
A Bus Architecture for Crosstalk Elimination in High
Performance Processor Design

Wen-Wen Hsieh
Department of Computer

Science
National Tsing Hua University
HsinChu, Taiwan 300, R.O.C

wwhsieh@cs.nthu.edu.tw

Po-Yuan Chen
Department of Computer

Science
National Tsing Hua University
HsinChu, Taiwan 300, R.O.C

pychen@cs.nthu.edu.tw

TingTing Hwang
Department of Computer

Science
National Tsing Hua University
HsinChu, Taiwan 300, R.O.C

tingting@cs.nthu.edu.tw

ABSTRACT
In deep sub-micron technology, the crosstalk effect between
adjacent wires has become an important issue, especially be-
tween long on-chip buses. This effect leads to the increase in
delay, in power consumption, and in worst case, to incorrect
result. In this paper, we propose a de-assembler/assembler
structure to eliminate undesirable crosstalk effect on bus
transmission. By taking advantage of the prefetch process
where the instruction/data fetch rate is always higher than
instruction/data commit rate in high performance proces-
sors, the proposed method would hardly reduce the perfor-
mance. In addition, the required number of extra bus wires
is only 7 as compared with 85 needed in [6] when the bus
width is 128 bits.

Categories and Subject Descriptors
B.8.2 [Performance and Reliability]: Performance Analy-
sis and Design Aids; C.1 [Processor Architecture]: Mis-
cellaneous

General Terms
Performance, Design

Keywords
Crosstalk, Architecture, Instruction/Data Bus, High Perfor-
mance

1. INTRODUCTION
In deep sub-micron technology, coupling capacitance be-

tween interconnects is the dominant factor in the total wire
capacitance. It derives from one signal and its neighboring
wire switching at different directions. This effect, crosstalk,
will lead to additional delay and power consumption of a
signal. Even worse, in some cases, it may cause malfunc-
tion of a circuit. Thus, elimination of crosstalk has become
a very important design issue. Since in a bus structure, a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’06, October 22–25, 2006, Seoul, Korea.
Copyright 2006 ACM 1-59593-370-0/06/0010 ...$5.00.

number of wires are laid in parallel for a long distance, the
crosstalk problem in a bus structure is especially salient.

Two major categories of crosstalk elimination approaches
have been proposed. One category is designed for power con-
sumption and its objective is to minimize the total crosstalk
in all wires. Pervious work such as spacing and shielding
[1] is two famous approaches in this category. Other ap-
proaches such as [2, 3, 4] are also designed to reduce the to-
tal crosstalk. Another category is designed for performance
and its objective is to minimize the maximum crosstalk ef-
fect among all wires. Kuo et al. [5] proposed techniques at
post-compiler level for performance improvement. In addi-
tion, [6] and [7] use bus-encoding methods to achieve this
goal. Both of them [6, 7] proposed encoding data to be
crosstalk free before it is transmitted on buses. At receiv-
ing end of the bus, a decoder logic decodes the data into
the original one. In this paper, we will focus on the second
problem, i.e., the elimination of certain data transmission
patterns so that the maximum crosstalk effect is minimized.
In this regard, Victor et al. [6] proved theoretically that the
maximum wire number for encoding n-bits bus is �log Fn+2�
where Fn is the nth number of Fibonacci sequence. These
bus encoding methods become impractical when the number
of bus lines become large. For example, a 128-bit bus will
be encoded with 171 wires in theory and with 213 wires in
practice. For a high performance processor like superscalar
and VLIW architecture, the width of a bus is usually wide.
Using methods as such are not appropriate.

In this paper, a new bus structure is proposed for wide bus
architecture in high-performance processors. To hide mem-
ory latencies, a common technique used in high-performance
processors is prefetching. This technique is to prefetch in-
structions or data into buffers before they are used by the
processors. By inserting a de-assembler and an assembler at
the sending and receiving ends of the bus, respectively, cer-
tain transmission patterns that cause undesirable crosstalk
can be eliminated. Moreover, our method takes advantage
of the prefetch process where the instruction/data fetch rate
is always higher than instruction/data commit rate. There-
fore, in our approach there is almost no penalty in terms of
dynamic instruction count.

