing SoC models have been developed, e.g. SystemC
[5] and SpecC [3]. Capturing and designing communication
architectures using TLM [5] has received much attention.

Sgroi et al. [15] address SoC communication with a Net-
work-on-Chip approach that follows the OSI structure. [16]
describes SystemCSV , an extension to SystemC with three
different abstraction levels and a CAN example in [1]. Cop-
pola et al. [2] propose abstract communication modeling in
the IPSIM framework. Gerstlauer et al. [4] describes ab-
straction based on a decreasing number of OSI [7] layers. A
common point is the loss in accuracy with abstraction, which
this paper eliminates. OCP-IP [9] provides three TLMs with
increasing abstraction. Only their most detailed TL-1 is cy-
cle accurate.

Real-time communication has been analyzed in previous
work, [17] for example, analyzes different CAN controllers.
System level modeling of real-time communication is not
explored as much. [18] describes abstract real-time com-
munication for a class of LAN protocols by modeling LAN
characteristics. In contrast, we present in this paper an ac-
curate CAN model that produces such characteristics.

70

Pasricha et al. [10] describe a similar transaction-based
abstraction and introduce the concept of a model that is
cycle count accurate at transaction boundaries. It too takes
advantage of the limited observability to increase simulation
performance. However, only a very limited speedup of 55%
over the bus functional model is achieved1.

In Section 2, we will introduce the general concept of Re-
sult Oriented Modeling, independent of its application to
communication modeling. Then, we will describe the ap-
plication of ROM to communication using the Controller
Area Network in Section 3. We will also analyze the limita-
tions of traditional communication modeling and show the
advantages of the ROM approach. Section 4 provides ex-
perimental results that clearly support the claimed benefits
of ROM. Section 5 concludes this paper with a summary.

2. RESULT ORIENTED MODELING
Result Oriented Modeling (ROM) is a general concept for

abstract and accurate modeling of a process. On the highest
level, it can be compared to the ”black box” concept.

ROM uses the underlying assumption of limited observ-
ability. It is not necessary to show intermediate results of
the process to the user, as in a ”black box” approach. ROM
produces only the end result of the process, not any inter-
mediate states.

By hiding the internal states, ROM as the opportunity
for optimization. Intermediate states can often be entirely
eliminated. Instead, ROM utilizes an optimistic approach
and predicts the outcome (e.g. termination time and final
state) of the process already at the start.

A disturbing influence throughout the runtime of the pro-
cess may change the system state. Thus, the initially pre-
dicted results may no longer be accurate. Therefore, ROM
checks at the end of the predicted time whether such a
disturbing influence has occurred. In such a case, ROM
retroactively adjusts for the disturbing influence and takes
corrective measures. In other words, a mistake of an overly
optimistic initial prediction is fixed at the end. Optimisti-
cally predicting the end result reduces the amount of com-
putation. Skipping internal states increases the execution
performance, if the cost for any corrective measures is low.

In contrast, the traditional abstract modeling approach
reaches the end result through a set of incremental state
changes, where each incremental state change takes any dis-

turbing influence into account and updates internal states
accordingly. Decreasing the granularity of state changes re-
sults in a higher abstraction and improves speed, but reduces
accuracy. ROM, on the other hand, records any disturbing

influence over the predicted running time and makes any
necessary adjustment at the end.

Generally speaking, the ROM approach can be character-
ized by the following key points:

1. The process user is not aware of internal states.

2. ROM does not model internal state changes. Instead,
it optimistically predicts the end result using available
system information at the beginning.

3. During the predicted runtime of the process, a disturb-

ing influence may change the system state.

4. At the end, ROM checks if the initial assumptions still
hold true, and takes corrective measures otherwise.

1 Our results show a speedup of four orders of magnitude.

Repeating the ”black box” comparison, ROM is a ”black
box” approach that additionally includes interaction with
other ”black box” instances (as disturbing influence) and
takes corrective measures in case the interaction is not as
predicted.

