
Automatic Generation of Transaction-Level Models for
Rapid Design Space Exploration

Dongwan Shin, Andreas Gerstlauer, Junyu Peng, Rainer Dömer and Daniel D. Gajski
Center for Embedded Computer Systems

University of California Irvine
CA 92697 USA

{dongwans, gerstl, pengj, doemer, gajski}@cecs.uci.edu

ABSTRACT
Transaction-level modeling has been touted to improve sim-
ulation performance and modeling efficiency for early design
space exploration. But no tools are available to generate
such transaction-level models from abstract input descrip-
tions. Designers have to write such models manually, which
is a tedious and error-prone task, and one of bottlenecks in
improving designer’s productivity. In this paper, we propose
a method to generate transaction-level models from virtual
architecture models where components communicate via ab-
stract message-passing channels. We have applied our ap-
proach to a set of industrial-strength examples with a wide
range of target architectures. Experimental results show
that significant productivity gains can be achieved, demon-
strating the effectiveness and benefits of our approach for
rapid, early exploration of communication design space.

Categories and Subject Descriptors
J.6 [Computer-Aided Engineering]: CAD

General Terms
Design, Alogithms

Keywords
communication synthesis, transaction-level model

1. INTRODUCTION
As system-on-chip (SoC) designs grow in complexity and

size, on-chip communication is becoming an increasingly im-
portant factor. In order to explore the communication de-
sign space, designers use models which are evaluated through
simulation. Typically, these models are manually written,
which is a tedious, error-prone and time-consuming pro-
cess. Furthermore, to achieve required accuracies, models
are written at low levels of abstraction with resulting slow

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’06, October 22–25, 2006, Seoul, Korea.
Copyright 2006 ACM 1-59593-370-0/06/0010 ...$5.00.

simulation performance. Together, this severely limits the
amount of design space that can be explored in a reasonable
time.

Recently, a lot of research on defining communication
models at different levels of abstractions has been proposed
in order to improve simulation performance. This trend is
now leveraged by the transaction-level model (TLM) paradigm,
which provides system-level bus interfaces at higher levels of
abstraction. In this paper, we propose an approach for au-
tomatic generation of TLMs from an abstract description of
the partitioned system processing architecture.

The rest of the paper is organized as follows: We show
a brief overview of related work in Section 2. Section 3
introduces the overall design flow and the inputs and outputs
of the communication synthesis. Section 4 will present the
details of the communication refinement process. Finally,
experimental results are shown in Section 5 and the paper
concludes with a summary in Section 6.

2. RELATED WORK
There is a wealth of system-level design languages (SLDL)

like SystemC [4], or SpecC [5] available for modeling and de-
scribing systems at different levels of abstraction. However,
the languages themselves do not define any details of actual
concrete design flows. More recently, SLDLs have been pro-
posed as vehicles for so-called transaction-level modeling for
communication abstraction [1, 4, 6, 9]. However, no spe-
cific definition of the level of abstraction and the semantics
of transactions in such models have been given. Further-
more, TLM proposals so far focus on simulation only and
lack the path to vertical integration of models for implemen-
tation and synthesis.

Historically, a lot of work has focused on automating the
decision making process for communication design [7, 8, 10]
without, however, providing corresponding design models
or a path to implementation. More recently, work has been
done to target automatic generation [11, 15] of communica-
tion, but in all cases, the approaches are usually limited to
specific target architecture templates or narrow input model
semantics.

Recently, some commercial tools [2, 3] are beginning to
capture designs at the transaction-level. In contrast to such
existing schematic entry tools that simply provide an inter-
face for plugging existing database models together graphi-
cally, the contribution of this paper is to generate concrete,
detailed TLMs from abstract virtual architecture models of
a system.

64

GUI

Design decisions:

Communication
refinement

Architecture model

Transaction -level
model

Bus allocation
Protocol selection

Connectivity
Channel mapping
Address mapping
Interrupt mapping

Arbitration

Bus/CE
database

CPU MEM

HW IP

c

c

c c c

CPU MEM

HW IP

cpuBus IPBus
B
r

Figure 1: Communication design flow.

