
Increasing Hardware Efficiency with Multifunction
Loop Accelerators

Kevin Fan Manjunath Kudlur Hyunchul Park Scott Mahlke

Advanced Computer Architecture Laboratory
University of Michigan
Ann Arbor, MI 48109

{fank, kvman, parkhc, mahlke}@umich.edu

ABSTRACT
To meet the conflicting goals of high-performance low-cost embed-
ded systems, critical application loop nests are commonly executed
on specialized hardware accelerators. These loop accelerators are
traditionally designed in a single-function manner, wherein each
loop nest is implemented as a dedicated hardware block. This pa-
per focuses on hardware sharing across loop nests by creating multi-
function loop accelerators, or accelerators capable of executing mul-
tiple algorithms. A compiler-based system for automatically synthe-
sizing multifunction loop accelerator architectures from C code is
presented. We compare the effectiveness of three architecture syn-
thesis approaches with varying levels of complexity: sum of individ-
ual accelerators, union of individual accelerators, and joint acceler-
ator synthesis. Experiments show that multifunction accelerators
achieve substantial hardware savings over combinations of single-
function designs. In addition, the union approach to multifunction
synthesis is shown to be effective at creating low-cost hardware
by exploiting hardware sharing, while remaining computationally
tractable.

Categories and Subject Descriptors
B.5.2 [Register-transfer-level Implementation]: Design Aids—
Automatic synthesis

General Terms
Algorithms, Design, Experimentation

Keywords
high-level synthesis, application-specific hardware, loop accelera-
tor, modulo scheduling, multifunction design

1. INTRODUCTION
The markets for wireless handsets, PDAs, and other portable de-

vices continue to grow explosively, fueled by demand for new func-
tionality, added capabilities, and higher bandwidth. These devices
require higher performance, lower cost, and more energy-efficient
computer systems to meet user requirements. To achieve these chal-
lenging goals, specialized hardware in the form of loop accelerators

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’06, October 22–25, 2006, Seoul, Korea.
Copyright 2006 ACM 1-59593-370-0/06/0010 ...$5.00.

are commonly used for the compute-intensive portions of applica-
tions that would run too slowly if implemented in software on a
programmable processor. Low-cost design, systematic verification,
and short time-to-market are critical objectives for designing these
accelerators. Automatic synthesis of accelerators from high-level
specifications has the potential to meet these objectives.

There is also a growing push to increase the functionality of special-
purpose hardware. Many applications that run on portable devices,
such as wireless networking, do not have one dominant loop nest
that requires acceleration. Rather, these applications are composed
of a number of compute-intensive algorithms, including filters, trans-
forms, encoders, and decoders. Further, increasing capabilities, such
as supporting streaming video or multiple wireless protocols, places
a larger burden on the hardware designer to support more function-
ality. Dedicated accelerators for each critical algorithm could be
created and included in a system-on-chip. However, the inability
to share hardware between individual accelerators creates an ineffi-
cient design. Processor-based solutions are the obvious approach to
creating multi-purpose designs due to their inherent programmabil-
ity. However, such solutions do not offer the performance, cost, and
energy efficiency of accelerators as there is an inherent overhead to
instruction-based execution.

To understand the performance and cost efficiency of automat-
ically synthesized loop accelerators, an accelerator was generated
to implement a 256-state, K=9 Viterbi decoder and compared to an
ARM926EJ-S running the algorithm at 250 MHz. The accelerator
was synthesized in 0.18µ technology at 200 MHz and was 47x faster
than the ARM while being 90% smaller. Thus, loop accelerators of-
fer the potential for substantial efficiency gains over programmable
processors by removing the control overhead of instruction-based
execution and specializing the datapath to a particular application.

The focus of this paper is on automatic design of multifunction
loop accelerators from high-level specifications. Our goal is to main-
tain the efficiency of single-function accelerators (ASICs) while ex-
posing opportunities for hardware sharing across multiple algorithms.
The inputs to the system are the target applications expressed in C
and the desired throughput. The proposed system is built upon a
single-function loop accelerator design system that employs a compi-
ler-directed approach, similar to the PICO-NPA (Program In Chip
Out) system [18]. Accelerators are synthesized by mapping the al-
gorithm to a simple VLIW processor and then extracting a stylized
accelerator architecture from the compiler mapping.

