
Generic Netlist Representation
for System and PE Level Design Exploration

Bita Gorjiara, Mehrdad Reshadi, Pramod Chandraiah, Daniel Gajski
Center for Embedded Computer Systems, University of California, Irvine

{bgorjiar, reshadi, pramodc, gajski}@cecs.uci.edu

ABSTRACT
Designer productivity and design predictability are vital factors for
successful embedded system design. Shrinking time-to-market and
increasing complexity of these systems require more productive design
approaches starting from high-level languages such as C. On the other
hand, tight constraints of embedded systems require careful design
exploration at system level (coarse grained exploration) and at the
processing-element (PE) level (fine grained exploration).
In this paper we presented GNR, a formal modeling approach,
developed to improve productivity of designing systems and processing
elements, the same way that traditional ADLs improved productivity
for designing processors. The GNR is an order of magnitude shorter
than state-of-the-art ADLs with RTL generation capabilities and yet
can capture any structural details that affect the implementation
quality. Using relatively short GNR description, we explored several
designs for implementing an MP3 decoder and achieved 3.25 speedup
compared to MicroBlaze processor. We have also developed a web-
based interface for our tools, so that users can upload and evaluate
new architectures described in GNR. Our toolset and GNR is an
intermediate step towards synthesis of TLM to RTL.

Categories and Subject Descriptors
B.5.2 [Design Aids] Automatic synthesis; C.0 [General] Systems
specification methodology, Modeling of computer architecture.

General Terms
Design, Performance, Languages.

Keywords
Architecture Description Language, application-specific processor,
system design, modeling, synthesis, NISC, GNR.

1. INTRODUCTION
Designer productivity and design predictability are vital factors for
successful embedded system design. Shrinking time-to-market and
increasing complexity of these systems require more productive design
approaches. Hence, embedded systems are increasingly designed using
software (high-level languages such as C) rather than directly
implementing them in RTL. Tight constraints of embedded systems
require careful design exploration at system level (coarse grained
exploration) and at the processing-element (PE) level (fine grained
exploration). Such explorations can result in considerable improvement

in terms of performance, power consumption, area, and
manufacturability. Furthermore, we believe that design flows that give
more control to the designers over the final implementation will
generate more predictable results.
Architecture Description Languages (ADLs) have been proven to be
productive for design of Application Specific Instruction-set Processors
(ASIP). The ADL captures the behavior or structure of the processor
and is used by the tools that compile the application and simulate the
results. A few approaches have also offered automated or semi-
automated RTL synthesis of the processor, which can improve the
designer’s productivity. It is desired to extend the ADL-based
approaches to capture the entire systems as well. However, ADL-based
design flows always assume that the architecture has a predefined
instruction-set. This assumption creates three problems: (a) they cannot
be used for dedicated hardware executing a fixed application (IP),
where instructions impose unnecessary overhead; or for the entire
system, where no instruction-set can be defined; (b) such ADLs are
lengthy and complex because they contain either behavioral description
of all instances of instructions, or structural description of the
instruction decoder.; (c) generated RTL from instruction behaviors has
unpredictable quality.
To address the above issues, in this paper we present a Generic Netlist
Representation (GNR) that can be used for generating programmable
and dedicated custom pipelined IPs from high level C description of the
application. It can capture a single IP or a system composed of several
IPs. In contrast to ASIP approaches, our target processing elements
(PEs), called No-Instruction-Set-Computers (NISC), do not have a
predefined instruction-set. In our approach, the accurate netlist of the
datapath components is described GNR. Using this GNR, a cycle-
accurate compiler compiles C code of the application directly on the
input datapath and generates the control words for each clock cycle.
The outputs of this compiler and the input GNR is used to generate the
simulatable and synthesizable RTL code of the PE. Generally, most of
the designer’s experience, skill and innovation go into the design of
datapath. Our approach improves design predictability by giving the
designer complete control over the datapath. On the other hand, design
of the controller is tedious, time consuming and error-prone process.
By automating this process and by allowing reuse of previously
designed datapaths and components, designer productivity is also
significantly improved in our approach.
The GNR can also capture a system containing several communicating
custom IPs. It can be used as the output of TLM-based synthesis tools.
After modeling and verifying a system in transaction level, it can be
converted to GNR for synthesis. Each low level TLM communication
command (e.g. send/receive) is mapped to an intrinsic C function
representing a communication component at the hardware level. In this
paper, we present a formalism for modeling a system and its
components including programmable and dedicated custom pipelined
IPs. The GNR is formal and hence it allows checking rules and
reducing semantic errors in the design. It provides support for third-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CODES+ISSS'06, October 22–25, 2006, Seoul, Korea.
Copyright 2006 ACM 1-59593-370-0/06/0010...$5.00.

