Phase Guided Sampling for Efficient Parallel Application
Simulation

Jeffrey Namkung, Dohyung Kim,

Rajesh Gupta
University of California San Diego

jnamkung @ucsd.edu, dhkim@ucsd.edu,
rgupta@ucsd.edu

ABSTRACT

Simulating chip-multiprocessor systems (CMP) can take a
long time. For single-threaded workloads, earlier work has
shown the utility of phase analysis, that is identification of
repetitive program behaviors, in reducing overall simulation
time while maintaining an acceptable loss in accuracy. To
cope with multithreaded workloads, a combination of phases
from all executing threads must be taken into consideration
since inter-thread interference may distort the homogene-
ity of each phases’ true performance. Unfortunately, phase
analysis does not work for multithreaded (MT) workloads
because the possible phase combinations in an inherently
nondeterministic execution model grows exponentially with
the number of threads. To this end, we propose a new tech-
nique to reduce the number of simulation samples by syn-
thesizing samples from similar phase combinations. We
present a simple cost function for measuring the similar-
ity between phase combinations and by using the individ-
ual thread samples from the similar phase combinations, a
new sample can be constructed. This cost function provides
a convenient control knob for exploiting tradeoffs between
simulation speed and accuracy. Our experimental results
show that in most cases, properly setting the cost function’s
threshold can yield a reduction in sampling by 90%, while
maintaining error to less than 5%.

Categories and Subject Descriptors: B.8.2 [Performance
Analysis and Design Aids]:

General Terms: Measurement, Performance

Keywords: Simulation, Chip multiprocessors, Multithread-
ing, Phase analysis, Sampling.

1. INTRODUCTION

Chip multi-processor (CMP) systems are gaining atten-
tion due to their ability to provide increasing system per-
formance through silicon integration capabilities. Exploring

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CODES+I1SSS’06, October 22-25, 2006, Seoul, Korea.

Copyright 2006 ACM 1-59593-370-0/06/0010 ...$5.00.

187

Igor Kozintsev, Jean-Yves Bouget,

Carole Dulong
Intel

igor.v.kozintsev @intel.com,
jean-yves.bouguet@intel.com,
carole.dulong@intel.com

and evaluating different architectural designs for such sys-
tems depends crucially upon the ability to simulate appli-
cations that use multithreaded software models quickly and
accurately. This is an increasingly difficult task: in case
where prototype systems are not available, simulation mod-
els in use are orders of magnitude slower.

Phase analysis [12] was shown in [10] to provide an ef-
ficient solution for reducing time spent simulating single-
threaded workloads. Biesbrouck et al [4] showed how to
extend phase analysis for simulating a simultaneous multi-
threading (SMT) processor model running multiple work-
loads by using the co-phase matriz, a matrix representing
phase information across multiple threads. The co-phase
matrix addresses the need to consider the combination of
phases that can occur together during execution. Simu-
lating CMPs running MT workloads differs from simulat-
ing SMTs running multiple single-threaded workloads in
three aspects. First, threads running on separate proces-
sors have less shared resource contention than threads run-
ning on a SMT processor. Whereas SMT processors share
functional units, branch prediction units, all caches, mem-
ory, and the communication subsystem, CMPs only share
the shared caches, main memory, and the communication
subsystem. Second, the threads in an MT workload com-
municate and share data with each other, whereas separate
independent workloads do not. Thus, inter-thread interfer-
ence may also be caused by cache coherency behavior and
data dependencies between threads. Lastly, CMPs can scale
to a much larger number of threads than SMT processors.
The target of our simulation technique is CMP.

We first show that a straightforward extension to phase
analysis using the co-phase matrix for simulating MT work-
loads does not scale well with the number of threads. Our
experiments show that the possible reduction in time spent
simulating quickly diminishes beyond 16 threads due to a
rapid growth in the number of unique phase combinations.
To attack this problem, we propose a new technique for re-
ducing the amount of simulation required by dynamically
synthesizing samples from previously collected samples dur-
ing simulation. Our experimental results show that our tech-
nique scales well, which further sustains the potential use-
fulness of phase analysis in the context of MT workloads.

