
Pack Instruction Generation for Media Processors Using
Multi-valued Decision Diagram

Tanaka Hiroaki, Yoshinori Takeuchi,
Keishi Sakanushi, Masaharu Imai

Graduate School of Information Science and
Technology,

Osaka University
1-5 Yamadaoka, Suita, Osaka 565-0871, Japan

{h-tanaka, takeuchi, sakanusi,
imai}@ist.osaka-u.ac.jp

Yutaka Ota, Nobu Matsumoto,
Masaki Nakagawa

Center for Semiconductor Research and
Development,

Semiconductor Company, Toshiba Corporation
580-1 Horikawa-Cho, Saiwai-Ku, Kawasaki,

212-8520, Japan

{yutaka2.oota, nobu.matsumoto,
masaki.nakagawa}@toshiba.co.jp

ABSTRACT
SIMD instructions are often implemented in modern mul-
timedia oriented processors. Although SIMD instructions
are useful for many digital signal processing applications,
most compilers do not exploit SIMD instructions. The dif-
ficulty in the utilization of SIMD instructions stems from
data parallelism in registers. In assembly code generation,
the positions of data in registers must be noted. A technique
of generating pack instructions which pack or reorder data in
registers is essential for exploitation of SIMD instructions.
This paper presents a code generation technique for SIMD
instructions with pack instructions. SIMD instructions are
generated by finding and grouping the same operations in
programs. After the SIMD instruction generation, pack in-
structions are generated. In the pack instruction genera-
tion, Multi-valued Decision Diagram (MDD) is introduced
to represent and to manipulate sets of packed data. Experi-
mental results show that our code generation technique can
generate assembly code with SIMD and pack instructions
performing complex repacking of 8 packed data in registers
for a commercial VLIW processor with 6 pack instructions
and achieved speedup ratio of up to 7.7.

Categories and Subject Descriptors
D.3.4 [Programming Language]: processors—compilers

General Terms
Performance, Algorithm

Keywords
SIMD Instructions, Multi-valued Decision Diagram

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’06, October 22–25, 2006, Seoul, Korea.
Copyright 2006 ACM 1-59593-370-0/06/0010 ...$5.00.

ba dc fe hg

b+fa+e d+hc+g

+ + + +

32
15 7 031 23

ea fb

(a) a SIMD instruction (b) a pack instruction

ba dc fe hg

32
15 7 031 23

Figure 1: SIMD and pack instructions

1. INTRODUCTION
For systems for multimedia applications such as image

processing and speech process, there is a great need for
low-power processing offering high cost-performance. Re-
cent micro processors are often customized to execute mul-
timedia applications efficiently. The good nature in most of
multimedia applications is data parallelism in applications.
Therefore, many processors adopt SIMD (Single Instruc-
tion Multiple Data) instructions to exploit data parallelism.
SIMD instructions perform operations using two source reg-
isters, and each register includes multiple data as shown in
Fig.1(a). When a SIMD instruction is executed, the same
operations are executed at the same time. Obviously, the
processing efficiency of SIMD instructions is higher than
that of conventional instructions which perform one oper-
ation at a time. Moreover, no special hardware is required
to implement SIMD instructions. The identical functional
units are embedded according to the number of operations
in a SIMD instruction.

SIMD instructions are useful, but most compilers have
limited ability to exploit SIMD instructions. In view of this
limitation, in order to exploit SIMD instructions, program-
mers need to use compiler intrinsics, special functions in
high level programming languages, which are mapped to
specific instructions, or to write software in assembly lan-
guages. However, using compiler intrinsics or writing as-
sembly programs is time-consuming tasks, and portability
of programs is low. Therefore, a technique for automatically
generating assembly programs including SIMD instructions
is required.

