Automatic Selection of Application-Specific
Instruction-Set Extensions

Carlo Galuzzi, Elena Moscu Panainte, Yana Yankova, Koen Bertels, and Stamatis Vassiliadis
Computer Engineering, EEMCS
Delft University of Technology
Delft, The Netherlands

{C.Galuzzi, E.Panainte, Y.D.Yankova, K.L.M.Bertels, S.Vassiliadis} @ ewi.tudelft.nl

ABSTRACT

In this paper, we present a general and an efficient algorithm
for automatic selection of new application-specific instruc-
tions under hardware resources constraints. The instruc-
tion selection is formulated as an ILP problem and efficient
solvers can be used for finding the optimal solution. An im-
portant feature of our algorithm is that it is not restricted
to basic-block level nor does it impose any limitation on the
number of the newly added instructions or on the number
of the inputs/outputs of these instructions. The presented
results show that a significant overall application speedup
is achieved even for large kernels (for ADPCM decoder the
speedup ranges from x1.2 to x3.7) and that our algorithm
compares well with other state-of-art algorithms for auto-
matic instruction set extensions.

Categories and Subject Descriptors

C.0 [General]: Instruction set design; G.1.6 [Optimization]:

Integer Programming; G.2.2 [Graph Theory]: Graph al-
gorithms

General Terms

Algorithms, Performance, Design

Keywords

Instruction-Set Extension, HW/SW Codesign, Reconfigu-
rable Computing

1. INTRODUCTION

Automatic Instruction Set Extensions has been a major
research topic in the last decade. The existing algorithms
impose severe limitations on the number of input/output
values as well as on the number of newly added instructions
while their computational complexity can be exponential.

In this paper we introduce a general and efficient algo-
rithm that selects the new functionalities to be executed in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CODES+1SSS°06, October 22-25, 2006, Seoul, Korea

Copyright 2006 ACM 1-59593-370-0/06/0010 ...$5.00.

160

hardware for improving the overall performance. The pro-
posed algorithm targets the Molen organization [14] which
allows for a virtually unlimited number of new instructions
without limiting the number of input/output values of the
function to be executed on the reconfigurable hardware. The
elementary building blocks of the approach are clusters of
operations known as Multiple Input Single Output (MISOs).
Using efficient LP solvers and synthesis results, the largest
identified MISOs, called MAXMISO (denoted as MM), are
then combined per level and clustered as new application-
specific instructions. The result is a cluster of operations
with Multiple Inputs and Multiple Outputs, called MIMO,
which is executed on the reconfigurable hardware and which
provides the maximum performance improvement under re-
configurable hardware resource constraints. The presented
results show that a significant performance gain is achieved
by hardware execution of the selected new instructions (up
to x3.7 for the ADPCM Decoder). More specifically, the
main contributions of this paper are:

e construct convex MIMO based on MAXMISOs clus-
tering in order to maximally exploit the MAXMISO
level parallelism. Single MAXMISOs usually do not
provide significant performance improvement. Thus,
we propose MAXMISOs combination in order to take
advantage of the parallelism inherent to the hardware
execution and the theorem in Section 3.2 that guaran-
tees the MIMO convexity by construction.

e formulation of the instruction selection algorithm as a
global ILP problem, where the objective function is the
minimization of the execution time and the constraints
represent the limited hardware area.

e elimination of the restrictions of the types and number
of new instructions (in contrast with most of the exist-
ing approaches): there is no limitation on the number
of input/output values or the number of new instruc-
tions.

e the proposed approach is not restricted to basic-block
level analysis but can be applied directly to large ker-
nels.

The paper is organized as follows. In Section 2, we discuss
background information and related work. In the following
section, we present the theoretical contribution and the ILP
problem formulation. Results and the experimental setup
are discussed in Section 4 and finally we present conclusion
and future work.

2. BACKGROUND AND RELATED WORK

The algorithms for automatic Instruction Set Extensions
usually select clusters of operations which can be imple-
mented in hardware as single instructions while providing
maximal performance improvement. Basically, there are two
types of clusters that can be selected, based on the number
of output values: MISO or MIMO. Accordingly, there are
two types of algorithms for automatic instruction set exten-
sions which are briefly presented in this section.