To illustrate the ROM approach, lets consider a process of
predicting the arrival time of an airplane. The real process
exhibits continuous changes to the ground speed depending
on the wind as disturbing influence. A traditional abstract
model approximates the result by incrementally calculating
the ground speed in dependence of the wind in (coarse-grain)
discrete time steps. On the other hand, ROM does not
model the intermediate airplane speed at all. Instead, it
makes one initial optimistic prediction for the arrival time
and corrects at the end the prediction retroactively for the
average wind condition.

3. MODELING A CAN BUS USING ROM
With the general ROM concept in place, we will now de-

scribe the application of ROM to the modeling of a commu-
nication system. In particular we have chosen the CAN au-
tomotive bus as a real-time communication example, which
we will introduce first. We will then show a set of layer-
based CAN models as a reference, and ultimately apply the
ROM approach and analyze its benefits.

3.1 Introduction to the CAN Bus
The Controller Area Network (CAN) is a real-time serial

communications protocol, introduced by the Robert Bosch
GmbH [12] with a focus on automotive applications.

CAN is a serial multi-node broadcast bus. Frames, with
up to 8 bytes user data, are received by all bus nodes and
distinguished by the frame identifier. Each bus node decides
using local rules whether to process the frame.

The frame identifier also defines the priority. If multiple
senders attempt a transmission, the collision free CSMA/CA
arbitration guarantees that the highest priority frame will
succeed undisturbed. After the start of frame bit (see Fig-
ure 1), the frame identifier is transmitted with the most sig-
nificant bit first as a sequence of dominant and recessive bus
states. During transmission, each sender compares the send
and receive signal and backs off when detecting a difference.

1996
Jun

27
56

Philips Sem
iconductors

Product specification

8-bit m
icrocontroller with on-chip CAN

P8xC592

ha
nd

bo
ok

, f
ul

l p
ag

ew
id

th

MGA164

INTER-FRAME
SPACE

START - OF-
FRAME

ARBITRATION
FIELD:
Identifier
RTR bit

CONTROL FIELD:
Reserved bits
Data Length Code

DATA FIELD:
0 to 8 bytes

ACKNOWLEDGE
FIELD:
ACK Slot
ACK Delimiter

CRC FIELD:
CRC Sequence
CRC Delimiter

DATA FRAME

END - OF -
FRAME

INTER-FRAME SPACE
or OVERLOAD FRAME

recessive level

dominant level

Fig.19 Data Frame.

Figure 1: CAN data frame (source [11]).

In order to ensure correctness of the received data, each
CAN message includes a 15-bit CRC. In case of a CRC mis-
match, a retransmission of the frame is triggered. The pro-
tocol also defines elaborate error detection and error con-
finement rules for protection against faulty bus nodes.

The serial CAN protocol operates without a centralized
clock. Each node synchronizes on the bit stream of the
sender. A bit stuffing rule guarantees sufficient edges for
this synchronization. After transmitting 5 bits of equal po-
larity, a bit of opposite polarity is introduced.

71

The following features are candidates for abstraction:
• Serial protocol
• Bit synchronization
• Error detection and confinement
• Bit error detection using a 15 Bit CRC
• Bit stuffing
• Arbitration, bus access controlled by CSMA/CA

Now, we will describe our layer-based modeling of the CAN.
We chose for each model a subset of the above listed features.

3.2 Layer-based Modeling
Following the ISO OSI reference model [7], we can model

CAN using a layered architecture [13]. The CAN specifica-
tion then falls into the second layer, the data link layer. For
modeling, we consider the media access control (MAC) and
the protocol sublayer, as well as the physical layer.

Important for this discussion is the granularity of data
handling in each of the layers. The media access layer pro-
vides a transmission service for a contiguous block of bytes,
called a user transaction. This layer divides the arbitrar-
ily sized user transaction into smaller bus transactions, and
transfers these byte blocks using the protocol layer. The pro-

tocol layer transfers data as bus transactions which are bus
primitives (e.g. a CAN data frame with up to 8 bytes data).
It uses the services of the physical layer which provide a bus

cycle access to sample and drive the bus wires.

time

U s e r T r a n s a c tio n
B u s T r a n s a c tio n
B u s C y c l e

M A CT L M
P r o to c o lA T L M
P h y s i c a lB F M

LayerM o d el D at a G ran u l ari t y

Figure 2: Layer-based bus modeling.