The rest of this paper is organized as follows. Section 2
describes the crosstalk model. Section 3 gives our motiva-
tion. Section 4 presents our novel bus architecture. Section
5 shows the experiment results. Finally, Section 6 concludes
this paper.

247

2. CROSSTALK MODEL
There are two kinds of capacitance with which a single

wire is associated. One is the capacitance Cground between
the wire and ground, and the other is the coupling capac-
itance Ccouple between the wire and its neighboring wires.
The total capacitance Ctotal of a signal wire is calculated as
follows.

Ctotal = Cground + n × Ccouple, 0 ≤ n ≤ 4

where n depends on the types of coupling of its neighboring
wires. A more detailed analysis of Ctotal on delay can be
found in [9].

Table 1: The bit pattern of different crosstalk types.

crosstalk
type

time bit pattern (wi−1, wi, wi+1)

1C
Tt−1(b, b, b) (b, b, b) (b, b̄, b̄) (b̄, b̄, b)

Tt (b, b̄, b̄) (b̄, b̄, b) (b, b, b) (b, b, b)

2C
Tt−1(b, b, b) (b̄, b, b) (b, b, b̄) (b̄, b, b̄) (b, b, b̄) (b̄, b, b)

Tt (b, b̄, b) (b̄, b̄, b) (b, b̄, b̄) (b̄, b̄, b̄) (b̄, b̄, b) (b, b̄, b̄)

3C
Tt−1(b, b̄, b) (b, b̄, b) (b̄, b̄, b) (b, b̄, b̄)

Tt (b, b, b̄) (b̄, b, b) (b̄, b, b̄) (b̄, b, b̄)

4C
Tt−1(b, b̄, b)

Tt (b̄, b, b̄)

The coupling capacitance of a wire can be classified into
four types 1C, 2C, 3C and 4C according to the Ccouple of
two wires [7]. Let the crosstalk effect on a single wire (vic-
tim) depends on the signal transition of its neighboring wires
(aggressors). We use a tri-tuple (wi−1, wi, wi+1) to repre-
sent the wire signal pattern at a certain time, where wi

represents the victim while wi−1 and wi+1 are aggressors.
Table 1 shows the relations between crosstalk type and the
wire signal transition at time Tt−1 and time Tt, where (b, b̄)
∈ {0, 1} and b̄ is the complement of b. Figure 1 shows the
4C crosstalk examples on three wires wi−1, wi, and wi+1.
The signal patterns transmitted on the wires are (1, 0, 1) at
time Tt−1 and (0, 1, 0) at time Tt in Figure 1(a), while (0,
1, 0) at time Tt−1 and (1, 0, 1) at time Tt in Figure 1(b).

Tt-1 Tt

wi-1

wi

wi+1

(a)

Tt-1 Tt

wi-1

wi

wi+1

(b)

Figure 1: The examples of 4C crosstalk sequence.

Note that the transmission of a pattern (b, b, b) followed
by any other patterns would never cause signals on adjacent
wires switching at different direction, since the signals in
pattern (b, b, b) are the same. Therefore, transmission the
pattern with all 0’s (or all 1’s) followed by any other pattern
will never incur 3C/4C crosstalk.

3. MOTIVATION
In order to study 1) the relationship between instruc-

tion/data fetched rate and instruction/data committed rate
and 2) the percentage of 3C and 4C crosstalk patterns in-
curred in bus transmission, the transmission on the instruc-
tion bus for the DSPstone benchmark is profiled. Experi-
ments were performed by using Simplescalar 3.0 [10], and
the out-of-order 4-issue superscalar architecture is used to
simulate the speculative fetching.

Figure 2 is the percentage of committed instructions to
the total fetched instructions for different examples in the
benchmark set. It shows that the number of committed in-
structions is only about 30% to 40% of the total number of
fetched instructions for all example. In other words, the in-
struction fetch rate is much higher than instruction commit
rate in bus transmission.

0

10

20

30

40

50

60

70

80

90

100

R
at
io
(%

)

irr_1section dot_product matrix irr_nsection lms
multiply update convolution fir fir2dim

Figure 2: The percentage of instruction committed.

Table 2 is the second profiling result. The column labeled
bits of instruction gives the total bit number of fetched in-
structions, and the column labeled bits of 3C and 4C is the
bit number of 3C and 4C crosstalk patterns. The column
labeled ratio of 3C and 4C shows the ratio of 3C and 4C
crosstalk bits to the total fetched bits. From the table, we
know that the ratio of 3C and 4C crosstalk patterns is very
low.