For the first category, a representative example is intro-
duced in [1] which addresses the generation of MISO instruc-
tions of maximal size, called MAXMISO. The proposed al-
gorithm exhaustively enumerates all MAXMISOs. Its com-
plexity is linear with the number of nodes. The reported
performance improvement is of few (four) processor cycles
per newly added instruction. The approach presented in [9]
targets the generation of general MISO instructions. The
exponential number of candidate instructions turns into an
exponential complexity of the solution in the general case.
In consequence, heuristic and additional area constraints are
introduced (e.g limitation of only 5-inputs is imposed) to
allow an efficient generation. The difference between the
complexity of the two approaches is due to the properties
of MISOs and MMs: while the enumeration of the first is
similar to the subgraph enumeration problem (which is ex-
ponential) the intersection of MMs is empty and then once
a MM is identified, it is removed generating a linear enu-
meration of them.

The algorithms included in the second category are more
general and provide more significant performance improve-
ment. However they also have exponential complexity. For
example, in [4] the identification algorithm detects optimal
convex MIMO subgraphs but the computational complexity
is exponential. A similar approach described in [15] pro-
poses the enumeration of all the instructions based on the
number of inputs, outputs, area and convexity. The selec-
tion problem is not addressed. In [3] the authors target
the identification of convex clusters of operations given in-
put and output constraints. The clusters are identified with
a ILP based methodology similar to ours. The main dif-
ference is that they iteratively solve ILP problems for each
basic block, while in our approach we have one global ILP
problem for the entire procedure. Additionally, the convex-
ity is addressed differently: in [3], the convexity is verified
at each iteration, while in our approach it is guaranteed by
construction based on the theorem from Section 3.2. Other
approaches cluster operations considering the frequency of
execution or the occurrence of specific nodes [11, 13] or reg-
ularity [6]. Still others impose limitation on the number
of operands [5, 2, 8] and use heuristics to generate sets of
custom instructions which therefore can not be globally op-
timal.

The algorithm we introduce in this paper combines con-
cepts of both categories: first, MAXMISOs are identified as
proposed in the first category, after which they are combined
in convex MIMOs. This allows exploitation of the available
parallelism provided by the hardware platform. Our algo-
rithm as presented in this paper, requires linear complexity
for the MAXMISO enumeration. The MAXMISO combina-
tion is formulated as an integer linear problem whose opti-
mal solution for most cases is found in a few seconds even
for large (>5000 nodes) data flow graphs. Additionally, the
proposed algorithm does not impose any limitations on the

161

number of input/output values (as in [2, 10, 7, 5]) or the
number of newly added instructions.

3. MM-LEVEL ALGORITHM

In this section, we first introduce a motivational exam-
ple to informally sketch the main concepts of the proposed
algorithm. Next, we present the theoretical foundation of
the algorithm, followed by a formal problem statement and
finally we present in detail the steps of the MM-Level algo-
rithm.

level 0

level 1

O HW execution
O SW execution

Figure 1: Motivational example: dataflow subgraph
from ADPCM Decoder with a) MAXMISO identifi-
cation and b)reduced graph

3.1 Motivational Example

In Figure 1, we present the dataflow subgraph of the AD-
PCM decoder from the ADPCM application as implemented
in the MediaBench benchmark suite [12]. In the first step,
our algorithm identifies the MAXMISOs which cover the in-
put DFG (see Figure 1(a)). Each MAXMISO is collapsed
as a single node in the reduced graph presented in Figure
1(b). For real applications, the performance improvements
provided by hardware execution of a single MAXMISO is
not significant.

Loosely stated, the main idea of our algorithm is to com-
bine MAXMISOs available at the same level in the reduced
graph, in a convex MIMO that is executed as a single in-
struction in hardware. For example, let assume the hard-
ware latencies for MM5 and MM6 to be 15 and 16, respec-
tively. By clustering MM5 and MMS6 in a new instruction,

the latency of this instruction will be max(ls, lg). If MM5
and MMG6 are implemented as separate instructions, the ex-
ecution time for that part of the code is equal to I5s + Is.
Thus, the proposed clustering will provide a significant per-
formance gain, that can be roughly estimated as (Is + ls)
- max(ls, l). For the general case, when n MAXMISOs
are clustered, the execution time of the new instruction is
max(l;), where i = 1,...n. The performance gain in this case
is sum(l;) - max(l;), for : =1, ...n.