Figure 2 shows the data granularity at each layer with
respect to time. A user transaction is successively split into
smaller units: bus transactions and bus cycles.

Following this layering, we can define three models which
we will refer to as TLM, ATLM, and BFM.

3.2.1 Transaction Level Model (TLM)
The TLM2 is the most abstract model, implementing only

the media access layer. Data, handled at the user transac-
tion granularity, is transferred regardless of its size in one
chunk using a single memcpy. Timing is simulated as a sin-
gle wait-for-time statement, covering the entire user trans-
action. Neither CRC nor bit stuffing is observed, since both
would require a bit inspection of each message. Arbitration
is abstracted to a semaphore used once per user transaction.

3.2.2 Arbitrated Transaction Level Model (ATLM)
The ATLM models a bus access with CAN frames at the

protocol level. It uses the MAC layer implementation of
the bus functional model to split user transactions into bus
transactions.

The ATLM accurately models the arbitration for each bus
transaction (CAN frame) based on the message identifier. It
collects all requests during start of frame, and proceeds with

2 Note that TLM is not clearly defined in the literature. For
this paper, we will use TLM as the name of the model at
the granularity of an entire user transaction.

Table 1: Models and supported features.
Feature BFM ATLM TLM

serial transmission, bit sync yes no no
error detection, confinement yes no no
CRC calculation, bit stuffing yes yes no

CSMA/CA arbitration yes yes no

the highest priority message. The ATLM performs a bitwise
inspection of the frame in order to calculate the CRC and
perform stuff bit handling: a stuff bit is inserted/removed
each time 5 bits of equal polarity are found. Thus, the
physical frame length depends on the frame content.

3.2.3 Bus Functional Model (BFM)
The BFM is a synthesizable, cycle- and pin-accurate bus

model. It implements all layers and covers all timing and
functional properties of the bus definition.

The bus functional model implements all features of the
specification. It protects the data by the CRC, handles stuff
bits and performs arbitration. The frame data is sent and
received serially and the node clocks are synchronized to the
bit stream according to [12] and [6].

Table 1 outlines the features implemented by each model.

3.3 Result Oriented Modeling
Now, we will apply the ROM approach to model the CAN

aiming at 100% accuracy and high simulation performance
at the same time.

3.3.1 Assumptions as with TLM
As we have introduced earlier, ROM is based on separa-

tion of computation and communication. It hides the com-
munication internals from the user and avoids using signals
and individual wires. Instead, it implements data transfers
by use of a single memcpy operation. As such, ROM uses
the same principles as TLM.

An application using a ROM model, is only aware of the
timing at the boundaries of a user transaction. All activi-
ties of the bus model within the user transaction are hidden
from the communicating parties. The application has no
knowledge about splitting the user transaction into individ-
ual CAN frames and CSMA/CA arbitration.

Only the timing at the boundaries of the user transaction
is important for the application. For accurate timing, the
start and the end times of each transaction must match the
times reported by a bus functional model.

As in TLM, the main idea for speeding up the simulation
is to replace the sequence of wait operations and arbitration
checks with one single wait-for-time statement. Reducing
the number of wait operations is the biggest contributor to
increased execution performance. This avoids running the
scheduling algorithm in the simulation engine and thus also
reduces the number of context switches.

3.3.2 Optimistic Approach
By use of an optimistic approach, ROM can freely rear-

range and/or omit internal events and state changes within
a transaction to eliminate costly context switches in the sim-
ulator. When a node requests a user transaction, the ear-
liest finish time for this transfer is calculated and the node
waits until that time. The time prediction takes the cur-
rent state of the bus into account. In case a higher-priority
transaction is already active, the wait time is increased for
its duration. After the calculated time has passed, the node

72

verifies whether the predicted time is still accurate. If so, the
transaction is complete. Note that in this best case scenario
only a single wait statement is used (as in the TLM).

To illustrate the advantage over the layer-based approach,
let us consider four CAN nodes simultaneously requesting
transmission of 16 bytes, resulting in two CAN frames each.

msg0
msg1
msg2
msg3
msg0
msg1
msg2
msg3
msg0
msg1
msg2
msg3
msg0
msg1
msg2
msg3RO

M
TL

M
AT

LM
BF

M

timet0 t3t2t1
Figure 3: 4 Nodes send 16bytes in two CAN frames.