Table 2: The percentage of 3C and 4C patterns.

benchmark
bits of bits of ratio of

instruction 3C and 4C 3C and 4C (%)
multiply 180736 6430 3.6
update 576480 20256 3.5

convolution 168192 5914 3.5
dit product 108256 4070 3.8

fur2dim 195296 7500 3.8
fir 134016 5048 3.8

irr nsection 301440 10698 3.5
irr 1section 197600 7120 3.6

matrix 107424 3983 3.7
lms 2036064 73427 3.6

Since 3C and 4C types of crosstalk take only a small por-
tion of the total transmitted data but cause serious delay
penalty, we propose a de-assembler and an assembler struc-
ture on both ends of the bus to eliminate these two types of
crosstalk.

248

4. THE DE-ASSEMBLER AND ASSEMBLER
TECHNIQUES

We develop a bus structure to de-assemble/assemble data
on a bus such that 3C and 4C crosstalk patterns are elimi-
nated. Figure 3 shows the overall architecture.

bus
Memory

de-

assembler
assembler ProcessorPrefetch

unit

b b mb + n

Figure 3: The overall architecture.

4.1 Basic Idea
In our technique, a bus is first partitioned into several

channels, channel1, channel2...channeln. Data transmitted
on a channel is referred to as a data segment which is denoted
as datat, i, where t is the time stamp and i is the channel
position index. Each data segment is regarded as a basic
data transmission unit. Figure 4 illustrates how our de-
assembling and assembling mechanisms work at cycle Tt.

datat, 1

Memory

bus

de-
assembler assembler Prefetch

unit

datat, 2

datat, 3

datat, n

NOP
NOP

datat, 1

datat, n-2

NOP
NOP

datat, 1

datat, n-2

datat, 1

datat, 2

datat, 3

Figure 4: The sending end and the receiving end.

In Figure 4, datat, 1 represents the data segment prepared
to send on the first channel position in the current cycle,
and datat−1, 1 represents the data segment sent on the first
channel position in the pervious cycle. The data segments
datat−1, i sent in the pervious cycle Tt−1 are stored in the
registers in the de-assembler. At the beginning of sending
data, the datat, i and the datat−1, i are checked to see if
any 3C or 4C crosstalk incurs. If no 3C or 4C crosstalk
is found, then datat, i is transmitted on the channeli. Oth-
erwise, the datat, i is shifted to the next one channel po-
sition channeli+1 and a data segment with all 0’s (or all
1’s) called an NOP segment is inserted onto the channeli.
Once a datat, i is shifted to channeli+1, it is required to
be checked with datat−1, i+1 to see if any crosstalk incurs
between them. The checking continues until datat, i finds
a position channelj where datat, i and datat−1, j incurs no
crosstalk, or it reaches the last channel of the bus. Those
data segments datat, i which are not able to be sent dur-
ing this current cycle Tt due to the NOP segments insertion
would be shifted to the next cycle Tt+1. For example, in
Figure 4, assume datat, 1 with 3C/4C crosstalk occurs be-
tween datat−1, 1 and datat−1, 2. Then the datat, 1 is shifted
two channel positions and will be sent at position channel3.
Since the data segments are shifted two channel positions,
datat, n−1 and datat, n would be sent in the next transmis-
sion cycle Tt+1.

As to the assembler, it is required to remove all inserted
NOP segments and pack the valid data segments to form
the completed instructions as shown in Figure 4. After the

packing, the assembler would inform the processor the num-
ber of completed instructions transmitted during the current
cycle. Those data segments which cannot be packed into a
complete instruction will be stored in a buffer queue waiting
for the next assembling processing.

The worst case of transmission happens when the 3C or
4C crosstalk occurs between datat, 1 and every data segment
transmitted at cycle Tt−1. Thus, the bus is filled with all
NOP segments at current cycle transmission. Since the NOP
segments do not result in crosstalk with any other data pat-
terns in the next transmission cycle, all data segments can
be sent without incurring any 3C/4C crosstalk patterns.
Therefore, the worst case is to double the transmission cy-
cles, that is, one cycle for data segments transmission and
one cycle for NOP segments alternately.