The difficulty of code generation that exploits SIMD in-
structions stems from the data parallelism in registers. When
using SIMD instructions, the positions of data in registers

154

must be noted. When a SIMD instruction which operates a
binary operator is executed, operands of each operation per-
formed by an identical SIMD instruction in registers must
be in the same positions. If data and operations on the tar-
get application are well coordinated, SIMD instructions can
be generated easily. If not, generation of additional pack
instructions which reorder data in a register or repack data
in different registers into one register are needed. Fig.1(b)
shows a typical pack instruction which takes two elements
from each source register and packs into the target register.
Although such data repacking instructions take run-time ex-
ecution cycles, the total execution cycles can decrease by the
effect of SIMD instructions. Especially, the combination of
SIMD and data repacking instructions with high level of par-
allelism emerging recent years can achieve high performance
improvements compared with the case that SIMD instruc-
tions are unused.

There are many problems around code generation with
SIMD instructions. One of the most essential topic is finding
pack instruction sequence which generates required packed
data from given packed data with given pack instructions.
Almost processors have several pack instructions, but not
all pack instructions. In addition, the number of all combi-
nation of data repacking is very large. Therefore, the pack
instruction sequence which generates required packed data
is not always found easily because of limitation of available
pack instructions and large search space of data repacking.
This is one of the most significant problem in the exploita-
tion of SIMD instructions.

In this paper, a code generation technique for SIMD in-
structions including pack instructions is presented. This
paper focuses on generation of pack instructions. In the
generation of pack instructions, Multi-valued Decision Di-
agram(MDD) is utilized. Using MDDs, the sets of packed
data are efficiently represented and manipulated. Exploiting
the feature of MDDs, efficient and universal pack instruction
generation algorithm is provided. As a result, high quality
of code with SIMD and pack instructions can be obtained
in reasonable compilation time.

The rest of this paper is organized as follows: Related
works are summarized in section 2. The way to find SIMD
operations in high level language program is described in
section 3. Pack instruction generation based on MDDs is
presented in section 4. Experimental results are shown in
section 5. This paper is concluded in section 6.

2. RELATED WORK
Many publications have been released about automatic

code generation of SIMD instructions[4, 5, 6, 7, 8].
In [8], pattern matching and covering problem with SIMD

instructions are formulated to Integer Linear Programming
(ILP). Solving the covering problem using ILP solver, highly
optimized assembly codes with SIMD instructions are ob-
tained. However, this approach takes too much time to solve
ILP problems. For the latest SIMD instructions which han-
dle 8 or 16 packed data, the time required to solve ILP prob-
lems may not be acceptable. Moreover, reorder or repacking
data in registers is not handled in this method. In [7], SIMD
instructions are generated by grouping statements in a basic
block. Using data dependency and alignments information,
statements executable in parallel are grouped into Pack Set
to minimize data packing cost. Performance improvements
are larger than traditional vectorization. However, the way

to generate pack instructions and the related problem of
packing are not mentioned. In [6], generation of SIMD and
permutation instructions is presented. SIMD instructions
are generated by grouping operations in basic block repre-
sented by Data Flow Graph(DFG). After the grouping, pack
instructions are inserted between SIMD instructions. In this
approach, in order to generate permutations which means
packed data ordering in registers, permutation decomposi-
tion backward tree and forward tree are used. The backward
tree is constructed from output permutation as root com-
puting input permutations for any pack instructions. On
the other hand, forward tree is constructed from an input
permutation computing output permutations for any pack
instructions. By matching the leaves of backward and for-
ward trees, computation steps of output permutations are
determined. Experiments shows significant performance im-
provements in some applications which require permutation
reordering. All the approaches above target basic blocks.
On the other hand, there are approaches targeting loops. In
[4], using several analyses and loop transformations, loops
are vectorized to generate SIMD instructions. Though this
approach aims at exploitation of SIMD instructions, reorder-
ing packed data is not mentioned. [5] presents a vectoriza-
tion technique in the presence of misaligned memory access
in loop bodies. To exploit SIMD instructions, instructions
which align elements in packed data registers are inserted.

Our approach is also a basic block approach and SIMD
instructions are heuristically generated. Initial DFG is con-
structed by the same way presented in [6]. SIMD instruction
generation is also performed by grouping operations and or-
dering operations in each grouped operations. The group-
ing and ordering operations are simpler approaches than [6],
however, our approaches are useful for SIMD instruction ex-
ploitation. A pack instruction (called permutation instruc-
tion in [6]) generation technique based on MDD is originally
presented in this paper. Though loop level approaches are
also another approach, we consider that utilization of pack
instructions is essential for exploitation of SIMD instruc-
tions. Therefore loop level algorithms are not mentioned in
this paper.