Figure 3 shows the wait-for-time statements as arcs for
each model and Table 2 compares the numbers. All nodes
request the transmission at t0. The messages have decreas-
ing priority. The highest priority msg0 immediately gains
bus access at t0, while all others lose arbitration and retry
again. The lowest priority msg3 is delayed the longest until
t3, when all higher priority messages are completed.

The BFM constantly samples the serial bus to synchro-
nize its clock and to maintain the frame structure. Synchro-
nization requires oversampling3, which results in the large
amount of wait-for-time statements, almost 28 thousand for
the nodes in this example. The ATLM operates abstractly
on a bus transaction (CAN frame) granularity. It therefore
waits once per frame and checks the CSMA/CA arbitration.
If a node looses arbitration for one frame, it delays until start
of the next frame for a new arbitration attempt (e.g. 6 at-
tempts for msg3). Due to the abstract simulation, much
fewer wait-for-time statements (20) are needed. The TLM
simulates with a user transaction granularity. It arbitrates
only at the beginning of a user transaction and thus exhibits
even fewer wait-for-time statements (10). The ROM uses
the least number of wait-for-time statements (4) in this op-
timal case. Since all requests are already known at t0, ROM
can immediately predict the accurate end time resulting in
only a single wait-for-time statement per message.

Table 2: Wait complexity, optimal case.
BFM ATLM TLM ROM

wait-for-time 27,972 20 10 4
(in percent) 100% 0.071% 0.036% 0.014%

Reducing the usage of wait-for-time, which typically re-
sults in a costly context switch, improves the performance of
a model. We expect the serial transmitting BFM with the

3Each bit on the bus is oversampled (e.g. 12 times, [6]) in
order to detect the rising edge and for clock synchronization.

most wait-for-time statements to be the slowest, and ROM
to be the fastest. However, in order to accurately predict
the bit length of a CAN frame, ROM needs to calculate the
CRC and apply the bit stuffing rule. This results in a costly
bit inspection and prevents ROM from outperforming TLM.

3.3.3 Adjusting for Disturbing Influence
In order to guarantee accurate timing, ROM verifies the

initial optimistic prediction at the end of the predicted time.
A higher priority message starting during a multi-frame low
priority message will delay the low priority message. Then
the initially predicted time will be too short. ROM detects
this disturbing influence at the end of the low priority mes-
sage, recalculates the predicted time and waits for it. This
process is repeated until the prediction is verified to be cor-
rect. To minimize the effort for an update, ROM stores the
physical length of each frame during the initial prediction
and avoids the costly bit inspection during an update.

Note that an optimistic (short) prediction algorithm is
necessary to allow for corrections. With a pessimistic (too
long) prediction, a correction would need to go back in time,
which obviously is not possible.

To compare ROM against the layered models, we analyze
an example with disturbing influence as shown in Figure 4.
A low priority msg2 with 4 frames starts at t0. During its
second frame at t1 a high priority msg1 is released, which
delays the completion of msg2.

msg1
msg2AT

LM

msg1
msg2
msg1
msg2

timet0 t4t3t1 t2

TL
M

RO
M

Figure 4: Contention in ATLM, TLM and ROM

In ATLM4, the delay is correctly modeled. Msg1 waits
until the start of the next frame at t2 when it wins the
arbitration. Msg2 looses the arbitration for its 3rd frame at
t2 and retries twice until t3, when msg1 terminates. Then
the last two frames of msg2 are transmitted until t4. In
total, the sending nodes execute 9 wait-for-time statements.

In TLM, the example is not accurately simulated due to
the coarse granularity. The ongoing msg2 cannot be delayed
and ends at t3 (not at t4). Only after that msg1 starts and
finishes too late at t4. Clearly, the abstract TLM is highly
inaccurate in the finish times of both transfers, but executes
fast with only 3 wait-for-time statements.