To create multifunction designs, the single-function system is ex-
tended using three alternate strategies. The simplest strategy is to
create individual accelerators for each algorithm and place them
next to each other. This method is referred to as a summed de-
sign, and is the baseline for comparison. The second strategy is to
again create individual accelerators for each algorithm. The data
and control paths for each accelerator are then intelligently unioned

276

Modulo
Schedule II−1

0 Build
Datapath

Instantiate
Arch

+ M− .v Synthesize

Concrete
Arch

Scheduled
Ops

Control

Verilog
Signals,

−+ M

RF
.c

FU
Alloc

II
C Code, Abstract

Arch

Figure 1: Loop accelerator design flow.

FU MEMFUBR
Local
Mem

Control

Interconnect

II D
at

a
In

D
at

a
O

ut

...Start
Done

Data In

SRF

CRF

Figure 2: Hardware schema for loop accelerator.

together to create a single design capable of all algorithms. Fi-
nally, the third strategy is to perform joint cost-aware synthesis of
all algorithms. We employ an integer linear programming (ILP) for-
mulation to find a joint solution with optimal estimated cost. A
consequence of the joint scheduling strategy is that synthesis time
and memory usage may become prohibitive for large loop bodies or
large numbers of loops. Each successive strategy represents a more
complex approach and hence has more potential to exploit sharing
opportunities.

2. ACCELERATOR SYNTHESIS SYSTEM
The synthesis system takes an application loop in C along with

a performance requirement, and generates RTL for a hardware ac-
celerator which implements the loop. The performance requirement
is specified as an initiation interval (II), or the number of cycles be-
tween the initiation of successive loop iterations. The overall flow
of the system that creates a stylized hardware implementation for a
modulo scheduled loop [17] is presented in Figure 1, and each step
is discussed in Section 2.1.

The hardware schema used in this paper is shown in Figure 2.
The accelerator is designed to exploit the high degree of parallelism
available in modulo scheduled loops with a large number of FUs.
Each FU writes to a dedicated shift register file (SRF); in each cycle,
the contents of the registers shift downwards to the next register.
The entries in a SRF therefore contain the values produced by the
corresponding FU in the order they were computed. Wires from the
registers back to the FU inputs allow data transfer from producers to
consumers. Multiple registers may be connected to each FU input;
a multiplexer (MUX) is used to select the appropriate one. Since
the operations executing in a modulo scheduled loop are periodic,
the selector for this MUX is simply a modulo counter. In addition, a
central register file (CRF) holds static live-in register values which
cannot be stored in the SRFs.

2.1 Loop Accelerator Synthesis
The first step in the loop accelerator synthesis process is the cre-

ation of an abstract VLIW architecture to which the application
is mapped. The abstract architecture is parameterized only by the
number of FUs and their capabilities. A single unified register file
with infinite ports/elements that is connected to all FUs is assumed.
Given the operations in the loop, the desired throughput, and a li-
brary of hardware cell capabilities and costs, the FU allocation stage
generates a mix of FUs that minimizes cost while providing enough
resources to meet the performance constraint.

LD8

ADD32

ADD8 ADD8

LD8

ADD80

3

1

2

cycle FU0 FU1 FU2 FU3

(a)

+ +

8

+

8

8

32

MEM

(b)

Figure 3: (a) A portion of the modulo schedule for sobel, and
(b) the corresponding datapath.

Next, the loop is modulo scheduled to the abstract architecture.
Modulo scheduling is a method of overlapping iterations of a loop
to achieve high throughput. The modulo schedule contains a ker-
nel which repeats every II cycles and may include operations from
multiple loop iterations. The scheduler assigns the operations in the
loop to FUs and time slots, satisfying all inter-operation dependen-
cies and meeting the II requirement. After scheduling, the accelera-
tor datapath is derived from the producer-consumer relationships in
the schedule. This includes setting the widths of the FUs and the
widths and depths of the SRFs, and connecting specific SRF entries
with the appropriate FU inputs. Since the datapath is derived from
the schedule, the choice of scheduling alternative for each operation
has a significant effect on the cost of the resulting hardware [5]. It
is important that the scheduler be aware of these effects.

Figure 3(a) shows a few operations from the modulo schedule
for sobel, an edge-detection algorithm. The II in this example
is 4, thus each FU has 4 scheduling slots. The number associated
with each operation indicates its width, and edges represent dataflow
between operations. Figure 3(b) shows the SRFs and connections
required to execute these scheduled operations. The widths of the
FUs and SRFs are set to the width of the largest operation assigned
to them, and the depths of the SRFs are determined by the maximum
lifetime of any variable assigned to them.