The MAXMISO clustering is limited by the size of the
reconfigurable hardware. In order to choose the best clus-
tering which provides the maximal performance gain and
still satisfying the resource constraints, we formulate the
MAXMISO clustering selection as an ILP problem and use
an efficient solver for finding the optimal solution.

3.2 Problem Statement and Algorithm

In order to formally express the problem previously pre-
sented, we first introduce the necessary definitions and the
theoretical foundation of the solution. We assume that the
input dataflow graph is a DAG called G < V, E >, where
the nodes in V represent the primitive operations and the
edges in E represent the data dependencies. The nodes can
have two inputs at most and their single output can be input
to multiple nodes.

MISO Definition. A subgraph G* < V*,E* >C G <
V, E > is a MISO with root r, r € V*,if Vv, € V*, 3 a path
path(v; — 1), and V path(v; — 1), path(v; — r) C G*.
MAXMISO Definition. A MISO G* < V*,E* >C G <
V,E >is aMAXMISO if Vu; € V\V*, Gt < V*U{v;}, ET >
is not a MISO.

Convex Graph Definition. A subgraph G* C G is con-
vex if there exists no path between two nodes of G* which
involves a node of G\G".

From the above definitions, it can be easily deduced that
any MAXMISO is a convex graph. Let f: G — G be the
function such that MM, C G — a; € G, i.e. f collapses
a MM of G in a node of G. Clearly G has as many nodes
as the number of MMs in G. The function f is called a
collapsing function.

Graph Level Definition. For a graph G < V, E >, Lewvel :
V — N is the function defined as follow:

e Level(v) =0, if v is an input node of G;

o Level(v) = a > 0, if there are a nodes on the longest
path from v € V and the level of the input nodes.

The depth d of a graph G is the maximum level of its
nodes. The level of a MM, Level(M M;), is defined as the
level of a; = f(MM;) in a.

Theorem. Let G be a DAG, A1, Ay C G are two MMs!
and Level(A1), Level(Az) represent the level of A; and As
respectively. Let C' = A; U Aa. If

Level(A1) = Level(As)

(1)
then C' is a convex disconnected MIMO.

Proof. Let G be decomposed as union of MMs, let f: G —
G be the collapsing function. Let a1, a2 and ¢ be the images
through f of A; and Az and C respectively. f transforms
equation 1 in Level(a1) = Level(az2). By contradiction, if

!Clearly A1 N Az =0, [1].

162

a1Uaz is not convex, then there exists at least one edge from
a1 to a2 (or from a2 to a1). Then Level(az) = Level(a1)+1
(or Level(ai1) = Level(az) + 1) which contradicts the as-
sumption Level(a1) = Level(az). As a result ¢ is a discon-
nected graph and then considering the uncollapsing function
f':G* = G, such that c — f~*(c) = C is a disconnected
convex MIMO graph.

Corollary. Any combination of MMs at the same level is a
convex MIMO.

Proof. Assuming that the combination of MAXMISOs at
the same level is not a convex MIMO then there exists at
least one path between two MAXMISOs that is not included
in the final MIMO. This contradicts the previous theorem.
Thus, the initial assumption is not true. Hence, the corollary
is proven.

The previous theorem shows how to generate convex MI-
MO operations. This consists of two parts: the enumeration
of all MMs in G and the combination of the MIMOs at the
same level. Nevertheless, for the real newly added instruc-
tions, the total hardware resources are limited; in particular,
we refer to the total available hardware area. A formal de-
scription of the MAXMISO clustering problem is as follows:

Problem statement. Given a graph G = G(V, E) let d be
the depth. Let HW and SW represent two disjoint sets of
nodes such that V = HW U SW. Each node n is identified
by two indices i, j where i is the level of the node and j is
its position at level i. Let Imw,; and lsw,; be the latency of
a node in HW and SW respectively. Let A and a;; be the
total available area and the area that a node n;; occupies.
Find the optimal subset HW C V such that minimizes

d
Z lsw,; + Z max law,;,

n;;ESW i=0 mi; € HW

(2)

under the following constraint:

Z Qg S A.

ni; EHW

®3)

Formula (2) represents the minimization of the total exe-
cution time: the first term is the execution time of the the
MMs that are executed in software and have a sequential
execution, while the second term represents the latency of
the MMs that are selected for hardware execution in parallel
at each level. The constraint expressed by (3) represents the
requirement that all new instructions should fit on the total
hardware area available.