282

party cores, and the same GNR description is used for compilation,
simulation and RTL generation. Since the designer does not describe
the controller in our approach, the GNR descriptions are much shorter
than other ADLs. We have developed a web-based interface for our
toolset, so that users can upload and evaluate new architectures
described in GNR. Our compiler supports various architectural features
such as controller/datapath pipelining, multi-cycle/pipelined units, and
heterogeneous forwarding paths. The compilation algorithm and the
datapath optimizations have been discussed in [9] and [10],
respectively.
The rest of the paper is organized as follows. Section 2 and 3 explain
the GNR modeling approach and its syntax. Section 4 discusses the
details of GNR using several examples. Section 5 presents the flow of
our tools, followed by experimental results in Section 6. Section 7
presents related works and Section 8 concludes the paper.

2. GNR MODELING APPROACH
GNR models a system as a hierarchical description of components
(objects) and their connections (composition). GNR contains a set of
predefined components and port types. These types are used for
enforcing the composition rules. A typical system consists of several
RTL components and processing elements (PEs). The behavior of each
PE is captured in C language. In GNR, the PEs are represented by
components of type behavioralIP. A behavioralIP may contain a
custom datapath that is captured by a component of type
NiscArchitecture. The NiscArchitecture contains basic RTL
components that are used by our compiler. Figure 1 shows a simple
example of a system with two PEs (BIP1, BIP2), a bus, and an arbiter.
BIP2 is implemented by a programmable NISC and has a control
memory (Cmem) and data memory (Dmem). In the rest of this section,
we present the details of the GNR objects and compositions rules.

Figure 1- A sample system in GNR.

2.1 GNR formalism
In GNR, a component x is represented by (τx, Px, Cx, Lx, Ax), where τx is
the component’s type, Px is the set of ports, Cx is the set of components
inside x, Lx is the set of its internal point-to-point connections, and Ax is
the list of aspects that describe behavior of x for different tools in the
toolset. Component type τx is defined as follows:

τx ∈T, T={register, register-file, bus, mux, tri-state buffer, functional-
unit, memory-proxy, controller, NiscArchitecture, behavioralIP,
module, system}
Where, NiscArchitecture, behavioralIP, module, system, and controller
are hierarchical components and contain an internal netlist, while others
are basic RTL components with no internal netlist.
Each port p in Px has a bit-width βp, and a type θp defined as follows:
θp ∈ {clkPort, ctrlPort, inPort, outPort, cwPort}
Type clkPort shows the port is a clock, and type ctrlPort shows the port
is used to control the component. For example, a register has one port
of each type clkPort, inPort, outPort, and ctrlPort (i.e. load enable).
Type cwPort means the port is a control-word port and is used to drive

the control ports of the components in the NiscArchitecture (see
Section 2.2).
 The set of connections Lx is defined between a bit-slice of a port p1
and a similarly sized bit-slice of port p2 as follows:

}2211 and ,220 and ,110

and)(2,1|)2,2,1,1,2,1{(

21 seseeses

PPppesesppL

pp

Cy
yxx

x

−=−<≤≤<≤≤

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∪∈=

∈

ββ

U

where, s1 and s2 are the start index of p1 and p2 and e1 and e2 are the
end index of p1 and p2.
Ax is a list of aspects required by different tools for processing
component x. Aspects are defined based on components types.
Currently, in our toolset, each component has three aspects:
compilation aspect CAx, simulation aspect MAx, and synthesis aspect
NAx. Compilation aspect usually captures the relation between the
component’s behavior and the C-language operations, or application
functions. Simulation and synthesis aspects usually contain the
description of the component in an HDL, or the information required
for generating a hardwired core (e.g. memory, divider, etc.). For some
component types, if an aspect is not specified by the designer, the
toolset will generate it automatically. For example, the
simulation/synthesis aspects of hierarchical components can either be
generated automatically from their internal components, or be explicitly
specified by the designer. This feature allows modeling of third party
cores and pre-laid-out components that have special technology or
manufacturability considerations. Aspects are also used in defining
proxy components in a NiscArchitecture. A proxy component is a
component that resides outside of the IP block but the IP controls it. For
example, a memory proxy represents a memory or cache hierarchy that
resides outside of the IP. The HDL implementation of a proxy may be
as simple as input to output wirings. However, its compiler aspect
captures the information for controlling the external component. The
NiscArchitecture and behavioralIP component types have additional
properties as follows:
NiscArchitecture: The NiscArchitecture represents our target
architecture that does not have instruction-set and its control words are
generated by the cycle-accurate compiler. The compiler aspect of a
NiscArchitecture ξ is modeled by CAξ=(freqξ, CNSTξ, Γξ, sPtξ, fPtξ).
The freqξ specifies the clock frequency of the NiscArchitecture and is
used by the compiler to generate the proper control words considering
the component delays. A control word contains the control values of
components as well as a set of constant fields CNSTξ. The constant
fields are used for jump and other operations with a constant operand.
Each constant field f in CNSTξ has a bit-width or size denoted by βf.
The Γξ is a function that defines the ordering of the constant and control
fields in the control word. This ordering is used by the compiler to
generate the correct control words. The sPtξ and fPtξare storage
components used for stack pointer and frame pointer. The storage
components can be separate registers or registers in a register file.
BehavioralIP: behavioralIP is a component that its behavior is
specified in C language, and is handled by our cycle-accurate compiler,
a traditional compiler, or a high-level synthesis (HLS) tool. The
compiler aspect of the behavioralIP specifies the set of application files
(e.g. header files and C files) that execute on that IP. In our approach,
the netlist of behavioralIP contains a NiscArchitecture and, if
necessary, a memory subsystem (Figure 1). The cycle-accurate
compiler compiles the application C code directly on the datapath of
NiscArchitecture. The behavioralIP can cover instruction-set based
general-purpose or custom processors as well, where the synthesis
aspect is usually a third-party core.

283

2.2 GNR Rules
Our formal and typed description allows us to define rules to validate
the correctness of the given netlist. Enforcing such rules significantly
improves the productivity of the designer by identifying most of the
problems without simulation. Depending on the component type, the
rules can restrict number and types of the ports, instantiated
components, and their connectivity. There are two groups of rules:
general rules, and NISC-specific rules.
General rules:

• Clock ports can only connect to clock ports:
∀(p1,p2, …)∈Lx, τp1=clkPort if and only if τp2=clkPort
• Connections in Lx are defined between source ports (i.e. outPort)

and the destination ports (i.e. inPort). For boundary connections
(i.e. the connections that involve ports in Px), the input ports of Px
must be source and its output ports must be the destination.

• Maximum of one connection is allowed to any bit of any
destination port. The only exception is for input ports of bus-type
components, where multiple connections are valid. In digital
design, connecting several output ports to a single input port is not
valid, unless through tri-state buffers.