Based on the datapath that is instantiated, the control path is gen-
erated for the accelerator. This consists of a modulo-II counter
which directs FU execution (for FUs capable of multiple operations)
and controls the MUXes at the FU inputs.

Finally, a Verilog realization of the accelerator is generated by
emitting modules with pre-defined behavioral Verilog descriptions
that correspond to the datapath elements. Gate-level synthesis and
placement/routing are then performed on the Verilog output.

2.2 Related Work
Datapath synthesis from behavioral specifications is a field that

has been studied for many years. The basic techniques, including
resource allocation and scheduling, have been well established [6].
Cathedral III represents a complete synthesis system developed at
IMEC and illustrates one comprehensive approach to high-level syn-
thesis [14]. Force-directed scheduling is used to synthesize datap-
aths for ASIC design [16]. The Sehwa system automatically designs
processing pipelines from behavioral specifications [15]. Clique
based partitioning algorithms were developed in the FACET project
to jointly minimize FU and communication costs [22].

Automatic mapping of applications to FPGA-based and other re-
configurable systems has also been investigated. One of the first ef-
forts to automatically map applications onto an FPGA was Splash [7],
subsequently productized as the NAPA system [8]. Other automatic

277

compiler systems for FPGA-based platforms include GARP [2],
PRISM [24], and DEFACTO [1]. Modulo scheduling has been used
[19, 12] to map critical loops onto reconfigurable coprocessors. Com-
pilation for architectures consisting of predefined FUs and storage
with reconfigurable interconnect have been investigated, including
RaPiD [3] and PipeRench [9]. Generation of more efficient designs
by sharing hardware across basic blocks was recently proposed [13].
Cost sensitive scheduling, used within the synthesis system to re-
duce hardware cost, has been studied in the context of storage and
interconnect minimization in [20, 11, 5] and to improve resource
sharing [23].

This paper extends prior work in an orthogonal direction by inves-
tigating multifunction accelerators. A single accelerator is designed
that is capable of executing multiple algorithms. While the resulting
designs could be implemented on an FPGA, our intent is to design
standard cell implementations.

3. MULTIFUNCTION ACCELERATORS
Multifunction design refers to generalizing a loop accelerator to

support two or more loop nests. One obvious approach to creating
a multifunction accelerator is to separately design accelerators for
the individual loops, and then place these loop accelerators side by
side in silicon. The area of the final accelerator would be the sum
of the areas of the individual accelerators. However, by creating an
accelerator with a single datapath that can support multiple loops,
more hardware sharing can be achieved while continuing to meet
the throughput constraints of both loops.

The cost of a multifunction accelerator is affected by the indi-
vidual functions in several ways. First, the execution resources re-
quired by the multifunction accelerator must be a superset of the re-
sources required for each individual accelerator. Since the multiple
functions will not be executing simultaneously, any resources com-
mon to the individual accelerators need only be instantiated once in
the combined accelerator. Effectively, the multifunction accelerator
should have the union of the FUs required by the individual acceler-
ators. Second, the cost of the SRFs is sensitive to how the hardware
is shared across functions. Since every FU has an SRF at its output,
and the SRF has the bitwidth of its widest member and the depth of
its value with the longest lifetime, there is a potential for careless
sharing to result in large, underutilized SRFs. Third, one advantage
of a customized ASIC is that there are few control signals that need
to be distributed across the chip, since the datapath is hard-wired for
a specific loop. When multiple loops come into play, not only must
the datapath be able to support the computation and communication
requirements of each loop, but the control path must be capable of
directing the datapath according to which loop is being executed.

Two techniques are presented to increase hardware sharing: joint
scheduling and the union of individually designed accelerators.

3.1 Joint Scheduling
Since the cost of the multifunction datapath depends on the com-

bined schedules of all loops, an ideal scheduler should look at all
loops simultaneously and schedule them to minimize the total hard-
ware cost (while meeting their individual II constraints). This is
referred to as joint scheduling; the scheduler is aware that all loops
will execute on the same hardware, and is therefore able to make
scheduling decisions that maximize hardware sharing across loops.

An ILP formulation for joint scheduling is used. This formula-
tion is similar to the modulo scheduling formulation proposed in [4,
10], along with extensions to minimize accelerator cost as proposed
in [5]. These formulations are extended to consider multiple loops
simultaneously. For each loop a under consideration, integer vari-
ables to represent time and FU assignment are introduced. For every
operation i in loop a, IIa mutually exclusive binary variables Xi,s,a

represent the time slot s in the modulo reservation table (MRT) that
the operation is scheduled. The integer variables ki,a represent the
stage in which operation i is scheduled. Binary variables Ri,f,a

represent the assignment of operation i in loop a to the FU f . The
set of variables Xi,s,a, ki,a, and Ri,f,a represent complete modulo
schedules for the loops. Other auxiliary variables are introduced to
represent the cost of the hardware.