The remainder of this paper follows in Section 2 with a
background on phase analysis and how it can be extended
to simulate multiple threads using the co-phase matrix. Sec-
tion 3 identifies the main problem of explosion in samples
required when applying this straightforward extension to

Phase A
L_-PhaseC __|

Shared Resource R

Phase B

Figure 1: Example on how phases may affect each
other through shared resource contention. Thread 1
(left) transitions from phase A, which requires heavy
access to the shared resource, to phase B, which has
light access. Thread 2 (right) concurrently accesses
the same shared resource with medium access.

phase analysis for MT workloads. We propose a new tech-
nique called Sample Synthesis in Section 3.2 to address
this problem and show in Section 4 that our technique gives
promising results in both reducing simulation time while
maintaining acceptable accuracy. A discussion of related
work is presented in Section 5. We conclude with a sum-
mary and future directions in Section 6.

2. BACKGROUND
2.1 Phase Analysis

In [12], single-threaded workloads were shown to exhibit
repeated phases of execution, where phases represent simi-
lar executed code signatures. Furthermore, the authors note
that similar code signatures exhibit approximately homo-
geneous performance characteristics, such as IPC, branch
misprediction rates, etc.

To identify repetitive phases, the code signatures are pro-
filed by first splitting the entire trace of executed instruc-
tions into a sequence of intervals. The length of each interval
may be fixed or variable length [7] and is typically measured
in terms of how many instructions were retired within that
interval. For each interval, a lightweight profiler is used
to collect statistics of each unique basic block’s execution
count. In this manner, each interval’s code signature can be
represented by a basic block vector — a frequency vector rep-
resenting the set of basic blocks that executed within that
interval and how often.

After all basic block vectors have been generated for all
intervals, the entire set is run through a K-means clustering
to group similar intervals together, where each group/cluster
represents a unique phase of execution. The basic block
vector closest to the center or centroid of the cluster can then
be used as the phase representative for all other intervals
assigned to the same cluster.

To reduce simulation time, a detailed timing-accurate sim-
ulator (performance simulator) can be used to simulate in-
tervals selected as phase representatives, i.e. sampling. For
the other intervals, a functional simulator may be used to
fast-forward until either the simulation has finished or an-
other phase representative is encountered. Since the func-
tional simulator is much faster than the performance simula-
tor and the number of phase representatives is much smaller
than the total number of intervals, total simulation time can
be greatly reduced.

2.2 SMT Phase Analysis

Biesbruck and co-authors in [4] proposed extending phase
analysis for guiding sampling of multiple workloads running
on a SMT processor. The main problem they identified was

188

that phases do not exhibit homogeneous performance char-
acteristics when other phases from other programs/threads
exist on a platform with shared resources.

Figure 1 shows an example on how the existence of differ-
ent phases concurrently executing may affect performance.
On the left side of this figure, we see that one thread switches
from phase A to phase B. On the right side, the second
thread is in phase C. At some point in time before phase C
finishes, thread one switches to phase B, which has a differ-
ent shared resource usage. Thus, we can expect that phase
C’s performance will be different due to the different shared
resource access characteristics of phase A and B.

The authors concluded that the individual phase a partic-
ular workload is currently executing is not enough to deter-
mine the performance. Rather, the combination of phases
that are concurrently running are necessary to determine
the performance of each workload. In other words, phase
representatives must be redefined as the unique phase com-
binations that occur during execution.

To capture repeated phase combinations, [4] introduced
a mechanism called the co-phase matrix. Because, phase
performance behavior is dependent on the phases of other
threads, it is important to know when and which phases co-
occur. In the single-threaded context, the intervals execute
in a sequential order, allowing static determination of when
and which phase representative occur prior to sampling. In
contrast, with multithreaded workloads, phase combinations
require a notion of time between concurrently executing
threads, which is unavailable before sampling. Thus, the
co-phase matrix acts as a mechanism that allows us to dy-
namically determine the phase representatives during simu-
lation.

The co-phase matrix acts as a look-up table, which stores
the performance samples for each thread-phase pair indexed
by each unique phase combination. Every time a new phase
combination is seen, the performance simulator is run and
a sample for each thread-phase pair is collected. If a phase
combination already has an entry, then we can reuse each
sample for each thread-phase pair to fast-forward each thread.