3. GENERATION OF SIMD INSTRUCTIONS

Our code generation approach mainly consists of two parts.
The first part is SIMD instruction generation. The second
part is pack instruction generation. The first part is similar
to [6]. Using tree matching [2] and [8], a data flow graph
(DFG) whose nodes are elements of SIMD operations is con-
structed. After the DFG construction, the DFG is divided
into data flow trees (DFT), then operations are grouped
into SIMD instructions. Finally, a DFG whose nodes are
SIMD instructions is constructed. In this section, grouping
of SIMD operations is explained. Details of pattern match-
ing, DFG construction and DFT construction are omitted
because they are almost the same as in [6].

3.1 Grouping SIMD Operations
Groups of operations performed by SIMD instructions are

determined as follows. First, leaves of DFTs which have the
same operations are selected. Then, if the number of the
selected nodes is less than the number of operations that
one SIMD instruction can perform, the selected nodes are

155

a[0] b[1] a[1] c[0] a[0] a[1] a[2] a[3]

+ +

b[0] b[1] c[0]

+ +

(a) Selection of DFT nodes (b) Grouping DFT nodes

Figure 2: Operation grouping

d[0] d[1] d[2] d[3]

+ + + +

(a) graph of gourped operations

d[0] d[1] d[2] d[3]

a[0] a[1] a[2] a[3] b[0] b[1] c[0] c[1]

(b) the reordering result

a[0] a[1] a[2] a[3] b[0] b[1] c[0] c[1]

Figure 3: Operation ordering

grouped as a SIMD instruction. If not, the selected nodes
are divided into smaller groups whose number of elements is
less than the number of operations of a SIMD instruction.
Finally, the nodes in the selected group are removed from
the DFTs. This grouping is repeatedly processed until all
nodes are removed from DFTs. In this process, for load and
store operations, nodes that can be executable by one SIMD
instruction is restricted by its memory address. Since mis-
aligned memory access is unavailable or cause large penalty
cycles, consecutive and aligned memory access operations
are grouped as SIMD instructions. Fig.2 shows an exam-
ple of operation grouping. The load operations have been
removed from DFTs as shown in Fig.2(a). The add opera-
tions, nodes with a plus operator, are grouped and added to
the DFT in Fig.2(b). Then, the add nodes will be removed
from Fig.2(a). After this grouping, the DFT in Fig2(b) is
constructed. This process continues until all nodes are re-
moved from DFTs.

3.2 Ordering SIMD Operations in Registers
The order of operations in a register is determined as fol-

lows. The load and store operations are uniquely ordered
according to the memory address accessed by operations,
because the available group of memory access operation is
limited by the memory address and alignment as mentioned
in section3.1. The order of operations except for load and
store is determined according to the order of load and store
operations. The most frequently used position where sources
and destinations are arranged is selected for each operation.
Fig.3 shows the example of operation ordering. In Fig.3(a),
a part of grouped graph is shown. The most left add oper-
ation has two sources a[0] and b[1], one destination d[1].
The order in the grouped node of a[0] is the first element,
b[1] is the second and d[1] is the second. Therefore, the
most left add operation in the left hand side of Fig.3 is re-
ordered to the second in the grouped node as shown in the
right hand side of Fig.3. Similarly the second add operation
is reordered to the most left in the grouped node.