MM-Level Algorithm: The problem previously presented
can be solved as a 0 — 1 linear programming problem to
produce an optimal solution using an efficient solver.

0-1 Selection. Every node (MM) belongs to HW or SW
sets. Consequently we associate to any n;; € V' a Boolean
variable z; ; such that z; ; = 1if n;; € HW, 0 if n;; € SW,
i € {0, ..., d} represents the level Level(n;;), and j represents
the position at level i. The search for the optimal subset
HW is then the search of optimal 0/1 values for all x;;.
Objective Function. Following the problem statement,
formula (2) can be translated in the following objective func-
tion

d
lsw,;,; *Tij + max lgw,; * Tij;.
i i
ni; €V im0 nij €V

(4)

min: [swg * To + lsw1 * T1 + lsws * Tg + lsws * T3+
lswy * Ta + lsws * Ts + lswe * Te+
rmaxo + rmaxi1 + rmaxz + rmaxs

C1: ao * To + a1 * T1 + a2 * T2 + as * r3+
a4 % Ta+ a5 *xT5 +as xkx6 < A

C2: xmazo > lhwi * x1

C3: rmaxo > lhwy * x4

C4: xmazi > lhws * x2

Ch: xmazs > lhws * x5

C6: rmazxs > lhwes * T

CT: xmazs > lhws * x3

C8: xmazs > lhwo * xo

Figure 2: ILP problem for the motivational example
from Figure 1

If z;; = 1 then 7;; = 0 and consequently we can consider
n € V given that V. = HW N SW and HW and SW are
disjoint sets.

The maz function included in the objective function trans-
forms the problem into a non-linear problem, which is hard
to be efficiently solved. In consequence, we transform the
objective function by adding for each level a new integer
variable xmax which has the largest hardware latency of
this level. More specifically, the objective function becomes:

d
E lsw,; *Tij + E rmax;.
=0

ngj ev
with the additional constraints:
xmaz; > law,; * x5, Vi € {0, ..., d} with n;; € Level;.
Linear System of Inequalities. The original constraint
given by (3) can be expressed as follow:

Z Qijj * Tij g A

nev

()

(6)

Example: Using the motivational example as presented in
Figure 1, the ILP problem formulation is presented in Fig-
ure 2. There are seven x-variables, associated with the seven
MAXMISOs, and four xmaz-variables, associated with each
level in the reduced graph. The solution of this ILP problem
for the lsw and lhw values, computed as explained in Sec-
tion 4, and the FPGA XC2VP4 is graphically represented
in Figure 1 as HW/SW selection.

Using an efficient solver, the optimal solution specifies
which are the HW nodes and which the SW ones minimizing
objective function 2. In summary, the steps required for the
MM-Level algorithms are the following:

e Step 1: MAXMISO identification: using an algorithm
similar to the one presented in [1]

e Step 2: Construction of the reduced graph: each MAX-
MISO is collapsed on one node

e Step 3: HW/SW estimation: evaluate the HW/SW
execution latency for each MAXMISO

e Step 4: ILP problem formulation: identify the objec-
tive function and set of constraints

e Step 5: ILP problem solving: select the MAXMISOs
which are combined into one new instruction

163

4. EXPERIMENTAL SETUP AND RESULTS

To evaluate the speedup achieved by the proposed ap-
proach a dedicated tool chain is built and the algorithm is
applied on a set of four well-known kernels and benchmark
applications.