∀(p1,p2,s1,e1,s2,e2), (p3,p4,s3,e3,s4,e4)∈Lx, if p2=p4, then (p2∈Px
and τx=bus) or (s2>e4) or (s4>e2)
NISC-specific rules:

• Each NiscArchitecture ξ has one and only one component of type
controller:

∃! x∈Cξ, where τx=controller
• Only component x with τx=controller can have one and only one

port of type cwPort:
∃! p∈Px and θp=cwPort if and only if τx = controller
• Each NiscArchitecture ξ has at least one component of type

register-file:
∃ x∈Cξ, where τx=register-file
• In NiscArchitectureξ, the bit-width of the cw port of controller

component must be equal to sum of the bit-widths of all control
ports, plus the sum of the bit-widths of all control fields in CNSTξ.

} and |{ where,

 then , if ,

ctrlPortPppCP

cwPortPcw

p
Cx

x

CNSTf
f

CPp
pcwcwc

=∈=

+==∈∀

∈

∈∈
∑∑

θ

βββθ

ξ

ξξ

ξ U

• Control connections in NiscArchitecture ξ are defined between the
cw port and the control ports of components in Cξ.

∀(p1,p2,s1,e1,s2,e2)∈Lx, if p2∈CPξ, then θp1=cwPort and s2=0 and
e2=(e1−s1)=βp2−1

3. GNR SYNTAX
We use XML language [12] to describe IP models in GNR. We define
GNR syntax in XML Schema [13] to enforce syntax and semantics
checking on the given input model. The Schema can also be used for
code completion, which further increases the productivity of the
designers. Figure 2 shows the partial block diagram of the Schema for
modeling a custom IP (NiscArchitecture). The IP has several children
tags including: <Ports>, <Components>, <Connections>, <CwFields>,
<Compiler-aspect>, <Simulation-aspect>, and <Synthesis-aspect>,
representing Pξ, Cξ, Lξ, Γξ, CAξ, MAξ, and NAξ, respectively. All
components in GNR have a <Params> tag that parameterizes that

component. For example, the delay or bit-width of the component can
be specified as parameters.

Figure 2- Block diagram of GNR schema for NiscArchitecture.

4. EXAMPLE GNR MODELS
In this section, we discuss modeling IPs in more details using several
examples. We first explain how a simple component, namely an ALU,
is defined in GNR. Then, we explain how components are integrated to
form a simple IP that can execute C code. Finally, we show how this IP
is extended for system.

4.1 Modeling a custom ALU
ALU is a component of type functional-unit. Figure 3 shows the GNR
description of a custom ALU that executes three operations: Add, Sub,
Not. The component has two parameters: BIT_WIDTH and DELAY.
The parameters are initialized during the instantiation of a component
in a datapath. This ALU has two input ports, one output port and a
control port. Since this ALU executes three operations, the size of the
ctrl port is at least two. The simulatable and synthesizable code of the
ALU are described in the <Simulation-aspect> and <Synthesis-aspect>
(not shown in the figure). For some components, it is also possible to
generate the HDL description automatically from the component entity
information and compiler aspect.

Figure 3- Partial description of a custom ALU in GNR.

In <Compiler-aspect> the operations that the ALU executes are
described in details. Each operation has a name and a delay attribute:
the name is selected from the list of valid C operations, and the delay
is specified in terms of number of cycles or nanoseconds, according
to the selected target technology. Each operation has a set of input
ports and at most one output port. An operation may also require a
specific value on one or more control ports. The values are specified
using <Ctrl> tag. Using this modeling approach, new functional units
can be described and added to the library.

284

Some functional units are more complex than others. For example,
some of them are pipelined, or may require instantiation of hardwired
cores provided by a third party. In case of a pipelined unit, a netlist of
the main functional unit and the pipeline registers are defined as a
module in GNR. Most of today’s synthesis tools apply retiming to the
netlist, and generate proper pipelined functional unit. In case of
hardwired cores, the information of the third party tool that must be
called for core generation is specified in <Synthesis-aspect>.