4. GENERATION OF PACK INSTRUCTIONS

This section describes how the pack instructions are gener-
ated. After the grouping and ordering operations described
in the section3, pack instructions which arrange the data

in registers are generated to enable execution of SIMD in-
structions. Hereafter, the contents of registers are called
permutation because they are naturally represented by per-
mutations. The generation method consists of two steps. In
the first step, it is examined whether the required permu-
tation can be generated using given pack instructions. The
basic concept of the first step is to generate all permutations
from source permutations using available pack instructions.
In the second step, the expression tree representing the gen-
eration of the required permutation from input permutations
is built. The tree construction starts from the root, which is
the node corresponding to the required permutations, and
subtrees are built recursively by the tree construction pro-
cedure. In the packing instruction generation, Multi-valued
Decision Diagram(MDD)[3] is utilized to represent and ma-
nipulate the sets of permutations. Using MDD, a pack op-
eration can be manipulated not on a pair of permutations
but on a pair of sets of permutations. This characteristic
enables efficient generation of pack instructions. In the rest
of this section, MDDs are introduced first. Then the pack
instruction generation algorithm is described.

4.1 Introduction of MDDs for Representation
of a Set of Permutations

In this section, representation of the set of permutations
using Multi-valued Decision Diagram(MDD) is introduced.

Consider the register in which has n elements of packed
data. Let S = {s1, s2, . . . , } be the set of given sub-word
data. Let r = (r(1), . . . , r(n)), r(j) ∈ S for j = 1, . . . , n, be
the permutation representing the content of a register. Let
R = {r1, r2, . . . } be the set of permutations. When a set of
permutations R and a permutation r are given, a function
FR : Sn → {0, 1} is defined as follows :

FR(r) =

j
1, if r ∈ R
0, if r ∈/R

(1)

According to the definition, the function FR implicitly
represents the set of permutations R.

Here, discrete variables x1, .., xn are introduced whose do-
main is S. Assume xi to be the ith element of r which is
the input of FR. Using xi, the equation(1) can be expressed
as follows :

FR(x1, x2, . . . , xn) =

j
1, if (x1, . . . , xn) ∈ R
0, if (x1, . . . , xn) ∈/R

(2)

In the equation(2), FR is defined as the multi-valued in-
put, binary-valued output function. Such functions can be
represented by Multi-valued Decision Diagram. Fig.4 shows
two MDDs for {abcd} and {abcd,abdc}. In Fig.4(a), the
only one path exists from the root to 1-terminal through
the edges a,b, c,d. On the other hand, in Fig.4(b), there
are two paths exist from the root to 1-terminal through a,
b,c,d and a,b,d,c. Considering the sequences of the labeled
symbols on edges as elements in a set, a set of permuta-
tions can be represented by a MDD. Moreover, some MDD
manipulations correspond to operations on the sets of per-
mutations. The logical-or operation on MDD corresponds to
the union operation on the set of permutations. Similarly,
logical-and operation on MDD corresponds to the intersec-
tion operation. For example, the MDD shown in Fig.4(b) is
constructed by the logical-or of MDDs representing {abcd}
and {abdc}, which corresponds to the union of {abcd} and
{abdc}.

156

x1

x2

x3

x4

a b c d

1 0

a b c d

a b c d

a b c d

x1

x2

x3

x4

a b c d

1 0

a b c d

a b c d

a b c d

x4

a b c d

(a) { abcd } (b) { abcd, abdc }

Figure 4: MDDs for { abcd } and { abcd,abdc }

4.2 Pack Operation Manipulation on MDDs
Using MDDs, basic operations such as union and inter-

section can be applied to permutations. Similar to such
basic operations, pack operations can also be performed on
MDDs.

Consider a pack operation p which takes two permutations
r1, r2, and returns a permutation r3. Let σ(k) be a function
defined by σ(k) = (ak, bk), ak ∈ {1, 2}, bk ∈ {1, . . . , n} for
k = 1, . . . , n. Let σ′(k) and σ′′(k) be the first and the second
value of σ(k) respectively. Let q(i,j) be the jth element of
the ith input permutation of p. Given a function σ, a pack
operation pσ(r1, r2) is defined as follows :

pσ(r1, r2) = (qσ(1), . . . , qσ(n))

= (rσ′(1)(σ
′′(1)), . . . , rσ′(n)(σ

′′(n))) (3)

Let Pσ be the pack operation on sets of permutations R1

and R2. Pσ(R1, R2) is defined as follows :

Pσ(R1, R2) =
[

(r1,r2):r1∈R1,r2∈R2

{ pσ(r1, r2) } (4)

The result of Pσ(R1, R2) is a set of permutations whose
elements are results of pσ on any pairs of elements of input
sets.