3. MULTITHREADED PHASE ANALYSIS

This paper builds upon previous work done in [11], which
extended how to perform the first-pass of phase analysis for
multithreaded workloads. Intervals are defined on a per-
thread basis by only profiling the code signatures for each
thread independently.

Frequency vectors are calculated by sampling on a real
multi-processor system the hardware performance counters
resident on the processors [1]. The hardware performance
counters provide a means to sample the program counter,
rather than basic blocks, at regular intervals and also pro-
vide the value of the time-stamp counter when each sample
is taken. In this manner, we are able to collect the frequency
vector for each interval along with the performance profile,
which was later used for validation and experimentation.

To detect the phases, the entire set of frequency vectors
collected for all threads is run through a clustering algo-
rithm. Subsequently, each thread is associated with a se-
quence of their constituent intervals and the phase each in-
terval was assigned to.

For our experiments we choose the NAS OpenMP bench-
mark suite [5] shown in Table 1 as our MT workloads. These
benchmarks were chosen due to their ability to scale to a

Benchmark | SAV | Samples/interval | # phases
bt. A 10° 100 6
cg.B 10° 100 7
ep.B 10° 1000 5
lu.B 10° 100 4

mg.B 10° 1000 8
sp.A 10° 1000 9

Table 1: Benchmarks used and experimental set-
tings

high number of threads and their high degree of data par-
allelism; OpenMP primarily targets loop-level parallelism.
The settings used for hardware sampling are also shown in
Table 1. The number of phases chosen for clustering are the
same as those used in [11] and were determined through vi-
sual inspection of the clusterings. The Sample-After-Value
(SAV) represents when the hardware performance counters
were sampled based upon a specified number of instructions
retired. The values were selected based on the length the
benchmark and was chosen to (1) provide enough samples
for clustering and (2) allow clustering to finish in reasonable
time. For most benchmarks, we split the execution into in-
tervals of 10 million instructions and we used the sampled
program counters for building our frequency vectors. Col-
umn four shows the number of phases used for clustering
during phase analysis. The machine used for hardware sam-
pling consisted of 16 Intel Xeon processors running at 3 GHz
in a clustered configuration.

We implemented a simple timing model to gain an under-
standing of inter-thread phase behavior. The timing model
is implemented by loading for each thread a phase trace rep-
resenting the sequence of intervals for that thread and the
phases those intervals were clustered to. Additionally, each
interval is assigned the IPC profile measured for that inter-
val during the hardware sampling mentioned earlier. This
allowed us to correctly align each threads’ intervals with
respect to each other in time and identify all phase combi-
nations that occur during execution.

3.1 Phase Combination Growth

To get a notion of how much time would be required for
simulation (only sampling unique phase combinations), Fig-
ure 2 plots the ratio of unique vs. total phase combinations
seen as we varied the number of threads from 1 to 16. When
the number of threads is small, the number of unique phase
combinations is much smaller than the total number of phase
combinations, because the combinatorial growth with only
two threads is small. On the other hand, when the number
of threads is increased to 16, we can see that out of all the
phase combinations seen, a much larger percentage of those
combinations are unique. As a result, if we were required to
sample all unique phase combinations, the amount of time
simulating would remain quite long and in some cases al-
most as long as a full detailed simulation, for instance in
example mg.B.

3.2 Sample Synthesis

The intuition behind our technique is that the degree of
resource sharing - thread interference - on a CMP system
will be much less than SMT, which share most of the pro-
cessor’s resources. Accordingly, the performance character-

189

Growth in Samples Required

-

0.9
0.8

0.7

——DbtA
—=—cg.B
ep.B
u.B
—*—mg.B
—o—sp.A

0.6
0.5

Combinations

0.4

0.3

0.2

Ratio of Unique vs. Total Phase

0.1

T T T
0 5 10 15 20
Processors/Threads

Figure 2: Percentage of sampling required when in-
creasing number of threads

istics of a phase is not always dependent on all other concur-
rently executing phases and does not always change when a
new phase combination is encountered. Put in another way,
phase combinations that are similar are likely to have ho-
mogeneous performance characteristics for the thread-phase
pairs that are the same. Therefore, if we can determine
which phase combinations are similar, we can avoid sam-
pling by reusing individual thread-phase pair samples from
similar phase combinations.