The above described algorithm is part of a larger toolchain
that aims to support the hardware designer in the design
process. The tool chain for the experiments is presented in
Figure 3. The input is C code in which the kernel func-
tions are marked with pragmas. The annotated functions
are transformed into data-flow graphs (DFGs). The gen-
erated graphs are analyzed for the enumeration of the set
of MAXMISOs and the construction of the reduced graphs.
The software execution time for each MAXMISO is esti-
mated and the VHDL code is generated for each of the
selected MAXMISOs. The produced models are further
synthesized and the hardware costs for each MAXMISO in
terms of occupied area and delay are recorded. The esti-
mated software and hardware implementation costs are used
as input of an ILP problem solver. The output of the solver
is a list of MAXMISOs for each level that should be im-
plemented in the hardware in order to speedup the kernel
execution. The shadowed blocks in the figure denote tools
that have been developed. The C-to-DFG converter is im-
plemented within the SUIF2 ? compiler framework. The
MAXMISO processing tools and the VHDL generation tools
are stand-alone console applications. For the synthesis, we
used Xilinx ® ISE 7.1.02i. The used ILP problem solver is
Frontline’s * XPRESS Solver.

The tools in the developed toolchain do not require any
manual efforts to be adjusted to the target application. In
the current version, all steps in the algorithm in Figure 3
are automated except the integration of the tools. The inte-
gration of tools is secured through shell scripts/batch files,
depending on the used OS - except the ILP solver that is
implemented as MS Excel add-in. Nevertheless, as future
work we intend to fully automate the tool chain by imple-
menting the necessary VBA (Visual Basic for Application)
modules.

C-to-DFG
MaxMISOs Selection

i

C MaxMISOs) (SW Cost

VHDL Generation

) ‘ Reduced DFG Generation ‘

Reduced DFG

LP Problem Solver

MaxMISO Groups

Figure 3: Tool Chain

The software execution time for each MAXMISO is com-
puted as the sum of the latencies of its operations. The hard-

http://suif.stanford.edu/suif/suif2
http://www.xilinx.com
“http://www.solver.com

@ ADPCM DEC W appcM DEC xR O sap M SAD xR

XC2vP2 XC2VP4 XC2VP7 XC2VP20 XC2VP30

Figure 4: ADPCM Decoder/MPEG2 Encoder over-
all speedup with the MM-Level algorithm for differ-
ent FPGA sizes

ware execution time is estimated through behavioral synthe-
sis of the MAXMISO’s VHDL models and then converting
the reported delay into PowerPC cycles. We consider imple-
mentation of our approach on the MOLEN prototype that
is built on Xilinx’s Virtex-II Pro Platform FPGA. There-
fore, the software execution is assumed to be performed on
PowerPC 405 operating on 300MHz® and the VHDL syn-
thesis is performed for XC2VP30-7 chip®. The PowerPC
processor in VirtexII Pro does not provide floating-point in-
structions. Therefore, the floating-point operations in the
benchmark suite kernels are converted to the proper integer
arithmetic”. The DCT, IDCT and ADPCM decoder kernel
have been unrolled by a factor of 8/16 in order to increase
the selection space of our algorithm. The MOLEN organiza-
tion and implementation does not impose any restrictions of
the operations included in the custom instructions. Hence,
the selected operations are not limited only to arithmetic
and logic operations, rather they can contain also memory
accesses and control logic. Therefore, additional modifica-
tions of the source code before the selection process are not
necessary.

In the current MOLEN prototype, the access to the Ex-
change Registers® (XRs) for the input/output values is sig-
nificantly slower compared to the GPP registers. As this is
a limitation only in the current prototype and taking into
account that other approaches on Instruction-Set Extension
do not consider register accesses, for a fair comparison we
report two set of results: with and without XR accesses.

For our experiments, we consider a set of three well-known
MediaBench [12] benchmarks and MJPEG encoder applica-
tion. Table 1 shows the selected applications, the processed
kernels and the number of nodes of the original (column 3)
and reduced (column 4) graphs. An important observation
is that for the considered kernels, algorithms with exponen-
tial computational complexity are hard to apply. The listed
kernels are selected through profiling using the Virtutech’s °

SWe assume a simplified software execution model where
caches, pipelines, etc. are not considered.

5The generated VHDL is not optimized and hardware reuse
is not addressed.

"Please, note that this is not limitation of the selection pro-
cess, rather on the HW and SW implementation of the op-
erations.