The direct computation of equation(4) is hard when |R1|
and |R2| are large. However, using MDDs, pack operations
on sets of permutations are effectively manipulated. In other
words, there is no need to execute the pack operation for
each pair. The way to compute Pσ(R1, R2) using MDDs
consists of three primitive manipulations.

1. For each Ri, make R′
i from Ri by adding any permuta-

tions whose elements to be used by the pack operation
are the same as one of the permutations in Ri.

This computation on MDDs is simply implemented.
Every node which corresponds to unused element is
replaced with the union of its children as shown in
Fig.5.

2. For each R′
i, make R′′

i by reordering the elements of
all permutations in R′

i to match with the order of the
output of the pack operation.

This computation on MDDs is almost same as the con-
ventional variable ordering technique for decision di-
agrams. The difference between this reordering and

xi

xj

t t1 m

xi

union (t1, ... ,tm)

Figure 5: Adding permutations on MDDs

xi

xj

t tuv vu

xj

su

sv

sv

su

xi

xj

t tuvvu

xj

su

sv

sv

su

Figure 6: Reordering on MDDs

conventional variable ordering is that the level of vari-
able is not changed in this reordering whereas it is
changed in the conventional variable ordering. Fig.6
shows reordering of elements on MDDs.

3. Finally, Pσ(R1, R2) is obtained by computing intersec-
tion of R′′

1 and R′′
2 . The intersection operation corre-

sponds to the logical-and operation on MDDs.

For the explanation of the pack operation manipulation,
consider a pack operation pσ shown in Fig.7. The couples
of integers in the output register mean σ(k). As shown in
Fig.7, σ of the pack instruction is σ(1) = (1, 1), σ(2) =
(2, 1), σ(3) = (1, 2), σ(4) = (2, 2). Assume the input sets
of permutations are R1 = {abcd} and R2 = {dcba}. The
elements of R′

1 are all permutations matching ab**. As a
result, R′

1 is obtained as follows :

R′
1 = {abaa, abba, abca, abda, abab, abbb, abcb, abdb,

abac, abbc, abcc, abdc, abad, abbd, abcd, abdd}
Similarly, the elements of R′

2 are all permutations match-
ing dc**. In the second step of the pack operation manip-
ulation, elements in R′

1 and R′
2 are reordered according to

the pack operation. The elements of R′′
1 and R′′

2 are all
permutations matching a*b* and *d*c respectively. Finally,
the intersection of R1 and R2 is computed. The result of
the intersection is the set of permutations matching both
a*b* and *d*c. As a result, { adbc } is obtained for this
example.

In the example shown in this section, the length of permu-
tation is 4, and the input sets of permutations have only one
element. However, it is clear that these are not restrictions,
because such parameters are independent of those manipu-
lations.

(1,1) (2,1) (1,2) (2,2)

r1 r2

r3

Figure 7: An example pack instruction

157

CanGeneratePermutation(R0 ,P, ro)

1: i← 0
2: while ro ∈| Ri do
3: ∀Pj ∈ P : Ri+1,j ← Pj(Ri, Ri)
4: Ri+1 ← (

S
j Ri+1,j) ∪ Ri

5: if Ri+1 = Ri then
6: return false
7: end if
8: i← i + 1
9: end while

10: ndepth ← i
11: return true

Figure 8: Testing Target Permutation Generation

4.3 Pack Instruction Generation Algorithm
In this section, the pack instruction generation algorithm

is explained.
The inputs of the algorithm are the set of permutations

R0, a required permutation ro and a set of pack operations
P. The output is the expression tree whose operations are
P ∈ P and leaves are r ∈ R0. The result of evaluation of
the tree have to be ro. Note that the subscript of R is used
to distinguish among the variants of the set of permutations
generated in this algorithm though Ri means the ith input
of the pack operation in the section3.

The pack instruction generation algorithm consists of two
subprocedures.