4.2 Modeling a simple IP
Figure 4(a) shows the block diagram of a simple NiscArchitecture that
can execute simple C codes. The architecture consists of a controller, a
register file (RF), a data memory proxy, an ALU, a comparator, and a
few multiplexers. The bus-width of the IP is 32 bits. The register file
has 32 registers, and two read ports and one write port.

(a) (b)

Figure 4- Block diagram of a simple IP
(a) without, (b) with communication Interface.

Figure 5- GNR description of the IP in Figure 4(a).

In this IP, suppose that a constant field of 10 bits is used for operations
with a constant operand. Figure 5 shows the GNR description of the IP.
The IP has one clock port, a reset port, and several IO ports for
communicating with data memory unit. The <Netlist> tag shows the
components and connections of the IP. For each instantiated
component the proper parameters such as BIT_WIDTH and
REG_COUNT are initialized. Thirty four connections are defined for
this IP. Each connection determines the source component src, source
port sPort, destination component dest, and destination port dPort.
Among these connections, 19 are shown in Figure 5, and the rest are
clock and control connections.
In <Compiler-aspect> the ordering of the control fields are specified by
listing the fields in tag <CwFields>. This information is used by the
compiler for generating the control words. In this architecture, the total
bit-width of the control ports is 35 bits, and the constant width is 10
bits. Therefore, the bit-width of the control words is 45 bits.

4.2.1 Automatic generation of control and clock
connections
In order to further simplify the datapath description, if the control
connections are not explicitly specified, we generate them
automatically by analyzing the components added to the architecture.
This improves the productivity significantly because adding the control
connections is very error-prone. Our modeling approach allows
automatic generation of control connections and control fields, because
we distinguish the control ports from other types of ports. Similarly, the
clock connections can be added automatically. In this architecture,
automatically adding the control connections and control fields reduces
the description size by 25%, while reducing the design and validation
time by more than two times.

4.2.2 Expanding the IP for communication
In order to use the simple IP of Figure 4(a) in a system we need to add
communication capability to it. For example, to connect the component
to a double-handshake bus protocol in message-passing mode, we need
to add an interrupt unit (IU) and a proper communication-interface unit
(CI) to the datapath of the IP. The CI has two send and receive queues
controlled by a control port. The block diagram of the new IP is shown
in Figure 4(b). In the C code of the application, the CI component is
programmed through a set of intrinsic-functions that are described in
GNR description of CI. The cycle-accurate compiler detects these
functions in the code and translates them to proper control signals for
the CI. The details of the bus protocol and CI drivers are available in
[16]. This IP is instantiated inside a behavioralIP as shown in Figure 1.

5. GENERATING RTL FROM GNR
Figure 6 shows the block diagram of our toolset. The inputs of the
toolset are GNR description of the system and the application C codes.
The outputs include synthesizable and simulatable RTL codes.
The Pre-Processor first verifies the syntax of the given GNR file using
the GNR Schema. Next, it completes the netlist by (a) resolving the
parameters of the components, (b) adding the missing clock and control
connections, and (c) adding the control fields, as explained in Section
4.2. The semantic correctness of the completed netlist is verified
afterwards, and proper warning and error messages are reported by
Pre-Processor. The netlist checker reports unconnected ports, invalid
connectivity, and non-existing referenced component and port names.
GNR modeling enables additional checking that is not possible using
HDL-based structural descriptions or even SystemC. For example, in
GNR, if a data port is mistakenly connected to a clock port, or if
multiple output-ports are connected to one input port of a non-bus

285

component, then it is possible to detect and report the problem. Note
that such connections are valid in HDLs but they result in an incorrect
design behavior. Using such simple checking in GNR, most
architecture problems are quickly determined.