3.2.1 Similar Phase Combinations

To calculate the similarity between phase combinations,
we compute the Levenshtein distance [8], which is similar to
a Hamming distance, where we count the number of differ-
ent thread-phase pairs between two combinations. Figure 3
shows an example of how we compute similarity using the
Levenshtein distance.

Each row in the figure represents a unique phase combi-
nation that occurred during simulation. Each column rep-
resents the particular thread’s phase of execution. The top
row represents the current set of co-executing phases for all
the threads, while the bottom rows represent previously seen
phase combinations and their respective samples stored in
the logical co-phase matrix. The Levenshtein distance be-
tween the current phase combination and each phase combi-
nations stored in the co-phase matrix is shown by the arcs.
Each letter/color represents a unique phase and the bold and

— N 2] A wn el [o
kel el el el el o] kel el
o © © © T © © ©
g g ¢ 9 ¢ g ¢ ¢
e < i < e e e <
HE B B B B B B B
CunentPhase ‘ A ‘ = ‘ = ‘ 5 ‘ = ‘ B ‘ c ‘ c
Com bhaton Levenshten
D stance
1
a|b|D|d]|b]|Db @ c /
Sin ibrphase a b @ d b | C @ c [1
com bhatbns a|A|c al bl b c c 1
B | b @ d|b| b @ c 5
C|Blc|p|D|B|c|cH
Co-Phase M atrix

Figure 3: Similarity measured by Levenshtein dis-
tance

Algorithm 1 Guided sampling of MT workloads

1: while phasesRemain do
2: CurrPhaseCombo < GetNextPhaseCombo()

3: if HaveExactSample(CurrPhaseCombo) == false
then
4: if SynthesizedSample(CurrPhaseCombo) == false
then

5 ObtainSample(Curr PhaseCombo)

6 end if

7 end if

8: SampleSet = GetSample(Curr PhaseCombo)
9: FastFoward(SampleSet)

0

10: end while

underlined letters represent the thread /phase pairs that dif-
fer from the corresponding thread in the current phase com-
bination. Thus, for the last row in the co-phase matrix, we
can see that thread 1 and 5 are in different phases (C and
D respectively) than the current phase combination (A and
B respectively); the Levenshtein distance is 2.

Using the Levenshtein distance as our similarity metric,
we can now identify which of the previously collected sam-
ples are similar by only analyzing their phase combination
patterns and using a certain threshold on the distance. For
example in Figure 3, if we decided 1 to be the maximum
distance allowed for identifying similar combinations, then
the top 4 entries in the co-phase matrix are deemed similar.
The actual samples for each thread could then be used to
synthesize a new sample for the current phase combination
without having to run the performance simulator to actu-
ally collect the sample. In Figure 3, the samples used for
synthesis are in lowercase. In the case we have multiple sam-
ples to choose from, we average the samples. On the other
hand, if there are not enough samples to fully synthesize ev-
ery thread/phase pair for the current combination, then we
must run the performance simulator to obtain a real sample.

The pseudocode for guided sampling using sample synthe-
sis is listed under Algorithm 1. Lines 1-10 represent the loop
that examines each phase combination as they occur during
simulation. In Line 2, we check to see if the co-phase matrix
has an exact match for the current phase combination. If
not, we attempt to synthesize a new sample set (Line 3).
If this fails, meaning there were not enough similar phase
combinations that have matching thread-phase pairs, then
we run the performance simulator (Line 5) and add the sam-
ple obtained to the co-phase matrix. Line 8 and 9 simply
fast forward each of the threads by the amount specified in
the samples.