1. Examine whether the required permutation can be gen-
erated using the given pack operations.

2. Build the expression tree whose intermediate nodes are
the pack operations, leaves are the input permutations.

The first subprocedure CanGeneratePermutation is shown
in Fig.8. The basic concept of CanGeneratePermutation is
to generate all permutations from source permutations us-
ing available pack operations until ro is generated. The main
process is the while loop in the lines 2-9. The variable i is
initialized to 0 and incremented for every iteration. Ri holds
all permutations generated in 0, . . . , i th iterations. In the
lines 3-4, Ri+1 is made from Ri by adding permutations gen-
erated by available pack operations. In the line 5, Ri+1 and
Ri are compared. If Ri+1 is equal to Ri, this subprocedure
will finish and return “false” since it means that no more
permutations can be generated and the required permuta-
tion could not generated by available pack operations. Until
the required permutation is generated or no other permuta-
tions can be generated, the while loop is executed repeatedly.
When this subprocedure finished, the number of iterations
is obtained as a constant ndepth. The constant ndepth and
the sets of permutations R1, . . . , Rndepth generated in this
subprocedure are also used in the second subprocedure.

The second subprocedure GetExpressionTree is shown in
Fig.9. The inputs are a set of permutations Rrequire and an
integer i. An expression tree representing the expression to
generate one of the elements in Rrequire is returned. The
second input i indicates the depth of tree to be built. The
depth of obtained tree will be less than equal to i. This
subprocedure constructs a expression tree recursively. At
the start, GetExpressionTree is invoked with i = ndepth and
Rrequire = {ro}. In Fig.9, the lines 1-3, a leaf of permu-
tation in Rrequire ∩ R0 is returned if Rrequire includes any

GetExpressionTree(Rrequire , i)

1: if Rrequire ∩R0 �= φ then
2: return a leaf corresponds to r ∈ Rrequire ∩R0

3: end if
4: if Rrequire ∩Ri = φ then
5: return nil
6: end if
7: for all Pj ∈ P do

8: (Rrequire,l
j , Rrequire,r

j)← P−1
j (Rrequire)

9: T l
j ← GetExpressionTree(i − 1, Rrequire,l

j)

10: T r
j ← GetExpressionTree(i − 1, Rrequire,r

j)

11: if T l
j �= nil and T r

j �= nil then

12: Tj ← a tree with Pj as root, subtrees are T l
j

and T r
j

13: else
14: Tj ← nil
15: end if
16: end for
17: if ∀Tj : Tj �= nil then
18: return Tj such that the number of nodes is mini-

mal
19: else
20: return nil
21: end if

Figure 9: Expression Tree Construction

permutations in R0. In the lines 4-6, nil is returned if the
condition is satisfied since the condition indicates that no re-
quired permutation is in Ri. In the lines 7-15, for each pack
operation Pj , a tree whose root is Pj is constructed. P−1

k

is the inverse pack operation. In the line 8, P−1
k returns a

pair of sets of permutations (Rrequire
i,j ,Rrequire

i,j) which is the

source of Rrequire. In the lines 9-10, GetExpressionTree is
recursively invoked to build the left and right subtrees, T l

k

and T r
k . In the lines 11-15, If both T l

k and T r
k are not nil, a

tree Tk whose root is Pk, and the subtrees are T l
k and T r

k is
built. Finally, in the lines 17-21, Tk which has minimal cost
is returned. If any Tk is nil, nil is returned.

In GetExpressionTree, Ri generated in CanGeneratePer-
mutation is used to prune redundant subtree construction.
This gives greate reduction of computation time to search
a desired expression tree. In CanGeneratePermutation, on
the other hand, pack operations are performed ndepth · |P|
times. However, it is reasonable since it is polynomial in
both the number of pack operations and the depth of the
tree.