C codeC code

Pre-Processor

HDL Generator

GNR Model

Synthesizable Code

Cycle-accurate Compiler

C code

Simulatable Code

Third-Party Core Generator

Core Translator

Figure 6-The flow of our toolset.

The Cycle-accurate compiler compiles the C code of each PE on the
given datapath using the algorithm presented in [9]. If a specific
operation required by C code is not supported by a given datapath, then
compiler displays proper error messages. After compilation, the
compiler generates the contents of data and control memories. The
HDL Generator uses the GNR and the outputs of the compiler to
produce the final simulatable and synthesizable codes. The simulatable
code is mostly behavioral and simulates much faster than the
synthesizable code. The Core Translator generates the input files for
third-party core generator by extracting proper information and
parameters from the GNR model. The produced cores are combined
with the generated HDL code to form the synthesizable code. An
online version of the toolset is available at [11].

6. EXPERIMENTAL RESULTS
As experimental results, we designed different system architectures
using GNR, and ran a fixed-point MP3 decoder (11000 lines of C code
downloaded from [14]) on them. We explored system-level
customizations and PE-level customizations in order to maximize the
performance gain. For all experiments, we generated Verilog RTL
code, and simulated and synthesized them on a Xilinx Virtex II FPGA
using Xilinx ISE 8.1 toolset. We measured the execution delay of the
MP3 decoder for processing one frame.
We profiled the MP3 decoder to identify its computationally intensive
parts. The profiling results showed that during processing of each frame
most of the execution time is spent inside DCT and IMDCT filters.
Therefore, we can accelerate the execution of these filters using
dedicated DCT and IMDCT cores. In this section, we present five
system architectures: System1 includes a MicroBlaze and an OPB bus
(Xilinx cores) for off-chip memory communication; System2 extends
System1 by adding one DCT IP; System3 extends System1 by two
parallel DCT IPs; System4 adds one DCT IP and two IMDCT IPs to
System1; and System5 includes only one custom IP that runs the entire
MP3 decoder. For the filters and the entire MP3 we designed two
custom datapaths and used our cycle-accurate compiler to compile the
corresponding code on them. The customizations include adding
multiple constant fields, proper pipelining and data forwarding. In
System5, we also added an integer divider core provided by Xilinx
LogiCore.
Our current component library has several communication-interface
components for double-handshake bus protocols (DHS). However,
OPB uses a master-slave protocol that is not yet implemented in our
library. Therefore, in order to communicate between MicroBlaze and
our custom IPs, we used a bridge (similar to [15]) that converts the two
protocols to each other. Figure 7 shows the block diagram of the

System4 that includes MicroBlaze, OPB bus, bridge, DHS bus, and
three custom IPs (One DCT and two IMDCTs).

Figure 7- Block diagram of system 4.

Table 1- Performance, memory and area of the five systems.

 # Cycles
(millions) Delay (s) Speedup # FPGA Slices

System 1 2.7 0.0540 1.00 1270
System 2 2.54 0.0508 1.06 6008
System 3 2.47 0.0494 1.09 8376
System 4 1.24 0.0248 2.17 10750
System 5 0.83 0.0166 3.25 2600

We captured all these five systems including the two custom IPs in
GNR and used our tools to compile the partitioned C code and
generated Verilog RTL code for simulation and synthesis. Table 1
shows the performance and area of the five systems. The second
column shows the total number of cycles for decoding a frame. The
third column shows the overall delay of systems running at 50MHz
clock frequency. The fourth column shows the speedup of the systems
compared to System1. The fifth column shows the area of the designs in
terms of number of FPGA slices. To play 38 frames per second (as
required by MP3 standard), processing one frame should not take more
than 0.026 seconds. System1 processes each frame in 0.054s, and
therefore cannot meet the deadline. Among four other systems, only
System4 and System5 can meet the deadline. System4 and System5 run
2.17 and 3.25 times faster than System1. However, System5 consumes
4.1 times less area compared to System4. Therefore, System5 is a better
design choice for MP3 application.