The full ILP formulation for joint scheduling is shown in Fig-
ure 4. The formulation consists of basic constraints (Equations 1
through 4) that ensure a valid schedule, and auxiliary constraints
(Equations 5 through 8) that are used to compute the cost of the re-
sulting hardware. Note that Equations 3, 6, 7, and 8 have non-linear
components; these may be linearized using standard techniques.

The schedule validity constraints for individual loops are totally
independent and represented using disjoint variables. However, there
is only one set of variables that represent the hardware cost. For ex-
ample, the cost of an FU is represented by a single variable, but de-
pends on FU assignment of operations in all loops. Similarly, SRF
costs are modeled using a single set of variables.

3.2 Union of Accelerators
The joint scheduler considers the effects on hardware cost of the

scheduling alternatives for operations in all loops, and selects com-
binations of alternatives to minimize cost. This is computationally
complex, because the number of possible schedules grows exponen-
tially as the number of loops increases (since the scheduling alterna-
tives of operations in different loops are independent). As a result,
joint scheduling with ILP is impractical for large loop bodies or high
numbers of loops.

Instead, the multi-loop scheduling problem may be divided into
two phases to reduce its complexity. First, loops are scheduled indi-
vidually and a single-function accelerator is designed for each loop;
then, the accelerator datapaths are unioned into one multifunction
datapath that supports all loops. This phase ordering can result in
high quality designs, as the single-function accelerator costs are first
minimized, and then hardware sharing across loops is exploited dur-
ing the accelerator union. Synthesis runtimes are reduced signifi-
cantly as it is no longer necessary to consider all schedules simulta-
neously.

The union phase is accomplished by selecting an FU and its corre-
sponding SRF from each single-function accelerator and combining
them into a single FU and SRF in the resultant accelerator. The
new FU has the bitwidth and functionality to execute all operations
supported by the individual FUs being combined. Similarly, the new
SRF has sufficient width and depth to meet the storage requirements
of any of the SRFs being combined. This process is repeated for the
remaining FUs and SRFs until all of them have been combined. At
this point, the resulting accelerator supports all of the functionality
of the individual accelerators.

The cost of the multifunction accelerator is affected by the spe-
cific FUs and SRFs that are combined. For FUs, the ideal case
occurs when FUs with identical functionality and bitwidth from k
individual accelerators are combined into a single FU. This FU in
the multifunction accelerator represents a cost savings (by a factor
of k) over the single-function accelerators due to hardware sharing.
When FUs with differing functionality are combined, no cost sav-
ings is achieved in the FUs, but this may enable cost savings in the
corresponding SRFs. In the case of SRFs, maximal sharing occurs
when two or more SRFs with similar bitwidths and numbers of reg-
isters are combined; in this case, only a single SRF is required in the
multifunction accelerator where several were needed by the single-
function accelerators.

Positional Union. The most straightforward union method is a
positional union, where the FUs in each accelerator are ordered by
functionality (multiple FUs with the same functionality have no par-

278

Constraints: Time slots:
PIIa−1

s=0 Xi,s,a = 1 ∀i ∈ {1, N}, for each loop a (1)

Resources:
PMf

f=1 Ri,f,a = 1 ∀i ∈ {1, N} (2)P
i∈If

Ri,f,a × Xi,s,a ≤ 1 (3)

Dependences: tj,a + di,j,a × IIa − ti,a ≥ li,j,a ∀(i, j, a) ∈ Ea (4)
SRF Depth: LTi,a ≥ ti′,a − ti,a + IIa × di,i′,a − li,i′,a + 1 (i, i′, a) ∈ Ea (5)

Df ≥ Ri,f,a × LTi,a ∀i assigned to f (6)
FU/SRF Width: Wf ≥ Ri,f,a × BWi,a ∀i assigned to f (7)

Objective: Cost: Cost =
P

f Df × Wf + fu costf × Wf (8)
Definitions: ti,a =

PIIa−1
s=1 s × Xi,s,a + IIa × ki,a li,j,a - latency on edge (i, j)

di,j,a - iteration distance on edge (i, j) Mf - number of FUs of type f

Figure 4: ILP formulation for joint scheduling.