The main synthesis algorithm (Algorithm 2) is comprised
of two separate loops (Lines 2-7 and 8-14). The first loop ex-
amines all entries in the co-phase matrix to see which combi-
nations are similar to the current phase combination. These
similar phase combinations are added to a set of candidates.
In the second loop, we look to see if we can find matched
thread-phase pair samples, in the set of candidates, to re-
construct our new sample. If we were able to reconstruct
the whole sample, then we return true; otherwise we return
false.

Because our timing model did not actually perform simu-
lation, the running time of our experiments reflects the over-
head of our technique, which was a matter of a few minutes
— negligible compared to actual simulation time.

190

Algorithm 2 Attempt to synthesize sample set
for CurrPhaseCombo using Levenshtein distance
threshold
1: CandidateCombos < ()
2: for all Combo in coPhaseMatrixz do
3: if LevenshteinDistance(Combo, CurrPhaseCombo)
< threshold then
4 add Combo to CandidateCombos
5 end if
6: end for
7: NewSample < ()
8
9
0
1

: for all ThreadPhasePair in Curr PhaseCombo do
for all Combo in CandidateCombos do

10: if ThreadPhasePair € Combo then

1 NewSample < ThreadPhasePair.sample
ThreadPhasePair found in Combo to
NewSample

12: end if

13: end for

14: end for

15: if NewSample is valid then

16: coPhaseMatrixz <= NewSample
17: return true
18: end if

19: return false

4. EXPERIMENTS AND RESULTS

To examine our technique’s efficacy, we utilized the same
thread timing model described earlier. Incorporating the
co-phase matrix, our timing model processes all threads si-
multaneously, while collecting samples for phase combina-
tions not previously seen. If a matching entry in the matrix
existed or we were able to synthesize a sample, we replaced
the performance samples of each of the corresponding inter-
vals with the matching/synthesized sample and adjusted the
timing between threads accordingly. This model, while un-
able to handle direct handling of synchronization and inter-
thread data dependencies, provided a good initial estimate
on the effectiveness of our technique. Furthermore, we have
integrated our technique in a simulation environment, which
does handle synchronization and data dependencies, and our
preliminary results show similar trends. However, due to
space constraints, this paper only focuses on solving the
sample explosion problem.

Using the similarity between phase combinations as a knob,
we can see the tradeoff between reduction in simulation time
and the amount of error in the performance projection. Fig-
ures 4, 5, and 6 show experimental results for our bench-
marks running on 16 processors/threads configuration, while
varying the threshold for the Levenshtein distance. Figure 4
shows how our technique can reduce the total number of
samples required while adjusting (by Levenshtein distance
similarity) which phase combinations in the co-phase ma-
trix can be used to reconstruct a new sample. The points
plotted at a Levenshtein distance of zero, show the required
amount of samples when no synthesis is performed.

We can see that for most benchmarks, we can reduce the
total number of samples required below 10% when using a
Levenshtein distance of 4. Furthermore, the samples are
reduced fairly quickly before leveling off. At a certain point,
increasing the Levenshtein distance has a much less effect
on reducing the number of samples.

Total Samples Required (16 processors/threads)

?

8 09 %

o

= 0.8

8

L

4 0 ——btA
8 —=-cgB
% E ep.B
- .g lu.B
0

23 mep
E —o—sp.A
]

-

)

L

T

[+

0 e e I B e T i B e e
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Levenshtein Distance (max # phase changes)

Figure 4: Reduction in samples required as a func-
tion of phase combination similarity

% Error vs. Levenshtein Similarity (16 processors/threads)

90%

80% -

70% A

——btA
—=—cg.B
ep.B
lu.B
—*—mg.B
—o—sp.A

60%

50% -

40%

30% A

20% A

10%

[I NN " S S|

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Levenshtein Distance (# max phase changes)

% Error (reported simulated cycles)

Figure 5: Error in total workload execution time as
a function of phase combination similarity

Reducing samples will most likely lead to a greater amount
in error, which we measured in terms of reported simulated
cycles. Figure 5 shows the error as we vary the Levenshtein
distance. The difference in error characteristics for each of
the benchmarks as a function of Levenshtein distance, espe-
cially mg.B, indicates that beyond a certain point, the indi-
vidual threads samples used to synthesize new phase combi-
nation samples are inappropriate. This further implies that
each benchmark has different characteristics in terms of how
much inter-thread interference may be present. For exam-
ple, if each thread in the benchmark has a very low cache
miss rate, the amount of interference between threads should
be low since the shared resources have less contention.