4.2 Insertion of Separation Bits
Since crosstalk may occur across the boundary of two ad-

jacent channels, shielding wires have to be inserted between
every pairs of channels. Moreover, whether all 0’s (or all 1’s)
pattern is an NOP segment or a real data segment requires
a mechanism to make distinction. For these two purposes,
our separation bits, s, are designed as follows.

We say a set of bit-patterns is a crosstalk free cyclic if
any pairs of the patterns in the set does not incur 3C/4C
crosstalk. For example, a set of patterns, (000, 001, 100,
101, and 111) is a crosstalk free cyclic. Hence, in addi-
tion to acting as a state remembering bit, the separation bit
must be designed to be a crosstalk free cyclic.The appropri-
ate separation bits is chosen to form a (|s|+2)-bit crosstalk
free cyclic, where |s| is the length of separation bits and the
2 are the last bit of datat, i and the first bit of datat, i+1.

Since we have 4 patterns for datat, i and datat, i+1 combi-
nation and two more patterns to tell datat, i to be an NOP
segment or a data segment, we need to find a set of codes
which is crosstalk free cyclic and of size at least 6. For |s|
= 1, the maximum size of its crosstalk free cyclic codes has
only size of five (000, 001, 100, 101, and 111). These codes
are not enough to accommodate 6 different patterns.

Table 3: The four possible choices of separate bits.
NOP segment = all 0’s NOP segment = all 1’s

sdata snop sdata snop

10 00 00 10
11 01 01 11

Let the size of s be increased to 2. The maximum number
of the crosstalk free cyclic codes is now over 6. In fact, for
|s| = 2, there are more than one choices. Table 3 shows all
possible choices. For example, when the NOP segment is
designed to be all 0’s pattern, two codes for s bits can be
used. One is to have s = 10 for datat, i being a data segment
and s = 00 for datat, i being an NOP segment. Similarly, if
the NOP segment is designed to be all 1’s pattern, two codes
for s bits, (00, 10) and (01, 11) can be used. Figure 5 is an
example of using all 0’s pattern as the NOP segment and the
selected codes for s are the (10, 00) pair. In this case, the
first two patterns, (0-1-0-0) and (0-1-0-1), at the left tell
that datat, i is a real data segment, and the two patterns,
(0-0-0-0) and (0-0-0-1), at right tell that datat, i is an NOP
segment. Moreover, the six patterns form a crosstalk free
cyclic.

249

datat, 1
[127:96]

datat, 2
[95:64]

datat, 3
[63:32]

datat, 4
[31:0]

channel1
[134:103]

separation bits
[102:101]

channel2
[100:69]

separation bits
[68:67]

separation bits
[34:33]

separation bits
[0]

channel3
[66:35]

channel4
[32:1]

separation
unit

MUX21 MUX22 MUX23 MUX24

MUX11 MUX12 MUX13 MUX14

cross-
detector1, 1

cross-
detector2, 2

cross-
detector2, 1

cross-
detector3, 3

cross-
detector3, 2

cross-
detector3, 1

cross-
detector4, 4

cross-
detector4, 3

cross-
detector4, 2

cross-
detector4, 1

NOP
segment

data_reg1 data_reg2 data_reg3 data_reg4

Sel_logic

Figure 6: The de-assembler architecture.

separation

bits

data

segment

datat, i

0 1, 0 0

0 1, 0 1

1 1, 0 0

1 1, 0 1

datat, i+1

datat, i is a data segment

s

data

segment

separation

bits

data

segment

datat, i

0 0, 0 0

0 0, 0 1

datat, i+1

datat, i is a NOP segment

s

data

segment

Figure 5: One selection of separation bits.

Finally, one special condition is designed for the last chan-
nel position channeln. Since the last channel has no adja-
cent channel channeln+1, only one bit is required to decide
whether the data sent on the last channel position is an NOP
segment or not.

4.3 The De-assembler and Assembler Architectures
In order to check if any crosstalk occurs between data

segment to be sent at current cycle and the data segment
already sent at pervious cycle in parallel rather than in se-
quential, we design a parallel checking architecture. In this
section, we describe our de-assembler and assembler archi-
tectures. The de-assembler architecture is shown in Fig-
ure 6. In this example, the width of the whole bus is 128
bits and the width of each channel is set to 32. Hence, the
bits from 127 to 96 are grouped as channel1, the bits from 95
to 64 are grouped as channel2,... etc. and the total number
of channels is 4.