40

64

+ 20

48

+ 20

96

&

Accel 1

Accel 2

Union

40

64

10

16

+

+

20

48

20

32

+

+

96

20

24

5&

&

FU: 80 SRF: 208 Total: 288

+

40

64

+

96

20&

48

32

20

20

+

20

48

+

24

5

10

16

+

&

96 24

60 15+& +&

FU: 95 SRF: 168 Total: 263

Positional Union ILP Union

Figure 5: Example of union techniques. Two single-function
accelerators, each with three FUs, are combined using positional
(left) and ILP (right) methods. The cost of each FU and SRF is
shown on its right.

ticular order), and FUs and SRFs in corresponding positions are se-
lected for combination. The first FU and SRF in accelerator 1 are
combined with the first FU and SRF in accelerator 2 to form the
first FU and SRF in the multifunction accelerator, and so on. This
union method yields good hardware sharing in the FUs, as FUs with
identical functionality are combined, and the number of unique FUs
in the resultant accelerator is therefore minimized. However, it does
not account for FU width, nor does it attempt to improve hardware
sharing in the SRFs. Sharing in the SRFs occurs by chance, if the
dimensions of the SRFs being combined happen to be similar.

In Figure 5, an example of positional union is shown on the left.
Here, each single-function accelerator has two ADD FUs and an
AND FU. The FUs and SRFs have varying widths and depths (and
thus varying costs), as shown to the right of each FU and SRF. The
FUs of the two accelerators are combined according to functional-
ity, and the resulting accelerator is shown on the lower left of the
figure. Each FU and SRF in the unioned accelerator is sized to ac-
comodate the corresponding FUs and SRFs from the single-function
accelerators directly above them.

ILP Union of Accelerators. An improved union method to in-
crease hardware sharing should consider all permutations of FUs
(and corresponding SRFs) from the different loops, and select the
permutation that results in minimal cost, considering both FU and
SRF costs. This can be formulated as an ILP problem where bi-
nary variables are used to represent the possible pairings of FUs and
SRFs from different loops. In this section, the combination of two
loops to form a multifunction accelerator will be examined. Unions
of more than two loops will be considered in the next section.

Assume that both single-function accelerators have N FUs. (If
one accelerator has fewer FUs than the other, zero-width FUs may
be added to make the number of FUs equal.) Then, N2 binary vari-
ables xij may be used to represent the combination of FU i from
the first loop with FU j from the second loop (along with their cor-

responding SRFs). For example, if x11 = 1, the first FUs in both
accelerators will be combined in the multifunction accelerator. In
addition, the following equations ensure that each FU is selected
exactly once for combination with another FU:

X

1≤j≤N

xij = 1 ∀i,
X

1≤i≤N

xij = 1 ∀j (9)

Next, the objective function is defined so that the overall cost of
the multifunction accelerator is minimized. This cost consists of
two components: FU cost and SRF cost. Define variables Fij as the
cost of the FU resulting from the combination of FU i from loop 1
and FU j from loop 2. Depending on the functionality and bitwidth
of these FUs, this cost can vary from the maximum cost of the two
FUs up to their sum. Also, define variables Rij as the cost of the
SRF resulting from the combination of the SRFs corresponding to
these two FUs. Then, the objective function is the minimization of
the following:

Cost =
X

∀i,j

(Fij + Rij) × xij (10)

By minimizing (10) subject to constraints (9), a combination of
the FUs and SRFs of two loops is chosen that minimizes the cost of
the multifunction accelerator.

The right side of Figure 5 shows an example of the ILP union.
The single-function accelerators contain the same FUs and SRFs
as in the positional union case, but they are combined differently.
The resulting FU cost is higher than the FU cost from the positional
union, because dissimilar FUs were combined and thus less hard-
ware sharing in the FUs is achieved. However, the overall cost is
lower as the SRF hardware is shared more intelligently.

Union of Multiple Accelerators. In the case where more than
two loops are being combined, two strategies may be applied to ex-
tend the union technique. The first strategy is referred to as pair-
wise union and consists of first combining two accelerators to form
a (temporary) multifunction accelerator. This temporary accelerator
is then combined with the third single-function accelerator to form
a new multifunction accelerator that supports all three loops. This
process is continued, combining the new temporary accelerator with
remaining single-function accelerators, until all desired loops have
been combined into one multifunction accelerator.