The main limitation in using Levenshtein distance as a
cost function for measuring similarity is that all thread-
phase pairs that are different are equally distant from each
other by a value of one. Cost functions that provide more
indicative measures of similarity between different phases is
an area of further investigation, however for this study, the
Levenshtein distance showed relatively good results and was
simple to implement.

In terms of error, we can see that all of the benchmarks
maintain an error rate below 10% at a Levenshtein distance
of five and most of them never produce error above 20%. At

191

% Sample Reduction vs % Error (16 processors/threads)

#

90%

80% -

70%

——Dbt.A
—=—cg.B
ep.B
lu.B
—*—mg.B
—o—sp.A

60% -
50% -
40%
30%
20% -

10% A #
0% WokEH— K —

0% 20%

% Error (reported simulated cycles)

40% 60%
% Sample reduction

80% 100%

Figure 6: Tradeoff between accuracy and simulation
time

a distance of three, all of the benchmarks were contained to
under 5% error and most of these benchmarks required only
10% of the samples; indicating that re-using previous sam-
ples from similar phase combinations can effectively reduce
simulation time and still maintain good accuracy.

It is also beneficial to understand the tradeoffs between
how much accuracy we can obtain while reducing the time
spent simulating. Figure 6 displays how one might use this
chart to estimate how much time they can save at the cost
of a loss in accuracy. The points plotted in Figure 6 show
the reduction in samples required when compared to the
number of samples required without synthesis.

When compared with sampling all unique phase combi-
nations, we can see that synthesis allows all benchmarks to
achieve 40% reduction in samples and for most of the bench-
marks 90%, while maintaining error rates below 5%. These
results confirm that previous samples may be used to syn-
thesize new samples as an effective solution to the sample
explosion problem.

S. RELATED WORK

Recent advances in simulation technology have achieved
much higher simulation speeds [2] — a high speed commercial
simulator indicating an increasing demand for fast and ac-
curate system-level simulation tools. Interestingly, sampling
techniques, including our proposed technique, are indepen-
dent of the simulator. Thus, we believe that our technique is
complementary to other simulation environments and may
provide even faster performance estimations of MT work-
loads. More importantly, our technique directly addresses
the slowdown in simulation speeds due to modeling a large
number of processors, i.e. scalability, which is a problem
inherent to CMP simulation.

Most sampling techniques fall into three major categories.
The first category contains techniques that simply select a
particular point in the benchmarks execution to start sam-
pling. This is the simplest and (unfortunately) most com-
mon technique[14]; typically providing poor accuracy since
a benchmark’s performance behavior commonly has various
different phases of execution. The second category of tech-
niques are known as statistical sampling [13], which uses
confidence intervals and other statistical properties of the
benchmark for finding the optimal sampling length and pe-

riod. The last category is targeted/guided sampling [12].These

techniques utilize characteristics of the benchmark that are
independent of the processor being modeled to help deter-
mine when to sample. [15]provides a more thorough compar-
ison of these three categories and show that while statistical
sampling and guided sampling both provide a high degree
of accuracy, guided sampling using phase analysis is more
time efficient.

While sampling techniques have been heavily explored for
uni-processor/single-threaded benchmarks, only a few re-
cent works have shifted the target platform/application to
multi-processor/multithreaded benchmarks. [6] investigated
extending statistical sampling methods from [13] to handle
multiple threads. In [4] and [3], phase analysis was applied
to multiple single-threaded benchmarks running on a SMT
processor by introduction of the co-phase matrix.

In [9], the benchmarks are natively executed and through
dynamic binary instrumentation via just-in-time compila-
tion methods, program behavior may be extracted for phase
analysis. [11] on the other hand utilize hardware perfor-
mance counters resident on the processors to extract pro-
gram behavior at high speed. In both works, phase analysis
for MT workloads is shown to be able to detect the differ-
ent phases across threads. The phases are determined by
running the same clustering algorithm used in [10] on the
cumulative set of basic block vectors for all intervals on all
threads, where intervals are defined per-thread. Their ex-
perimental methodology enabled them to show low variance
of several metrics, e.g. CPI and L3 hit rates, for the phases
detected. The authors do suggest the potential utility in us-
ing phases to reduce simulation time. However, a simulation
solution that uses the phases detected was not proposed.