To detect if a crosstalk occurs between the current data
segment, datat, i and the data sent in channeli at pervious
cycle, two logic elements named data reg and cross detector
are designed. The data regi is used to store the data seg-
ment sent on channeli at pervious cycle. For each channeli,
the cross detectori, j , where j from 1 to i, is a combina-
tional logic used to check if data regi and datat, j induce

crosstalk. Note that in order to check if datat, i can be
sent on channelk, for k from i to n in parallel, one or more
cross detectori, js are designed for each channel position
channeli. For a data regj, it is checked with all data seg-
ment datat, i to be sent, for i from 1 to j as shown in the
Figure 6.

Next, all the output signals of the cross detectori, js are
sent to a logic element named Sel logic. With inputs from
all cross detectors, Sel logic will decide which data segment
is to be sent on channeli. Then, the output of Sel logic
is passed to the first level multiplexor, MUX1i, where the
inputs to MUX1i are datat, j for j from 1 to i and NOP
segment. This multiplexor is used to select the data seg-
ment or NOP segment to be sent. Finally, the output of
cross detectori, js are also sent to the second level multi-
plexor, MUX2i, which is used to determine what the sepa-
ration bits are.

Now, taking datat, 2 as an example, two crosstalk detec-
tors, cross detector2, 1 and cross detector2, 2, are used to
detect if crosstalk occurs between data reg2 and datat, 1,
and between data reg2 and datat, 2. The output of cross
detector1, 1, cross detector2, 1 and cross detector2, 2 are

sent to the Sel logic. Then, the outputs of Sel logic are
used as the select signal of MUX12. The inputs to the
MUX12 includes datat, 1, datat, 2 and NOP segment. Fi-
nally, the MUX22 is used to choose separation bits.

At the receiving side of the bus, an assembler is designed
to remove the NOP segments. The architecture for the as-
sembler is shown in Figure 7. The input of the assembler is a
set of data segments with separation bits interleaving within
them. First, a DSel logic is constructed to determine which
incoming data is data segment and which channel position
be passed to. The inputs to DSel logic contain two kinds
of signals. One is the separation bits which record the infor-
mation to distinguish a data segment from a NOP segment.
The other is the number of data segments left unpacked at

250

MUX1 MUX2 MUX3 MUX4

DSel_logic

[134:103] [102:101] [100:69] [68:67] [66:35] [34:33] [32:1] [0]

processor

instruction
count unit

buffer quene

channel1

[127:96]

separation
bits

channel2

[95:64]
channel3

[63:32]
channel4

[31:0]

separation
bits

separation
bits

separation
bitschannel1 channel2 channel3 channel4

Figure 7: The assembler architecture.

previous cycle Tt−1. The output of DSel logic is the number
of channel position to be left shifted for each data segment,
which is the select signal of the multiplexor, MUXi. The
input data segment to the MUXi includes the data segment
left in the buffer queue in the previous cycle and all incoming
data segments.

Finally, an instruction control unit is designed to detect
how many instructions are packed. The result of the in-
struction control unit is then sent to the processor.

5. EXPERIMENT RESULTS
In order to demonstrate the effectiveness and efficiency of

our method, a set of experiments are conducted. The sim-
outorder simulator from Simplescalar 3.0 [10] incorporated
with our de-assembler and assembler architecture is used to
simulate the out-of-order superscalar architecture without
caches. We take instruction bus as the demonstration ex-
ample. Each instruction is 32-bit long, and four instructions
are issued in parallel so that the total bus width is 128 bits.
We adopt DSPstone as the benchmarks.

The first experiment is to understand how many extra
cycles are needed to execute a program. Table 4 shows the
results. The columns labelled TCC and pen are the total
cycle counts of the original circuit and the cycle penalty
using our architecture, respectively. It can be seen that
there is almost no cycle count overhead (less than 1%) for 8-
bit, 16-bit, 32-bit channel sizes. In the worst case, the cycle
count overhead is only 0.21% (dot product when channel
size is 32).

Table 4: The cycle count overhead for different chan-
nel size.