The second method is referred to as full union and extends the
ILP formulation given in the previous section. Given k loops, there
are Nk binary variables xi1...ik that represent the combination of
FUs i1, ..., ik from accelerators 1, ..., k, respectively. Constraints
(9) and objective (10) are extended to reflect the additional loops.
The solution consists of the N variables set to 1 which represent the
specific combinations of FUs and SRFs which minimize the final
hardware cost.

The advantage of full union is that it simultaneously considers all
single-function accelerators together, and determines the best per-
mutation of FUs to minimize the overall FU and SRF cost. How-

279

0

0.2

0.4

0.6

0.8

1

1.2

s p u j s p u f j* s p u j* s p u f j* s p u j s p u j s p u f j s p u f j s p u f* j* s p u f* j* s p u f j

sharp,

sob

sharp,

sob,fsed

idct,deq idct,

deq,dca

bfir,

bform

vit,fft vit,fft, conv vit,fft,

conv,fmd

vit,fft,conv,

fmd,fmf

vit,fft,

conv,fmd,

fmf,fir

Avg

N
o

rm
a

li
z
e

d
 G

a
te

 C
o

s
t

FU Storage MUXImage MPEG-4 Beamformer Signal processing

Figure 6: Gate cost of multifunction accelerators designed using sum (s), positional union (p), pairwise union (u), full union (f) (not
shown for 2-loop combinations), and joint scheduling (j). * indicates the synthesis did not complete due to problem complexity.

ever, the downside is that the number of variables is exponential
in the number of loops. Therefore, the full union quickly becomes
infeasible for higher numbers of loops. Conversely, the pairwise
union method may become trapped in local minima as it only con-
siders two accelerators at a time during combining. We find experi-
mentally that the pairwise union performs nearly as well as the full
union in terms of final hardware cost, and its runtime is significantly
faster due to its lower complexity.

4. EXPERIMENTAL RESULTS
Kernels from four different application domains are used to eval-

uate the loop accelerator designs. Sharp, sobel, and fsed are
image processing algorithms. Idct, dequant and dcacrecon
are computationally intensive loops extracted from the MPEG-4 ap-
plication. Bffir and bfform are loops from the beamformer
benchmark of the StreamIt suite [21]. Viterbi, fft, convolve,
fmdemodulator, fmfilter, and fir are loops from the signal
processing domain. To evaluate multifunction designs, loops from
within the same application domain are combined, as they would
likely be part of the same larger application accelerator.

For each machine configuration, we use the synthesis system de-
scribed in this paper to design loop accelerators and generate RTL.
The resulting Verilog is synthesized using the Synopsys design com-
piler in 0.18µ technology. All designs were synthesized with a 200-
MHz clock rate. For all experiments, performance is held constant
and is specified by the II value. A typical II is selected for each
benchmark (for example, II=4 for sobel and II=8 for idct), and
multifunction hardware is synthesized for combinations of bench-
marks within the same domain. Gate counts are used to measure the
cost of each accelerator configuration.

Figure 6 shows the cost in gates of multifunction loop accelerators
designed using various scheduling methods. Each group of bars
represents a benchmark combination, showing, from left to right, the
sum of individual accelerators (s), the positional union of individual
accelerators (p), the pairwise union (u), the full union (f), and the
joint solution (j). When only two accelerators are combined, the full
union is not shown as it is identical to the pairwise union. The bars
are normalized to the sum of the cost of individual accelerators for
that benchmark group. In addition, each bar is divided vertically
into three segments, representing the contribution of FUs, storage,
and MUXes to the overall cost. Since the joint solution relies on an
ILP formulation with a large number of variables and constraints,
it did not complete for some benchmark groups (labeled j∗). Also,
for groups containing more than four benchmarks, the full union
becomes infeasible (labeled f∗).

The first bar of each set represents current state-of-the-art mul-
tifunction accelerator design methodologies, i.e., creating single-
function accelerators for each loop. Each single-function accelera-
tor is designed using a cost-aware scheduler to minimize cost [5].
Thus, the difference between this bar and the other bars in each
group represents the savings obtained by hardware sharing in mul-
tifunction designs. Since II is fixed for each benchmark, all multi-
function designs in a group have the same performance, and hard-
ware savings is essentially free. (However, note that additional mul-
tiplexers may increase critical path delay; this is discussed later in
this section.) As the graph shows, the hardware savings is signifi-
cant and increases with the number of loops. Up to 58% savings is
achieved for the signal processing benchmark group, and 43% sav-
ings is achieved on average across all groups. Some groups (e.g.
idct and dequant) exhibit less multifunction savings because
the sizes of the two loops differ significantly, decreasing the amount
of potential sharing.