8Used for GPP-FPGA communication.

“http://www.virtutech.se

164

Table 1: Benchmarks and Kernels

Application Kernel DFG | R-DFG
nodes | nodes
MPEG2 Enc SAD 182 1
MPEG2 Dec IDCT 2636 578
MJPEG Enc DCT 6664 388
ADPCM Dec | ADPCMDec | 1175 99

Table 2: Execution Time

Tool Execution Time
MAXMISO extraction™ ~ 10 sec
ILP problem generation™ ~ 10 sec
ILP problem solver'? < 2 min
VHDL generation'” < 1 min
RTL synthesis™ < 5 min

Simics simulator and the input data included in the bench-
marks.

et HDCT XR O IpCT W IDCT XR

c2ve2 xcavea xc2ve? XC2VP20 XC2VPX20 XC2VP30 XC2VPAO XC2VPSO XC2VPT0 XC2VP100

Figure 5: MJPEG Encoder/MPEG2 Decoder over-
all speedup with the MM-Level algorithm for differ-
ent FPGA sizes

In Figures 4 and 5, we present the overall application
speedup for FPGAs of various sizes compared to the pure
software execution.'® In Figure 4, we only presented a small
set of FPGAs as a further increase of the FPGA size does
not provide additional improvement. The results in Figure
5 include data for larger set of FPGAs. The speedup esti-
mation is based on Amdahl’s law, using the profiling results
and the computed speedup for the kernels. The achieved
speedup varies from x1.2 up to x3.7 for the ADPCM De-
coder and different FPGA sizes. For the rest of the con-
sidered applications, the speed up is up to x1.6, since the
execution time spent in these kernels does not compare to
the ADPCM Decoder.

One first and expected observation is that the impact on
performance of the MM-Level algorithm is increasing with
the size of the available FPGA area. This is explained by the
fact that more MAXMISOs can be selected for parallel exe-

10The occupied area is not shown, since it is almost equal to
the available area on the FPGAs.

"Tn-house developed tool.
2Fyrontline’s XPRESS Solver, www.solver.com
13Xilinx ISE 7.1.02i, www.xilinx.com

cution on the FPGAs. Additionally, we notice that for some
applications/kernels (MPEG2 Encoder/SAD) the estimated
speedup does not depend on the FPGA size. This is due
to the fact that SAD kernel contains only one MAXMISO
which fits on all FPGAs. A second observation is that the
impact of the XR accesses on the overall speedup is higher
for the ADPCM decoder compared to the SAD/DCT/IDCT
kernels. This is due to the larger number of input/output
values of the selected MAXMISOs and high XR access la-
tency. One important notice is that for the ADPCM bench-
mark, the speedup provided by our algorithm (x 3.7) is sim-
ilar to the speedup (x 3.5) achieved for the same kernel and
reported in [4] for state-of-the-art algorithm for automatic
Instruction Set Extensions. However, we emphasize that
our approach does not impose limitations on the number of
operands and the number of new instructions.

Regarding the execution time of the presented algorithm,
we show some average measurements in Table 2. For most of
the considered kernels and FPGAs sizes, the HW selection
takes less than 1 minute. However, in a few cases, the best
solution found after two minutes spent by the ILP solver is
considered.

As a final remark, we mention that the proposed algorithm
is particularly profitable for the cases when MAXMISOs
have a relatively small number(~15) of nodes. However,
in the case when MAXMISOs are large and frequently re-
peated, the ILP problem formulation can be easily extended
to optimally select single MAXMISOs which will be imple-
mented as separate instructions.

S. CONCLUSION

In this paper, we have introduced an algorithm which se-

lects clusters of MAXMISO for execution as a new application-

specific instruction on the reconfigurable hardware. One of
the main contributions of this paper is the formulation of the
instruction selection as an ILP problem for the minimization
of the execution time under hardware area constraints. Ad-
ditionally, the proposed algorithm is general: new instruc-
tions have no limitation of their types and numbers and the
algorithm is applied beyond basic block level. To the best
of our knowledge, this is the first approach that combines
MAXMISOs in convex MIMOs. The used SW model in the
experiments is simplified not reflecting the available proces-
sor optimizations (pipelines, cache hits, etc). However, we
do not consider also the possible penalties like branch miss-
predictions, cache misses, etc. In addition, the generated
VHDL is not optimized. Therefore, we consider that the
significant estimated speedup, shown in the results, proves
the advantages of our approach. The presented results show
significant estimated speedup. In our future work we intend
to introduce a more general MM clustering - not limited
at a single level in the reduced DFG. Additionally, we will
extend the available compiler in order to automatically rec-
ognize the selected clusters and generate the appropriate
instructions.