3. COMMUNICATION DESIGN FLOW
Figure 1 shows the proposed communication design flow.

Design decisions are made by the user and entered into the
system through a graphical user interface (GUI). With the
design decisions, the user specifies the desired target archi-
tecture and the mapping of communication onto this archi-
tecture. Based on these decisions and given the design model
at the input of the flow, refinement tool synthesizes the re-
spective implementation of the communication and generate
the resulting design model at the output of the flow. In the
process, refinement tool relies on a set of databases that pro-
vide models of communication elements (CEs), busses and
other communication structures.

Our communication design flow starts with a virtual ar-
chitecture model of the system in which processing elements
(PEs) communicate via abstract channels. During commu-
nication synthesis, the global system network is designed
and end-to-end communication between PEs is mapped into
point-to-point communication between stations (PEs and
CEs) of the network architecture. Then, logical links be-
tween adjacent stations are grouped and implemented over
an actual communication medium. As a result of the com-
munication design process, a transaction-level model of the
system is generated. The TLM [1, 4, 6] abstracts pin-level
communication to the level of individual bus protocol trans-
actions in order to accelerate model simulations.

3.1 Input Architecture Model
The architecture model is the starting point for communi-

cation design. This input architecture model may be man-
ually coded or can be automatically generated by virtual
architecture generation tools [12]. It follows certain pre-
defined semantics (see Section 4.1) and reflects the intended
virtual processing architecture of the system with respect
to the PEs that are present in the design. Each component
in the virtual architecture is a PE that executes a specific
application behavior in parallel with other PEs. Communi-
cation inside a PE takes place through its local memory. It
is thus not a concern for system communication synthesis.
Inter-PE communication by the application in the architec-
ture model takes place through abstract, high-level channels
of untimed message-passing or shared memory semantics.

Figure 2 shows an example of an architecture model. The
application has been mapped onto a system architecture
consisting of a processor (CPU), a custom hardware co-
processor (HW1), a custom hardware peripheral (HW2) and
a system memory (MEM). Inside the CPU, tasks are dynam-

HW2MEM

c2

c1

CPU

B1

HW1

B3

int v1[100];
double v2;

B4B2

c3

OS Model

Figure 2: Architecture model example.

MEM

CPU HW1

MEMCtrl

HW2

TX
Bus1 Bus2

MBus

Figure 3: Target architecture for Figure 2.

ically scheduled under the control of an operating system
model [16]. In addition to communicating via channels (c1,
c2 and c3), PEs exchange data by accessing variables (v1
and v2) stored in the shared memory (MEM) and exported
by the memory through its external channel interface. At its
interface, the memory provides methods to read and write
the value of each variable in the memory.

3.2 User Decisions
Design decisions include allocation of system busses, pro-

tocol selection, allocation and selection of CEs (routers and
bridges), definition of the connectivity between components
and busses, mapping and routing of abstract communication
over busses, declaration of masters and slaves, and assign-
ment of bus addresses, interrupts, and access priorities for
each message. Through the user decisions, the target ar-
chitecture for the design is defined. In our case, the target
architecture is limited to networks of busses in a forest of
trees topology, i.e. there are no cycles.

Figure 3 shows the target architecture chosen for the pre-
viously introduced example (Figure 2). In this example, we
allocate three busses: a CPU bus Bus1 as the main sys-
tem bus, a memory bus MBus, and a peripheral bus Bus2.
CPU and HW1 PEs are directly connected to the system
bus. A memory controller CE MEMCtrl is allocated and
connected to bridge between the system and memory bus
protocols. Finally, a router CE TX is inserted to connect
and translate between system and peripheral busses.

3.3 Databases
The databases consist of a transaction-level bus database

and a CE database. The bus database contains models of
busses including associated protocols. Bus models in the
database implement the primitives defined by the bus pro-
tocol for data transfers and arbitration. They provide an
abstraction of external communication into data links and
memory accesses by using and combining bus primitives to
regulate media accesses and slice abstract data into bus
words. Each bus model can have two separate sides with
different implementations for bus masters and bus slaves.

The CE database contains bridge and transducer compo-
nents that include attributes like name, type and associated
bus protocols. The models of CEs in the database, however,
are empty shells that are void of any functionality. They
will be synthesized by the refinement tool.