TCC

channel size
8 16 32

pen ratio(%) pen ratio(%) pen ratio(%)

dot product 2355 0 0 3 0.13 5 0.21
fir2dim 12084 1 0.08 7 0.06 22 0.18

fir 3702 5 0.01 1 0.02 3 0.08
lms 4010 3 0.07 5 0.12 6 0.15

matrix 44360 4 0.01 27 0.06 11 0.02
matrix1x3 2841 2 0.07 3 0.11 5 0.18
average 0.04 0.08 0.14

The second experiment is to understand the extra wire
overhead. The area overhead includes the extra wires re-
quired for separation bits and the area of the de-assembler/

assembler. Table 5 shows the comparisons of our results to
Victor’s memoryless approach [6]. Four cases for different
channel sizes by using our method (4-bit, 8-bit, 16-bit and
32-bit per channel) and two cases (theoretical and practical)
in Victor’s paper are shown. The results show that when the
number of bus width is getting wider, the effectiveness of our
approach becomes more significant. For example, when the
bus width is 128 and the channel size is 32, the number of
extra wires using our method is only 7 as compared with
59 and 85 needed for the theoretical and practical cases,
respectively, proposed in Victor’s paper.

Table 5: The number of extra wires.

bus width
Ours

Victor’s [6] Victor’s [6]
Channel size
4 8 16 32 theoretical practical

32 15 7 3 1 14 21
64 31 15 7 3 28 45
128 63 31 15 7 59 85

As to the area overhead for the de-assembler and the as-
sembler, we choose the case of 128-bit bus width with 32-
bit per channel for experiment. Two logic circuits are de-
signed using Verilog and synthesized by the Synopsys De-
sign Compiler. Table 6 shows the comparisons of our re-
sults to Victor’s memoryless approach [6]. The gate count
is obtained by synthesizing circuits using only NOR gates
and inverters, and the area is synthesized with the TSMC
0.13µm cell library. The result shows that the de-assembler
in our design takes more area than the encoder in Victor’s
approach [6]. This overhead is mainly from the logic for
crosstalk detectors. In addition, registers are needed in our
approach because the de-assembler have to store the data
segments transmitted in the pervious cycle.

Table 6: The area comparison of two designs.
method Ours Victor’s[6]

De-assembler/ gate count 3860 885
Encoder area(µm) 8556.54 2359.39

Num of register 128 0
Assembler/ gate count 879 1402

Decoder area(µm) 2053.854 3381.22
Num of register 0 0

The third experiment is to see how much performance
improvement can be obtained by eliminating 3C and 4C
crosstalk. The result is simulated with Spice[12], and the
case of 128-bit bus width with 32-bit per channel is taken.
The values of capacitances for Cground and Ccouple in dif-
ferent technology, are obtained from the Berkeley predictive
technology model (BPTM) [11]. Table 7 shows the simula-
tion result. In this table, the first column gives the process
technology (65nm, 90 nm). The second column gives dif-
ferent bus length (3mm and 5mm). The third column to
the seventh column report the wire delay without and with
crosstalk. The next two columns report the critical path
delay for the de-assembler and assembler. All the delay in-
formation is normalized to the wire delay without crosstalk
(0C). The last column reports the improvement ratio of our
design, it is calculated by the formula

1−2C wire delay + deassembler delay + assembler delay

4C wire delay

251

Table 7: The timing analysis of wire and the de-assembler/assembler.
tech bus length 0C 1C 2C 3C 4C deassembler assembler ratio(%)

90nm
3mm 1.00 1.26 3.00 5.38 7.42 2.80 1.45 2.23
5mm 1.00 1.18 2.63 5.07 6.87 1.19 0.61 35.44

65nm
3mm 1.00 1.31 3.10 5.69 7.68 2.63 1.35 7.75
5mm 1.00 1.13 2.13 4.45 6.16 0.99 0.51 41.07

From the table, we can see that the wire delay caused by
3C/4C crosstalk is serious. For example, the wire delay
caused by 4C crosstalk is at least twice as the 2C crosstalk
caused.(6.16 by 4c and 2.13 by 2C when bus length is 5mm
in 65nm technology). It implies that we can shorten the
clock cycle length to 50%. In addition, the extra delay
caused by the de-assembler and assembler is less signifi-
cant when the bus length increasing, therefore, the improve-
ment rate achieved about 35% in 90nm technology and 41%
in 65nm technology when bus length is 5mm as the table
shown. We can predict that the improvement ratio will be-
come more significant in deeper technology.