On average, the pairwise and full union methods yield signifi-
cantly lower-cost hardware than the positional union and are very
close to the cost obtained with joint scheduling. However, in a few
cases (most notably the benchmark groups containing idct), the
positional union yields a lower cost than the more intelligent unions.
This is due to two factors: first, MUX cost is not considered during
the union phase and can affect the final cost; and second, the FU
costs being minimized in the union phase are estimates, and actual
FU costs may differ slightly when the design is synthesized into
gates. In most benchmark groups, the pairwise union yields hard-
ware that is equivalent in cost to the full union. Thus, pairwise union
is an effective and tractable method of combining accelerators.

An area in which the multifunction accelerator does not improve
on the individual accelerators is in the MUX cost. Although the
multifunction accelerator has fewer FUs (and thus fewer MUXes)
than the sum of individual accelerators, each MUX must potentially
select from more inputs, as more operations execute on each FU.

Figure 7 shows the amount of hardware sharing in each of the
multifunction accelerators synthesized in Figure 6. Each accelera-
tor is represented by a bar which is divided vertically to show the
fraction of gates used by 1 loop, 2 loops, etc. In general, lower
cost accelerators have a higher fraction of gates used by multiple
loops. Some interesting points to note are when sharing across
loops increases, but the corresponding hardware cost does not de-
crease much (e.g. vit-fft when moving from union to joint).
This occurs because, even though the joint scheduler is better able
to share hardware across loops, the union method often has better
hardware sharing within each loop (since the single-function accel-

280

0%

20%

40%

60%

80%

100%

s p u j s p u f s p u s p u f s p u j s p u j s p u f j s p u f j s p u s p u

sharp,sob sharp,

sob,fsed

idct,deq idct,

deq,dca

bfir,bform vit,fft vit,fft,conv vit,fft, conv,fmd vit,fft,

conv,

fmd,fmf

vit,fft,

conv,fmd,

fmf,fir

%
 G

a
te

 U
ti

li
z
a

ti
o

n
1

2

3

≥4

loops

Figure 7: Degree of sharing of multifunction accelerator gates across loops.

erators are designed separately). Thus, hardware sharing still occurs
in the union case, and the cost remains low.

Overall, runtimes for the synthesis system ranged from 20 min-
utes up to several hours on Pentium 4 class machines. The runtimes
were dominated by the first step, generation of cost-efficient single-
function accelerators; the runtime of the union phase was negligible
for positional and pairwise unions, and up to 1 hour for the full
union. The joint scheduler was allowed to run for several days; the
bars missing from Figure 6 took longer than 5 days to run.

A side effect of multifunction designs is that additional intercon-
nect is necessary to accomplish sharing in the datapath. The addi-
tional interconnect consists mostly of wider MUXes at the inputs of
FUs. This can affect critical paths through the accelerator datapath
and hence the maximal clock rate of the design. On average, the
critical path delay in multifunction designs increased by 4% over
the single-function designs. The largest critical path increase oc-
curred in the signal processing group due to the increased resource
sharing among the six loops. In this group the length of the critical
path increased by 12% over that of the single-function accelerator.
All of the multifunction designs were able to meet the target clock
rate of 200 MHz.

5. CONCLUSION
This paper presents an automated, compiler-directed system for

synthesizing accelerators for multiple loops. The synthesis system
builds an abstract architecture based on the compute requirements
of the loops, modulo schedules the loops, and then derives the data-
path and control path for the accelerator. Cost savings is achieved
by sharing hardware across loops while meeting the performance
requirements of each loop. Union methods are presented to reduce
the complexity of the scheduling problem. It is shown that intel-
ligently unioning single-function accelerators yields multifunction
accelerators that are nearly optimal in cost. By evaluating acceler-
ators designed for various application domains, average hardware
savings of 43% are realized due to sharing of execution resources
and storage between loops, with individual savings of up to 58%.

6. ACKNOWLEDGMENTS
Thanks to the anonymous referees who provided excellent feed-

back. This research was supported in part by ARM Limited, the Na-
tional Science Foundation grants CCR-0325898 and CCF-0347411,
and equipment donated by Hewlett-Packard and Intel Corporation.

7. REFERENCES
[1] K. Bondalapati et al. DEFACTO: A design environment for adaptive computing

technology. In Proc. of the Reconfigurable Architectures Workshop, pages
570–578, Apr. 1999.

[2] T. Callahan, J. Hauser, and J. Wawrzynek. The Garp architecture and C compiler.
IEEE Computer, 33(4):62–69, Apr. 2000.