6. CONCLUSIONS

We have described how phase analysis may be extended
to the context of multithreaded workloads running on CMP
systems and how current SMT simulation techniques do not
scale well with increasing thread counts. Our proposed tech-
nique provides an effective solution for reducing the amount
of simulation time by reusing samples from similar phase
combinations.

While our experimental results are promising, we believe
that our cost function in measuring similarity between phase
combinations could be more indicative of inter-phase inter-
action and is under further investigation. In particular, we
are currently investigating how to measure similarity by an-
alyzing the memory access characteristics of the program to
develop inter-thread dependencies and correlations.

Lastly, we are investigating how to apply phase guided
sampling to embedded systems that contain application spe-
cific IPs and multiple processors with different instruction
set architectures. Embedded systems have a large poten-
tial benefit to gain since power is also important to con-
sider; power modeling requires a greater level of modeling
detail further lengthening simulation time. Thus, we see
that phase guided sampling and the sample synthesis tech-
nique presented here can have wide applicability in perfor-
mance modeling for embedded applications.

7. REFERENCES

[1] http://www.intel.com/software/products/vtune.
[2] http://www.vastsystems.com.

192

[3] M. V. Biesbrouck, L. Eeckhout, and B. Calder.
Considering all starting points for simultaneous
multithreading simulation. In IEEFE International
Symposium on Performance Analysis of Systems and
Software, March 2006.

M. V. Biesbrouck, T. Sherwood, and B. Calder. A
co-phase matrix to guide simultaneous multithreading
simulation. In IEEFE International Symposium on
Performance Analysis of Systems and Software, March
2004.

H. Jin, M. Frumkin, and J. Yan. The openmp
implementation of nas parallel benchmarks and its
performance. In NAS Technical Report NAS-99-011,
October 1999.

J. L. Kihm and D. A. Connors. Statistical simulation
of multithreaded architectures. In IEEE International
Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems,
September 2005.

J. Lau, E. Perelman, G. Hamerly, T. Sherwood, and
B. Calder. Motivation for variable length intervals and
hierarchical pahse behavior. In IEEE International
Symposium on Performance Analysis of Systems and
Software, March 2005.

[8] V. Levenshtein. Binary codes capable of correcting
deletions, insertions, and reversals. In Soviet Physics
Doklady, February 1966.

H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun,
and A. Karunanidhi. Pinpointing representative
portions of large intel itanium programs with dynamic
instrumentation. In IEEE/ACM International
Symposium on Microarchitecture, December 2004.

E. Perelman, G. Hamerly, M. V. Biesbrouck,

T. Sherwood, and B. Calder. Using simpoint for
accurate and efficient simulation. In ACM
SIGMETRICS the International Conference on
Measurement and Modeling of Computer Systems,
June 2003.

E. Perelman, M. Polito, J.-Y. Bouguet, J. Sampson,
B. Calder, and C. Dulong. Detecting phases in parallel
applications on shared memory architectures. In IEFE
International Parallel and Distributed Processing
Symposium, April 2006.

T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and
B. Calder. Discovering and exploiting program phases.
In IEEE Micro, December 2003.

R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C.
Hoe. Smarts: accelerating microarchitecture
simulation via rigorous statistical sampling. In ISCA
’03: Proceedings of the 30th annual international
symposium on Computer architecture, 2003.

J. J. Yi, S. V. Kodakara, R. Sendag, D. J. Lilja, and
D. M. Hawkins. Characterizing and comparing
prevailing simulation techniques. In IEEE
International Symposium on High-Performance
Computer Architecture, February 2005.

J. J. Yi and D. J. Lilja. Simulation of computer
architectures: Simulators, benchmarks, methodologies,
and recommendations. In IEEE Transactions on
Computers, March 2006.

(12]

(13]

(15]

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