65

CPU

TX

MEMCtrl

MEM HW2

B4

L1

mac

char[4k]

m
ac m

ac

HW1

Bus1
TLM

OS Model

M L3L1 intA

mac intA intB

B1 B2
B3

L3 M

mac

Bus2
TLM

M
bu

s
T

LM

ISR

Figure 4: Transaction-level model example.

3.4 Transaction-level Model
At the output, refinement produces a TLM. The TLM

accurately describes the system communication architecture
down to the level of individual bus protocol read and write
transactions. In our transaction-level modeling of a sys-
tem, the computation is estimated time-accurate and the
communication is bus-cycle accurate (Programmer’s View
+ Timing) [14].

Figure 4 shows the TLM generated for the input architec-
ture model example from Figure 2. Reflecting the originally
defined target architecture (Figure 3), components commu-
nicate via bus protocol transaction channels for Bus1, Bus2
and MBus. Transaction-level implementations from the bus
database together with automatically generated implemen-
tations of higher protocol stacks are inserted into each con-
nected component. For the programmable PE (CPU), its
transaction-level implementation is taken from the database,
connected at the media access level, customized by generat-
ing appropriate interrupt handlers and filled with the PE’s
application code.

4. COMMUNICATION REFINEMENT
In this section, we will look at details of model transfor-

mations that are performed during refinement.

4.1 Input Communication Channels
Four different types of abstract communication are sup-

ported in an architecture model at the input of refinement:
synchronous and asynchronous message passing, shared mem-
ory accesses and events. The communication semantics of
these channels are shown in the form of state diagrams in
Figure 5.

In synchronous message passing, as shown in Figure 5(a),
both the sender and the receiver meet in a rendezvous fash-
ion to safely exchange data. More specifically, the sender
stores its data into the channel, notifies the receiver that the
data is ready, and then waits for the receiver to acknowledge
the receipt of the data. The receiver, on the other hand,
first waits for notification of data arrival, then gets it and
acknowledges the reception. In short, synchronous message
passing conceptually utilizes a two-way handshake mecha-
nism to ensure reliable data transport. This way, data can-
not get lost or duplicated. However, both the receiver and
the sender may be blocked in their execution.

In asynchronous message passing, as shown in Figure 5(b),
only the receiver may be blocked if data is not available. The

wait

wait

ack

sender receiver

notify

write
data

read
data

(a) sync. MP

wait

sender receiver

notify

write
data

read
data

(b) async. MP

sender receiver

write
data

read
data

(c) memory

wait

sender receiver

notify

(d) event

Figure 5: Semantics of communication channels

sender is not blocked. To avoid the loss of data, sent data
is stored in a queue channel until it is picked up by the
receiver. As a consequence, asynchronous message passing
is also reliable, but the sender cannot make any assumptions
about the point of time when the receiver actually retrieves
the data.

The third type of communication, a shared memory access
as shown in Figure 5(c), exhibits non-blocking communica-
tion for both the sender and the receiver. The sender simply
writes data into a shared storage element from where the
data can be read by the receiver at any time. Since there
is no built-in synchronization between the communicating
parties, this type of data transfer is unreliable. Thus, data
may get lost due to overwriting, or could get duplicated due
to multiple read accesses.

Finally, an event channel, as shown in Figure 5(d), ex-
hibits pure synchronization semantics without any data trans-
fer. Here, the receiver simply waits for an event from the
sender before proceeding in its execution. No data is ex-
changed. In other words, event communication is non-blocking
for the sender, but blocking for the receiver. Note that
this event channel can be easily combined with a memory
channel to achieve reliable communication in shared mem-
ory fashion.

4.2 Channel Implementation
Given the input architecture model, the communication

refinement tool will automatically generate an implementa-
tion of the abstract input channels on the given communi-
cation architecture. The tool automatically generates and
inserts the necessary bus drivers and bus interfaces into the
system components of the system. The automatic genera-
tion of bus drivers and interfaces inside components adapts
accesses from the application tasks into transactions over the
bus channels connected to the components. The protocol
stacks are customized and optimized in terms of (a) station
type of the component on the bus (master/slave) (b) com-
munication protocol, (c) channel semantics (Section 4.1),
(d) data types of message transfered, and (e) synchroniza-
tion between components.