Table 2- Specification vs. Genereated code size.
 GNR lines of code Verilog lines of code

 system IP Total modified simulatable
code synthesizable code

system 1 70 NA 70 - NA NA
system 2 181 363 544 474 2600 22000
system 3 220 363 583 40 4100 41000
system 4 285 363 648 65 6400 50200
system 5 25 432 457 150 2400 32000

Table 2 shows the size of the GNR files compared to the size of the
generated RTL files. The second column of the table shows the GNR
lines of code for description of the systems. This includes instantiating
the RTL and behavioralIP components in the systems and connecting
them together. In case of System5, only one IP is instantiated and hence
the size of this file is very small. The third column of the table shows
the GNR lines of code for describing the IPs. Note that the same IP
(with 363 lines), with different parameters, is instantiated once, twice,
and three times in System2, System3, and System4, respectively. In
System5, the IP is more complex and hence has more lines of GNR
code (432). The fourth column of the table show the total number of
GNR lines of code for each system, i.e. sum of GNR lines for
describing the system and its IPs. Note that, since in our experiments

286

we changed one system to create the next, we did not need to rewrite
the whole description again. The number of modified lines of code in
each step is shown in the fifth column of the table. For example, when
generating System3 from System2, we reused the IP description and
only need to modify the system description to instantiate and connect it
(40 lines). The last two columns of the table show the size of the
Verilog and other core related files that are generated automatically.
Note that, while the GNR descriptions are only a few hundred lines of
code, the generated files are several thousand lines. This shows the
productivity gain of using the GNR.
Overall, we could perform different system level (coarse-grained) and
IP level (fine-grained) architecture explorations using relatively small
GNR descriptions. The productivity gain was due to several factors
including: parametrizable component descriptions, static rule checking,
and automatic compilation and RTL generation for the custom IPs.
Since GNR enabled us to make detailed architectural adjustments, we
were able to achieve significant performance improvement while
meeting the area constraints.

7. RELATED WORKS
Over the past years, several ADLs and their supporting software tools
have been introduced. A complete survey of these ADLs can be found
in [1], [2]. Among these ADLs only the followings have directly or
indirectly addressed synthesis of the architecture.
LISA [3], a sate-of-the-art commercial product, and EXPRESSION [4]
are behavioral ADLs that capture a processor in terms of its instruction-
set behavior and a high level block diagram of its pipeline. They were
originally designed for compilation and simulation and have been
recently extended to generate the RTL of the processor by synthesizing
the instruction behaviors. Since instruction behaviors are described in a
very high abstraction level in order to be used by the compiler,
achieving a high quality synthesis in these approaches is less likely.
Furthermore, the designer has no control over the details of final
implementation and is limited to describing the functionality of
instructions. Since these ADLs are behavioral, they must capture all
possible configurations of instructions. This can lead to very lengthy
descriptions. For example, in LISA the description of two RISC
processors with four and seven pipeline stages has been reported to be
more than 2000 and more than 9000 lines of code, respectively [8].
UDL/I [5] is a hardware description language (HDL) that captures the
architecture at the Register-Transfer (RT)-level. A target specific
compiler can be generated based on the instruction set extracted from
the UDL/I description. UDL/I cannot support architecture with any
instruction level parallelism.
MIMOLA [6] is another HDL that captures the architecture netlist at
RT-Level and is used for hardware synthesis, simulation, test
generation, and code generation. The RECORD compiler [7] extracts
behavioral model of instructions from MIMOLA HDL. It processes the
structure of the datapath from destination storages towards source
storages to extract valid register transfers (RTs). After analyzing the
controller and the instruction decoder, it rejects illegal RTs that do not
correspond to an instruction, and uses the remaining RTs in the
compiler. MIMOLA does not support pipelined architectures and
assumes single cycle operations. Furthermore, designer must describe
the instruction decoder from which the compiler will extract the set of
valid operations. Although RT-level descriptions are more amicable to
hardware designers, describing the instruction decoder at RT-level is
very tedious. Also instruction set extraction from RT-level is very
difficult and is typically possible only for limited target scope.