6. REFERENCES
[1] C. Alippi, W. Fornaciari, L. Pozzi, and M. Sami. A
DAG-Based Design Approach for Reconfigurable
VLIW Processors. In Proceedings of DATE 1999,
pages 778-779, Munich, Germany, March 1999.
[2] M. Arnold and H. Corporaal. Design Domain Specific
Processors. In Proceedings of the 9th International

165

(10]

(11]

(12]

Workshop on Hardware/Software CoDesign, pages
61-66, April 2001.

K. Atasu, G. Diindar, and C. Ozturan. An Integer
Linear Programming Approach for Identifying
Instruction-Set Extensions. In Proceedings of
CODES+IS555°05, pages 172-177, New Jersey, USA,
September 2005.

K. Atasu, L. Pozzi, and P. Ienne. Automatic
Application-Specific Instruction-Set Extensions under
Microarchitectural Constraints. In Proceedings of 40th
DAC, pages 256-261, Anaheim, California, June 2003.
M. Baleani, F. Gennari, Y. Jiang, Y. Pate, R. K.
Brayton, and A. Sangiovanni-Vincentelli. HW/SW
Partitioning and Code Generation of Embedded
Control Application on a Reconfigurable Architecture
Platform. In Proceedings of the 10th International
Workshop on Hardware/Software Codesign, pages
151-156, Estes Park, Colo., May 2002.

P. Brisk, A. Kaplan, R. Kastner, and M. Sarrafzadeh.
Instruction Generation and Regularity Extraction for
Reconfigurable Processors. In Proceedings of CASES
2002, pages 262 — 269, Grenoble, France, 2002.

H. Choi, J. S. Kim, C. W. Yoon, I. C. Park, S. H.
Hwang, and C. M. Kyung. Synthesis of Application
Specific Instructions for Embedded DSP Software.
IEEE Transactions on Computers, 48(6):603-614,
June 1999.

N. Clark, H. Zhong, and S. Mahlke. Processor
Acceleration Through Automated Instruction Set
Customization. In Proceedings of the 36th MICRO,
pages 129-140, December 2003.

J. Cong, Y. Fan, G. Han, and Z. Zhang. Application
Specific Instruction Generation for Configurable
Processor Architectures. In Proceedings of FPGA’04,
pages 183-189, Monterey, California, February 2004.
D. Goodwin and D. Petkov. Automatic Generation of
Application Specific Processors. In Proceedings of
CASES’03, pages 137-147, San Jose, California, 30
Oct. - 1 Nov. 2003.

R. Kastner, A. Kaplan, S. O. Memik, and

E. Bozorgzadeh. Instruction Generation for Hybrid
Reconfigurable System. ACM Transactions on Design
Automation of Embedded Systems, 7(4):605-627,
October 2002.

C. Lee, M. Potkonjak, and W. H. Mangione-Smith.
MediaBench: A Tool for Evaluating and Synthesizing
Multimedia and Communicatons Systems. In
International Symposium on Microarchitecture, pages
330-335, 1997.

F. Sun, S. Ravi, A. Raghunathan, and N. K. Jha.
Synthesis of Custom Processors Based on Extensible
Platforms. Proceedings of ICCAD 2002, pages
641-648, November 2002.

S. Vassiliadis, S. Wong, G. N. Gaydadjiev, K. Bertels,
G. Kuzmanov, and E. M. Panainte. The Molen
Polymorphic Processor. IEEE Transactions on
Computers, 53(11):1363— 1375, November 2004.

P. Yu and T. Mitra. Scalable Custom Instructions
Identification for Instruction-Set Extensible
Processors. In Proceedings of CASES’04, pages 69-78,
2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