In ROM, the low priority msg2 is initially predicted to
finish at t3. At t1, msg1 is predicted to start after the cur-
rent frame of msg2 at t2 and finish at t3. At t3, the node
sending msg1 wakes up and terminates since no higher pri-
ority transaction has occurred. At the same time, the node
sending msg2 wakes up and detects the disturbing influence

of msg1. It then updates its finish time for t3− t2 time units
later at t4 and waits until then. When it wakes up again at
t4, it finds no record of any higher priority transaction and
completes its transfer. ROM is able to correctly simulate
the example with only 3 wait-for-time statements.

4For brevity, we omit the BFM case here.

73

Table 3 compares the wait-for-time statements performed
by the models. ROM waits as often as the TLM, four orders
of magnitude less frequently than the BFM.

Table 3: Wait complexity with disturbance.
BFM ATLM TLM ROM

wait-for-time 11,888 9 3 3
(in percent) 100% 0.075% 0.025% 0.025%

3.3.4 Multiple Prediction Updates
Transferring long messages (split into many CAN frames)

may require multiple prediction updates, due to multiple
higher priority requests. Figure 5 shows an example where
a long transaction is frequently delayed. Although there
are 7 high priority requests during the low priority transfer,
ROM needs only 3 prediction updates. A closer looks shows
4 requests during the initially predicted period, 2 in the
next and finally only one. This exponential drop indicates
that, for most transfers, only very few prediction updates
are expected, even under high bus load.

high
l o w

Figure 5: Exponentially decreasing updates.

3.3.5 Complexity Considerations
It should be noted that the advantages of ROM come at

the price of a more complex model implementation. The
BFM and TLM implementations, on one hand, incremen-
tally advance time and can therefore use step-by-step deci-
sions. ROM, on the other hand, implements all bus schedul-
ing decisions explicitly at the boundaries of a user transac-
tion. This requires the model to keep track of outstanding
transactions, and reevaluate decisions if they were overly op-
timistic, requiring a higher effort from the model developer.

4. EXPERIMENTAL RESULTS
To validate the benefits of our proposed ROM approach,

we have implemented all four models in the SpecC SLDL [3]5

and executed them on the unmodified reference simulator
for a detailed analysis. We examine three aspects: the ac-
curacy as a necessary requirement for simulating real-time
communication, the number of prediction updates, and the
simulation performance.

4.1 Timing Accuracy
We use a test setup with 8 nodes6 connected to the CAN

bus. Four nodes act as senders and four nodes as receivers.
Each sender uses an exclusive range of message identifiers.
Since the message identifier defines the priority, we also refer
to the senders by the priority of their messages.

For measuring the timing accuracy, we have established a
setup with linear random distributed transfers. Each node
sends a set of 5000 predefined messages that vary in message
id (each from its own range), size (1-100 bytes), content and
delay between two transfers. The same set of messages is
transfered by each model, and we repeat the test for differ-
ent amounts of bus contention. We record the duration for
5 The ROM concept is not specific to SpecC. It is equally
applicable to other SLDLs, like SystemC.
6 Other tests, omitted for space reasons, show similar re-
sults.

 0
 10
 20
 30
 40
 50
 60
 70

 0 10 20 30 40 50

Av
er

ag
e

Er
ro

r i
n

Pe
rc

en
t

Bus Contention in Percent

Bus Functional Model
Arbitrated TLM
TLM
ROM

 0
 10
 20
 30
 40
 50
 60
 70

 0 10 20 30 40 50

Av
er

ag
e

Er
ro

r i
n

Pe
rc

en
t

Bus Contention in Percent

Bus Functional Model
Arbitrated TLM
TLM
ROM

Figure 6: Accuracy for lowest priority node.

each individual transfer and compare them later against the
cycle-accurate BFM.

Figure 6 shows the average error in transaction duration
for the node sending the lowest priority messages over a
varying degree of bus contention. As targeted, the ROM
shows 0% error for all measurements, lying right on top of
the x axis (same as the BFM and the ATLM). Since CAN
frames cannot be preempted, the ATLM is accurate. Arbi-
trating once per frame already yields accurate results.

In contrast, the TLM shows significant error rates, linear
increasing with growing bus contention, passing 60% error
at 50% contention. This inaccuracy does not allow the TLM
to be used for accurate real-time communication simulation.