4.2.1 Synchronous message passing
Synchronous message passing implements two-way block

handshaking, which does not require any buffers to trans-
fer messages between components. In order to preserve the
semantics of channels in the input models, synchronization
between components has to be introduced whenever neces-
sary. In a bus-based system, we distinguish between master
and slave components for each transfer. A master compo-

66

Master link layer Interrupt handler

A0
SlaveReady

== false

A2
Reserve I /O ports;
MasterRead /
 Write(Slave#, msg);

A3

I0

IRQ == true

SlaveReady = false
Release I /O ports;

SlaveReady == true

IRQ ==
falseA1

I/O ports are available

I/O ports are
not available

I1 SlaveReady = true;

S0

I/O ports are available

S2
SlaveRead/
 Write(slave#, msg);
Release I /O ports

S1
Reserve I /O ports;
IRQ = true;

I/O ports are
not vailable

Slave link layer

2

IRQ = false;

1

3

CPU_HAL

CPU_OS

App.

rdyB rdyA

addr2

addr1

intB intA

OSModel

ICL

ID

BusTLM

CustomHW

App.

addr2

addr1

S
laveM

A
C

M
as

te
rW

ra
p

M
as

te
rM

A
C

intA
intB

Figure 6: Synchronization by interrupts.

nent will wait for synchronization from slaves before per-
forming the actual data transfer. On the slave side, a slave
will notify the master before starting to listen for incom-
ing data transfer requests. In case of busses with inherent
two-way synchronization built into their data transfer pro-
tocols (e.g. RS232), no explicit synchronization needs to be
implemented by the refinement tool.

The synchronization from slave to master in a bus-based
communication architecture has to been done through in-
terrupts and/or polling. The decision about which synchro-
nization mechanism to use is done by user. In case of syn-
chronization via interrupts, the user has to assign interrupt
lines for each data transfer (message passing channel).

Transaction-level models for programmable components
in the PE database include a definition of their interrupt
capabilities. The top-level shell defines the interrupt ports
available at the physical component interface, and the hard-
ware abstraction layer (HAL) provides corresponding empty
interrupt handler templates. During model refinement, in-
terrupt ports from slaves are connected to the interrupt
ports of programmable components and interrupt handlers
and interrupt tasks are generated in the HAL and operating
system, respectively, by filling the corresponding templates
of the processor model.

Figure 6 shows the state machines synthesized inside mas-
ter and slave components which are synchronized by inter-
rupts. When a slave process reaches the communication
point, it notifies the master that it is ready to start the data
transfer by sending an interrupt (1). Upon receiving the
interrupt event, the master suspends its execution and the
interrupt handler in the master sets a SlaveReady flag. The
master side process waits until the flag is set (2) to initi-
ate the bus transfer. Finally, the slave component waits for
the master to initiate the bus transfer by checking the ad-
dress bus (3). This mechanism retains the two-way blocking
property of any original synchronous message passing com-
munication. Once the data transfer is complete, the master
component resets the SlaveReady flag to prepare for the next
slave request.

In case of interrupt sharing due to an insufficient number
of interrupts in the master, interrupt handling is extended
to first determine the source of each interrupt request via

Queue
syncMP syncMP

PE2 (receiver)PE1 (sender)

Figure 7: An implementation of async. MP.

CPU_HAL

CPU_OS

App.

addr1

intA intB

OSModel

ICL

ID

BusTLM

CustomHW

App.

addr1

S
laveM

A
C

M
as

te
rW

ra
p

M
as

te
rM

A
C Flag

intA
intB

Figure 8: An implementation of event.

polling of slaves. Due to space limitations, implementation
of interrupt sharing and polling [13] is not shown here.

4.2.2 Asynchronous message passing
In asynchronous message passing, data is stored in a stor-

age element such as a buffer or queue for reliable data trans-
fers. Otherwise, the data may get lost when the receiver is
not ready. Asynchronous message passing channels can have
3 types of implementations depending on which component
has the storage element. Users can choose one of these im-
plementations by assigning asynchronous message passing
channels to corresponding PEs:

1. Stored in sender: sender implements the storage ele-
ment from which the receiver gets data. Data transfers
on the bus happen between the storage element and
the receiver.