8. CONCLUSION AND FUTURE WORK
In this paper we presented GNR, a formal modeling approach,
developed to improve productivity of designing systems and processing
elements, the same way that traditional ADLs improved productivity
for designing processors. GNR captures a system as a hierarchical
netlist of components annotated by compilation, simulation and
synthesis aspects. Our tools and GNR improve the productivity of
system design by means of using parametrizable component
descriptions, static rule checking, and automatic compilation and RTL
generation for the custom PEs.
Furthermore, GNR enhances the designer control over structural details
of the design and hence improves design predictability. Using relatively
short GNR description, we explored several designs for implementing
an MP3 decoder and achieved 3.25 speedup compared to MicroBlaze
processor. The future work will address TLM to GNR translation.

9. REFERENCES
[1] P. Mishra and N. Dutt, “Architecture Description Languages for

Programmable Embedded Systems”, IEE Proc. on Computers and
Digital Techniques (CDT), Special issue on Embedded
Microelectronic Systems: Status and Trends, vol. 152, no 3, 2005.

[2] W. Qin and S. Malik, “Architecture Description Languages for
Retargetable Compilation”, in The Compiler Design Handbook:
Optimizations & Machine Code Generation. Y. N. Srikant and Priti
Shankar, CRC Press, 2002.

[3] A. Hoffmann, T. Kogel, A. Nohl, G. Braun, O. Schliebusch,
A.Wieferink, and H. Meyr. A Novel Methodology for the Design of
Application Specific Instruction Set Processors (ASIP) Using a
Machine Description Language. IEEE Transactions on Computer-
Aided Design, 20(11):1338–1354, Nov. 2001.

[4] P. Mishra, A. Kejariwal, and N. Dutt, “Synthesis-driven Exploration
of Pipelined Embedded Processors”, International Conference on
VLSI Design, 2004.

[5] H. Akaboshi, “A Study on Design Support for Computer Architecture
Design”, Doctoral Thesis, Depart. of Information Systems, Kyushu
Univ., Japan, Jan. 1996

[6] R. Leupers and P. Marwedel, “Retargetable Code Generation based
on Structural Processor Descriptions,” Design Automation for
Embedded Systems, vol. 3, no. 1, 1998.

[7] R. Leupers, P. Marwedel, “Retargetable Generation of Code Selectors
from HDL Processor Models”, European Design and Test, 1997.

[8] A. Chattopadhyay, D. Kammler, E. Witte, O. Schliebusch, H.
Ishebabi, B. Geukes, R. Leupers, G. Ascheid, “Automatic Low Power
Optimizations during ADL-driven ASIP Design”, VLSI-DAT, 2006.

[9] M. Reshadi, D. Gajski, “A Cycle-Accurate Compilation Algorithm
for Custom Pipelined Datapaths”, CODES+ISSS, 2005.

[10] B. Gorjiara, D. Gajski, “Custom Processor Design Using NISC: A
Case-Study on DCT algorithm”, ESTIMEDIA, 2005.

[11] http://www.cecs.uci.edu/~nisc
[12] XML: http://www.w3.org/XML/
[13] XML Schema: http://www.w3.org/XML/Schema
[14] http://www.underbit.com/products/mad/
[15] H. Cho, S. Abdi, D. Gajski, “Design and Implementation of

Transducer for ARM-TMS Communication”, In Proc. ASPDAC,
Design Contest, 2006.

[16] B. Gorjiara, M. Reshadi, D. Gajski, “NISC Communication
Interface”, Center for Embedded Computer Systems (CECS)
Technical Report TR 06-05, 2006.

287

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