4.2 Prediction Updates
Previously we have stated that multiple prediction up-

dates may be necessary for the accurate ROM. Therefore,
we quantify now the number of updates in the same random
transfer setup.

 0
 10
 20
 30
 40
 50
 60
 70

 0 1 2 3 4 5%
 U

se
r T

ra
ns

ac
tio

ns

Prediction Updates

 0
 10
 20
 30
 40
 50
 60
 70

 0 1 2 3 4 5%
 U

se
r T

ra
ns

ac
tio

ns

Prediction Updates
Figure 7: Prediction updates at 51% contention.

Figure 7 shows the histogram of prediction updates for the
condition with the most updates: the node with the lowest
priority messages at high bus contention. As expected, the
number of transactions that require prediction updates re-
duces exponentially. 66% have no prediction updates (with
the majority of single frame messages). 23% require one pre-
diction update and only 0.5% need 4 updates. This distribu-
tion clearly shows that a low number of prediction updates
can be generally expected for ROM.

4.3 Performance
Now, we analyze the performance advantage of ROM. In

our scenario, three high priority senders produce a constant
bus load totaling 50% by transferring 16 byte messages. We
actually measure the low priority sender, which issues trans-
actions of increasing size without delay in between7. We

7For a fair comparison, we also ensure that all models trans-
fer the same amount of user transactions.

74

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100

Si
m

ul
at

io
n

Ti
m

e
[m

se
c]

Transaction Size [bytes]

Bus Functional Model
Arbitrated TLM
ROM
TLM

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100

Si
m

ul
at

io
n

Ti
m

e
[m

se
c]

Transaction Size [bytes]

Bus Functional Model
Arbitrated TLM
ROM
TLM

Figure 8: Transfer time with 50% base utilization.

analyze the simulation time for the system consisting of 4
senders and 4 receivers on a Pentium 4 at 2.8 GHz.

Figure 8 shows the simulation time of the low priority
sender over an increasing message size while the high priority
senders are running at the same time. All models exhibit
a characteristic increase in simulation time when exceeding
a size divisible by 8. Another CAN frame is needed, which
increases simulation effort and increases the probability of
additional higher priority messages.

ROM and TLM execute five orders of magnitude faster
than the BFM. The TLM reaches this speed (0.006ms for 16
bytes) with the coarse grain operation on user transactions.
Although ROM optimizes the wait-for-time statements, it
does not outperform the TLM. With the costly bit inspec-
tion, it is only two times slower than the TLM: 0.012 ms for
a 16 byte transaction. The ATLM is about 24 times slower
than the ROM, since it incrementally simulates each CAN
frame. The cycle-accurate BFM with its serial simulation
executes the slowest. Transferring 16 bytes takes 155 ms.
In conclusion, ROM is the fastest to accurately model the
communication, 12 700x faster than the BFM.

Note that in [14], we have also analyzed a standard on-
chip bus architecture that does not require bit inspection.
There, ROM showed an identical high performance as TLM.

The system simulation bandwidth, the total bandwidth of
all senders, may be as well of interest to judge simulation
performance. Table 4 lists how many MBytes are simulated
per second of real time for an increasing number of nodes,
each issuing 16 byte transfers. It reveals that ROM is fast
and scales well with an increased number of nodes.

Table 4: System simulation bandwidth [MBytes

sec
]

BFM ATLM ROM TLM

2 Nodes 0.0005 0.117 3.51 12.7
4 Nodes 0.0003 0.113 2.97 6.6
8 Nodes 0.0002 0.110 2.57 5.2

5. CONCLUSION
In this paper, we have applied a novel modeling concept,

Result Oriented Modeling (ROM), to modeling of real-time
safety-critical communication in embedded system design.

ROM is a novel modeling approach that hides internal
state changes like a TLM. Moreover, ROM utilizes an opti-

mistic paradigm and predicts the end result already at the
start. It takes corrective measures at the end, if a disturbing
influence has occurred, and reaches 100% accuracy.