2. Stored in receiver: receiver implements the storage el-
ement. Data transfers on the bus happens between the
sender and the storage element.

3. Stand-alone storage element: the storage is implemented
in a separate component which buffers the data be-
tween sender and receiver (Figure 7).

As shown in Figure 7, asynchronous message passing chan-
nels are refined down to components and synchronous mes-
sage passing channels in between. The synchronous message
passing channels are then implemented as explained in Sec-
tion 4.2.1.

4.2.3 Memory accesses
The abstract models of memory accesses need to be re-

placed with transaction-level implementations of memory
components, taken out of the database. The model refine-
ment will automatically detect corresponding implementa-
tions of memory accesses. In case of memory or register
(memory-mapped I/O) accesses, slave components are as-
sumed to be always ready and no extra synchronization
is necessary. In addition, refinement tool inserts memory
drivers that perform data formatting from abstract mem-
ory accesses to accesses (based on slice and offset) of the
memory over the bus.

4.2.4 Events
Event channels are used for synchronization only. They

do not carry any data. An event channel can be imple-
mented by asynchronous message passing with a flag data
(1 bit data) through which a sender notifies a receiver that
the sender is ready (Figure 8). As with asynchronous mes-
sage passing channels, the receiver implements the buffer

67

BUS1
TLM

Router

state
machine

B
U

S
1M

A
C

B
U

S
2M

A
C

BUS2
TLM

ID src dest message

state
machine

Figure 9: Routing of message in CEs.

to store the value of a flag on the receiver side. When an
interrupt-capable processor is the receiver, event channels
are implemented by receiving an interrupt from the sender
(similar to synchronous MP in Figure 6).

4.3 Arbitration
If a component internally has multiple tasks which access

a transaction-level bus channel concurrently, the interface
has to be protected to avoid potential bus conflicts of bus
accesses (state A2 and S1 in Figure 6). Therefore, we imple-
ment mutual exclusiveness at the interface of the component
(MasterWrap adapter in Figure 6 and Figure 8).

Arbitration among multiple masters on the bus is imple-
mented as part of transaction-level bus channel. Externally,
master components have to provide identity information to
the bus channel. For this, the adapter inside the master in-
terface transfers the identity (ID in MasterWrap adapter in
Figure 6 and Figure 8).

4.4 Bus Bridging and Routing
If two different bus systems are connected to each other,

additional CEs such as bridges and transducers are intro-
duced. CEs split and segment the system of connected PEs
in the architecture model into several bus subsystems.

Bridges transparently translate between two bus proto-
cols directly at the protocol level. A bridge state machine
is generated as the product of the two bus protocol state
machines [13]. In the process, the two protocols are prop-
erly interleaved such that data dependencies and timing con-
straints are observed. A bridge is always a master on one
side and a slave on the other. Between listening for and
serving transactions on the slave side, it interleaves corre-
sponding mirror transactions on its master side (blocking
the slave side in the process, if necessary).

In cases where simple bus bridges are not sufficient, trans-
ducers are necessary. Transducers operate on packets using
a store-and-forward principle, routing packets between their
incoming and outgoing links. Transducers can connect any
two bus protocols and they can be master or slave on either
side. In contrast to a bridge, transducers internally buffer
each individual bus transactions on one side before perform-
ing the equivalent transaction on the other side. As shown
in Figure 9, a transducer model generated by refinement
contains corresponding state machines for each direction of
each channel crossing the transducer [13]. Note that each
state machine contains its own local buffer, i.e. buffers are
not shared, avoiding potential deadlocks and looks up the
address mapping table to route the messages over the two
different busses.