The last experiment is to understand the performance im-
provement rate for different channel sizes in different tech-
nologies. We take channel size is 16 and channel size is 32
as examples since the two channel sizes are more practical.
The performance improvement rate is calculated as

improvement rate =
new tcc × rate

orig tcc
× 100%

where ori tcc and new tcc are the total transmission cycle
count of the original circuit and the new circuit, respectively,
and rate are the clock length reduction rate for 65nm and
90nm technologies. Figure 8 shows that the improvement
rate for different cases can achieve 35% in 90nm technology
and achieve about 40% in 65nm technology. It shows that
the improvement rate of performance is less significant when
the channel size is smaller. In addition, the improvement
rate is getting higher when the process scales down.

channel size = 16 channel size = 32

90nm 65nm

Th
e

im
pr

ov
em

en
t r

at
e

(%
)

0
5

10
15

25

35

45

20

30

40

50

Figure 8: The improvement rate for different tech-
nologies.

6. CONCLUSION
In this paper, we have proposed a new bus structure to

eliminate 3C/4C crosstalk effect during data transmission.
By inserting a de-assembler and an assembler at the sending
and receiving ends of the bus, respectively, certain transmis-
sion patterns that cause undesirable crosstalk can be elim-
inated. We take advantage of the prefetch process where

the instruction/data fetch rate is always higher than in-
struction/data commit rate in high performance processors.
According to the experimental results, our method achieves
40% in 65nm technology and more performance improvement-
rate at the expand of a small number of extra wires as com-
pared with the original design.

7. REFERENCES
[1] R. Arunachalam, E. Acar and S. R. Nassif, ”Optimal

Shielding/Spacing Metrics for Low Power Design,”
IEEE Computer Society Annual Symposium on VLSI,
pp. 167-172, February 2003.

[2] J. D. Z. Ma, L. He, E. Acar, and S. R. Nassif,
”Towards Global Routing With RLC Crosstalk
Constraints,” Design Automation Conference, pp.
669-672, June 2002.

[3] L. Li, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin,
”A Crosstalk Aware Interconnect with Variable Cycle
Transmission,” Design, Automation and Test in Europe
Conference and Exhibition, vol. 1, pp. 102-107,
February 2004.

[4] S.-K. Wong and C.-Y. Tsui, ”Re-configurable Bus
Encoding Scheme for Reducing Power Consumption of
the Cross Coupling Capacitance for Deep Sub-micron
Instruction Bus,” Design, Automation, and Test in
Europe Conference and Exhibition, vol. 1, pp. 130-135,
November 2004.

[5] W. A. Kuo, Y. L. Chiang, T. Hwang, and Allen C.-H.
Wu, ”Performance-Driven Crosstalk Elimination at
Post-Compiler Level,” IEEE International Symposium
on Circuits and Systems, pp. 3041-3044, May 2006.

[6] B. Victor and K. Keutzer, ”Bus encoding to prevent
crosstalk delay,” IEEE/ACM International Conference
on Computer Aided Design, pp. 57-63, November 2001.

[7] C. Duan, A. Tirumala, and S. P. Khatri, ”Analysis and
Avoidance of Cross-talk in On-Chip Buses,” Hot
Interconnects, pp. 133-138, August 2001.

[8] C. Duan and S. P. Khatri, ”Exploiting Crosstalk to
Speed up On-Chip Buses,” Design, Automation and
Test in Europe Conference and Exhibition, pp. 778-783,
February 2004.

[9] P. P. Sotiriadis and A. Chandrakasan, ”Reducing Bus
Delay in Submicron Technology Using Coding,” IEEE
Asia and South Pacific Design Automation Conference,
pp. 109-114, January-February 2001.

[10] ”http://www.simplescalar.com/”

[11] ”http://www-device.eecs.berkeley.edu/˜ptm”

[12] L. Nagel, ”Spice: A computer program to simulate
computer circuits,” in Universiv of Culifomiu, Berkeley
UCBERL Memo M520, May 1995.

252

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