We have implemented the ROM concept for the CAN au-
tomotive bus and compared the new model against tradi-
tional layer-based models. Our experimental results show
tremendous benefits of ROM. While the traditional TLM
suffers from a significant loss in accuracy, ROM delivers
100% accuracy and high execution speed (12 700x faster
than the BFM) at the same time. Therefore, ROM is a
viable and attractive solution for accurate simulation of real-
time communication at TLM speed.

6. REFERENCES
[1] D. Brem and D. Müller. Interface based system modeling of

a CAN using SVE. In Proceedings of the EkompaSS
Workshop, Hanover, Germany, April 2003.

[2] M. Coppola, S. Curaba, M. Grammatikakis, and
G. Maruccia. IPSIM: SystemC 3.0 enhancements for
communication refinement. In DATE, Munich, Germany,
March 2003.

[3] D. D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, and
S. Zhao. SpecC: Specification Language and Design
Methodology. Kluwer Academic, 2000.

[4] A. Gerstlauer, D. Shin, R. Doemer, and D. Gajski.
System-Level Communication Modeling for
Network-on-Chip Synthesis. In ASPDAC, Shanghai, China,
January 2005.

[5] T. Grötker, S. Liao, G. Martin, and S. Swan. System
Design with SystemC. Kluwer Academic Publishers, 2002.

[6] F. Hartwich and A. Bassemir. The Configuration of the
CAN Bit Timing. www.can.bosch.com, 1999.

[7] Internation Organization for Standardization (ISO).
Reference Model of Open System Interconnection (OSI),
second edition, 1994. ISO/IEC 7498 Standard.

[8] H. Kopetz. Real-Time Systems: Design Principles for
Distributed Applications. Kluwer Academic, 1997.

[9] OCP-IP. Open Cores Protocol. www.ocpip.org.

[10] S. Pasricha, N. Dutt, and M. Ben-Romdhane. Fast
exploration of bus-based on-chip communication
architectures. In CODES and ISSS, Stockholm, Sweden,
September 2004.

[11] Philips. P8xc592: 8-bit microcontroller with on-chip can.
www.semiconductors.philips.com, 1996.

[12] Robert Bosch GmbH. CAN Specification, 2.0 edition, 1991.
www.can.bosch.com.

[13] G. Schirner and R. Dömer. Abstract Communication
Modeling: A Case Study Using the CAN Automotive Bus.
In A. Rettberg, M. Zanella, and F. Rammig, editors, From
Specification to Embedded Systems Application, Manaus,
Brazil, August 2005. Springer.

[14] G. Schirner and R. Dömer. Fast and Accurate Transaction
Level Models using Result Oriented Modeling. In ICCAD,
San Jose, CA, USA, November 2006.

[15] M. Sgroi, M. Sheets, M. Mihal, K. Keutzer, S. Malik,
J. Rabaey, and A. Sangiovanni-Vincentelli. Addressing the
System-on-a-Chip interconnect woes through
communication based design. In DAC, June 2001.

[16] R. Siegmund and D. Müller. SystemCSV : An extension of
SystemC for mixed multi-level communication modeling
and interface-based system design. In DATE, Munich,
Germany, March 2001.

[17] K. W. Tindell, H. Hansson, and A. J. Wellings. Analysing
Real-Time Communications: Controller Area Network
(CAN). In Real-Time Systems Symposium, December 1994.

[18] P. van der Putten, J. Voeten, M. Geilen, and M. Stevens.
System level models for real-time communication. In
EUROMICRO, September 1999.

75

www.can.bosch.com
www.ocpip.org
www.semiconductors.philips.com
www.can.bosch.com

	1 Introduction
	1.1 Related Work

	2 Result Oriented Modeling
	3 Modeling a CAN Bus using ROM
	3.1 Introduction to the CAN Bus
	3.2 Layer-based Modeling
	3.2.1 TLM
	3.2.2 ATLM
	3.2.3 BFM

	3.3 Result Oriented Modeling
	3.3.1 Assumptions as with TLM
	3.3.2 Optimistic Approach
	3.3.3 Adjusting for Disturbing Influence
	3.3.4 Multiple Prediction Updates
	3.3.5 Complexity Considerations

	4 Experimental Results
	4.1 Timing Accuracy
	4.2 Prediction Updates
	4.3 Performance

	5 Conclusion
	6 References