5. EXPERIMENTAL RESULTS
In order to demonstrate the feasibility and benefits of our

approach in terms of design space exploration for a wide va-
riety of designs, we applied our design flow and refinement

10

15

20

25

30

35

MP3.A1 MP3.A2 MP3.A3 MP3.A4

Architectures

S
ys

te
m

 d
el

ay
 (

m
s)

TLM

PAM

(a) Simulated delays

1

10

100

1000

10000

100000

1000000

MP3.A1 MP3.A2 MP3.A3 MP3.A4

Architectures

R
un

 ti
m

e
(s

ec
)

TLM

PAM

(b) Simulation performance

Figure 10: MP3 Exploration results.

tool to the design of four industrial-strength examples: a
voice codec (Vocoder), a JPEG encoder (JPEG), an MP3 de-
coder (MP3) and a baseband platform example (Baseband)
which is combination of a voice codec and JPEG encoder.
Different architectures using Motorola DSP56600 processors
(DSP), Motorola ColdFire processors (CF), ARM proces-
sors (ARM) and custom hardware units (HW, I/O, DCT,
QN, FIL) were generated and various communication archi-
tectures (DSP bus, CF bus, AMBA bus and simple hand-
shake bus) were tested.

Table 1 summarizes the features and parameters of the
different design examples we tested. For each example, the
target communication architecture, the total number of ab-
stract channels and the total traffic in the design are shown.
Target architectures are specified as a list of masters plus
slaves for each bus in the system where the bus type is im-
plicitly determined to be the protocol of the primary master
on the bus. For example, in the case of the MP3 design,
the ARM processor communicates with dedicated hardware
units over its AMBA bus whereas the HW units commu-
nicate with each other through separate handshake busses.
For simplicity, routing, address and interrupt assignment
decisions are not shown in this table.

Overall model complexities are given in terms of code size
using lines of code (LOC) as a metric. Results show sig-
nificant differences in complexity between input and gen-
erated output models due to extra implementation detail
added between abstraction levels. To quantify the actual
refinement effort, the number of modified lines (Mod. LOC)
is calculated as the sum of lines inserted and lines deleted
whereas code coming from database of predefined communi-
cation codes (DB LOC) is excluded1. We optimistically as-
sume that a person can write 30 lines of correct (tested and
debugged) code per day. Thus, manual refinement would re-
quire hundreds of man-days for reasonably complex designs.
Automatic refinement, on the other hand, completes in the
order of seconds. Note that in all cases, architecture modes
at the input do not have to be changed, i.e. input models
remain the same throughout exploration2. Results there-
fore show that a productivity gain of about 1000 times can
be achieved using the presented approach with automatic
model refinement.

Figure 10 shows the results of exploration of the design
space for the MP3 decoder example. We used four different
architectures for the MP3 decoder as shown in Table 1. We

1Our experimental DB includes models of ARM, ColdFire
and Motorola DSP including associated busses. On aver-
age, DB models have complexities of 1000 LOC per proces-
sor/bus combination.
2In both cases, design decisions about the target architec-
ture are assumed to be given, i.e. time required for decision
making is the same and hence not considered further.

68

Table 1: Experimental results for different exploration examples.

Examples Busses Chnls Traffic Model (LOC) DB Mod. Refine. Time
(Masters → Slaves) (no.) (bytes) Arch TLM (LOC) (LOC) Tool Manual

Vocoder A1 DSP → 2 I/Os 5 264718 13047 14937 969 1037 < 1 s 35 days
A2 DSP → HW, 2 I/Os 17 296014 13978 16492 971 1869 < 2 s 63 days

JPEG

A1 CF → MEM 1 80676 4425 5623 624 604 < 1 s 20 days
A2 CF → DCT,MEM 9 82170 5148 7207 1000 1221 < 1 s 41 days

A3 CF → DCT, DMA 12 82324 5258 7228 1000 1670 < 2 s 55 daysDMA → MEM, DCT

A4 CF → DCT, QN, DMA 16 83098 5474 8733 1386 2123 < 3 s 71 daysDMA → MEM, DCT, QN

MP3

A1 ARM → I/O 6 21390 28140 33284 4139 1171 < 2 s 40 days
A2 ARM → I/O, FIL1, FIL2 50 10006 29030 35716 4139 3489 < 5 s 117 days