[3] C. Ebeling et al. Mapping applications to the RaPiD configurable architecture. In
Proc. of the 5th IEEE Symposium on Field-Programmable Custom Computing
Machines, pages 106–115, Apr. 1997.

[4] A. E. Eichenberger and E. Davidson. Efficient formulation for optimal modulo
schedulers. In Proc. of the SIGPLAN ’97 Conference on Programming Language
Design and Implementation, pages 194–205, June 1997.

[5] K. Fan, M. Kudlur, H. Park, and S. Mahlke. Cost sensitive modulo scheduling in
a loop accelerator synthesis system. In Proc. of the 38th Annual International
Symposium on Microarchitecture, pages 219–230, Nov. 2005.

[6] D. D. Gajski et al. High-level Synthesis: Introduction to Chip and System
Design. Kluwer Academic Publishers, 1992.

[7] M. Gokhale and B. Schott. Data-parallel C on a reconfigurable logic array.
Journal of Supercomputing, 9(3):291–313, Sept. 1995.

[8] M. Gokhale and J. Stone. NAPA C: Compiler for a hybrid RISC/FPGA
architecture. In Proc. of the 6th IEEE Symposium on Field-Programmable
Custom Computing Machines, pages 126–137, Apr. 1998.

[9] S. Goldstein et al. PipeRench: A coprocessor for streaming multimedia
acceleration. In Proc. of the 26th Annual International Symposium on Computer
Architecture, pages 28–39, June 1999.

[10] R. Govindarajan, E. R. Altman, and G. R. Gao. Minimizing register requirements
under resource-constrained rate-optimal software pipelining. In Proc. of the 27th
Annual International Symposium on Microarchitecture, pages 85–94, Nov. 1994.

[11] D. Herrmann and R. Ernst. Improved interconnect sharing by identity operation
insertion. In Proc. of the 1999 International Conference on Computer Aided
Design, pages 489–493, 1999.

[12] Z. Huang, S. Malik, N. Moreano, and G. Araujo. The design of dynamically
reconfigurable datapath coprocessors. ACM Transactions on Embedded
Computing Systems, 3(2):361–384, 2004.

[13] S. Memik et al. Global resource sharing for synthesis of control data flow graphs
on FPGAs. In Proc. of the 40th Design Automation Conference, pages 604–609,
June 2003.

[14] S. Note, W. Geurts, F. Catthoor, and H. D. Man. Cathedral-III:
Architecture-driven high-level synthesis for high throughput DSP applications.
In Proc. of the 28th Design Automation Conference, pages 597–602, June 1991.

[15] N. Park and A. C. Parker. Sehwa: A software package for synthesis of pipelines
from behavioral specifications. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 7(3):356–370, Mar. 1988.

[16] P. G. Paulin and J. P. Knight. Force-directed scheduling for the behavorial
synthesis of ASIC’s. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 8(6):661–679, June 1989.

[17] B. R. Rau. Iterative modulo scheduling: An algorithm for software pipelining
loops. In Proc. of the 27th Annual International Symposium on
Microarchitecture, pages 63–74, Nov. 1994.

[18] R. Schreiber et al. PICO-NPA: High-level synthesis of nonprogrammable
hardware accelerators. Journal of VLSI Signal Processing, 31(2):127–142, 2002.

[19] G. Snider. Performance-constrained pipelining of software loops onto
reconfigurable hardware. In Proc. of the 10th ACM Symposium on Field
Programmable Gate Arrays, pages 177–186, 2002.

[20] L. Stok. Interconnect optimisation during data path allocation. In Proc. of the
1990 European Design Automation Conference, pages 141–145, 1990.

[21] W. Thies, M. Karczmarek, and S. P. Amarasinghe. StreamIt: A language for
streaming applications. In Proc. of the 2002 International Conference on
Compiler Construction, pages 179–196, 2002.

[22] C. Tseng and D. P. Siewiorek. FACET: A procedure for automated synthesis of
digital systems. In Proc. of the 20th Design Automation Conference, pages
566–572, June 1983.

[23] K. Wakabayashi and T. Yoshimura. A resource sharing and control synthesis
method for conditional branches. In Proc. of the 1989 International Conference
on Computer Aided Design, pages 62–65, 1989.

[24] M. Wazlowski et al. PRISM-II compiler and architecture. In Proc. of the 1st
IEEE Symposium on Field-Programmable Custom Computing Machines, pages
9–16, Apr. 1993.

281

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