A3
ARM → FIL1, FIL2

50 10006 29030 36090 4525 3475 < 5 s 116 daysI/O ↔ FIL1
I/O ↔ FIL2

A4
ARM → FIL1, FIL2

52 10006 29160 36754 4525 4035 < 6 s 135 daysI/O ↔ Q1 ↔ FIL1
I/O ↔ Q2 ↔ FIL2

Baseband A1

DSP → BIO,SIO,HW,TX

29 3298416 19072 24882 2051 4343 < 8 s 144 daysCF → DMA,TX,BR
DMA → MEM,BR
BR → DCT

measured whole system delay of each architecture and the
simulation time of each model. As shown in Figure 10, as
the number of system components increases with each archi-
tecture, the overall performance of the system is improved.
In addition, TLMs are as accurate as pin-accurate models
(PAMs) but improve simulation speed by around 1000 times
compared to PAMs. Given the design decisions made by the
user, it took less than 1 hour to obtain 4 different commu-
nication models from an executable specification model by
architecture exploration [12] and communication design.

6. CONCLUSION
In this paper, we presented an approach for generation

of TLMs for SoC communication designs from a partitioned
virtual architecture model of a system. A corresponding
transaction-level refinement tool has been developed and in-
tegrated into our SoC design environment.

Using industrial-strength examples, the feasibility and ben-
efits of the approach have been demonstrated. Automating
the tedious and error-prone process of refining a high-level,
abstract description of the design into an actual implemen-
tation results in significant gains in designer productivity,
thus enabling rapid, early exploration of the communica-
tion design space. In the future, we plan to integrate IP
components with fixed, pre-defined communication protocol
interfaces and add algorithms for automated design making
for optimization.

7. REFERENCES
[1] M. Coppola, S. Curaba, M. Grammatikakis, and

G. Maruccia. IPSIM: SystemC 3.0 enhancements for
communication refinement. In Proc. of DATE’03.

[2] CoWare Platform Architect. Available at http:
//www.coware.com/products/platformarchitect.php.

[3] ARM MaxSim Tools. Available at
http://www.arm.com/products/DevTools/MaxSim.html.

[4] T. Grötker, S. Liao, G. Martin, and S. Swan. System
Design with SystemC. Kluwer Academic Publishers,
Mar. 2002.

[5] D. D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, and
S. Zhao. SpecC: Specification Language and
Methodology. Kluwer Academic Publishers, Jan. 2000.

[6] L. Cai, and D. D. Gajski. Transaction Level Modeling:
An Overview. In Proc. of CODES+ISSS’03.

[7] T. Y Yen, and W. Wolf. Communication synthesis for
distributed embedded systems. In Proc. of ICCAD’95.

[8] R. B Ortega, and G. Borriello. Communication
synthesis for distributed embedded systems. In Proc.
of ICCAD’98.

[9] S. Pasricha, N. Dutt, and M. Ben-Romdhane.
Extending the transaction level modeling approach for
fast communication architecture exploration. In Proc.
DAC’04.

[10] K. Lahiri, A. Raghunathan, and S. Dey. Efficient
exploration of the SoC communication architecture
design space. In Proc. ICCAD’00.

[11] D. Lyonnard, S. Yoo, A. Baghdadi, and A. A. Jerraya.
Automatic generation of application-specific
architectures for heterogeneous multiprocessor
system-on-chip. In Proc. DAC’01.

[12] J. Peng. System-Level Automatic Model Refinement.
PhD thesis, University of California, Irvine,
Information and Computer Science, April 2004.

[13] A. Gerstlauer, G. Schirner, D. Shin, and J. Peng.
Necessary and sufficient functionality and parameters
for SoC Communication. CECS, Univ. of California,
Irvine, Tech. Rep. CECS-TR-06-1, May 2006.

[14] G. Schirner, and R. Dömer. Quantitative analysis of
transaction level models for the AMBA bus. In Proc.
of DATE’06.

[15] A. Wieferink, R. Leupers, G. Ascheid, H. Meyer,
T. Michiels, A. Nohl and T. Kogel. Retargetable
generation of TLM bus interfaces for MP-SoC
platforms. In Proc. of CODES+ISSS’05.

[16] H. Yu, A. Gerstlauer, and D. D. Gajski. RTOS
scheduling in transaction level models. In Proc. of
ISSS’03.

69