5. EXPERIMENTAL RESULTS
To confirm the effectiveness of SIMD and pack instruction

generation algorithm, the algorithm was implemented. Me-
dia embedded Processor, MeP[1, 9] was used as the target
processor. MeP supports several extension options, embed-
ding user designed logics, adding coprocessors, etc. The
extension option used in this experiments was coprocessor
option. The additional coprocessor has a 64 bit register
file, and supports 8-parallel byte, 4-parallel halfword, and
2-parallel word SIMD instructions. The additional copro-
cessor works with MeP core in parallel and behaves as a
3-way VLIW processor. For this experiments, following 3
programs, (1)binary threshold, (2)reversed reordering and

158

Table 1: The number of insns. and compilation time
no-SIMD SIMD compilation

program # of insns. # of insns. time
of kernel of kernel of SIMD [sec]

binary
64 8 0.42threshold

reversed
20 11 390reordering

color
72 33 1020conversion

Table 2: Execution cycles

program
no-SIMD SIMD speedup
[cycles] [cycles] ratio

binary threshold 716082 92228 7.76
reversed reordering 332064 110809 3.00

color conversion 221338 90459 2.44

(3)color conversion were coded. The binary threshold gen-
erates the binary vector from an integer vector. The re-
versed reordering takes a vector and outputs the reversed
ordered input vector. The color conversion takes an input
vector composed of three colors, red, green and blue, and
computes an output vector whose elements are the results
of a[3 ∗ i] + (a[3 ∗ i + 1] >> 1) + (a[3 ∗ i + 2] >> 2). These
programs were simple for a limited implementation of the al-
gorithm, but suitable to confirm the ability to exploit SIMD
and pack instructions. The size of processing data was 8 bits
for all evaluated programs. The algorithm was implemented
as the converter from plain C program to C program using
intrinsic functions of coprocessor instructions. Converted
programs were compiled by MeP C compiler, and then sim-
ulated by the instruction-set simulator (ISS). All processes
in this experiments were executed with RedHat 7.1 on Pen-
tium III 600 MHz. Table 1 shows the number of instructions
of the kernel in compiled code and compilation time of the
SIMD and pack instruction generation algorithm. Table 2
shows the execution cycles counted by ISS.

In the case of the binary threshold, speedup ratio of up
to 7.7 was achieved. Because the binary threshold could be
completely vectorizable, no pack instructions were needed.

In the case of the reversed reordering, speedup ratio of up
to 3.0 was achieved. High performance could be achieved by
not only the code reduction by SIMD instructions utiliza-
tion, but also by instruction level parallelism from the core
and coprocessors. Fig. 10 shows the packing performed in
this program. In the kernel of the reversed reordering, a
load instruction, a store instruction and 7 pack instructions
were generated. Many pack instructions were generated and
the total number of the instructions was reduced.

In case of the color conversion, speedup ratio of up to
2.5 was achieved. In this case, 3 load instructions, 3 store
instructions, 4 SIMD arithmetic instructions and 24 pack
instructions were generated. Fig. 11 shows the packing
performed in this program. As shown in Fig.11, packing was
very complex. Whereas it took 1020 seconds to compile, the
algorithm could generate pack instructions and the number
of instructions generated was half in the case of without
SIMD and pack instructions.

a7 a6 a5 a4 a3 a2 a1 a0

a0 a1 a2 a3 a4 a5 a6 a7

Figure 10: Packing in the reversed reordering

r0 r1 r2 r3 r4 r5 r6 r7 g0 g1 g2 g3 g4 g5 g6 g7 b0 b1 b2 b3 b4 b5 b6 b7

r0 g0 b0 r1 g1 b1 r2 g2 b2 r3 g3 b3 r4 g4 b4 r5 g5 b5 r6 g6 b6 r7 g7 b7

Figure 11: Packing in the color conversion

6. CONCLUSIONS
In this paper, a code generation technique for SIMD and

pack instructions are presented. Utilization of pack instruc-
tions is essential for exploitation of SIMD instructions. In
the presented algorithm, the packed data in registers are
represented and manipulated by MDDs. Utilizing MDDs,
pack instructions can be generated. The experimental re-
sults shows the pack instruction generation algorithm can
generate SIMD and pack instructions and reduce code size
even though the data repacking is very complex.

7. REFERENCES
[1] Media embedded Processor, http://www.mepcore.com.

2005.

[2] A. V. Aho, M. Ganapathi, and S. W. K. Tjiang. Code
generation using tree matching and dynamic
programming. ACM Transactions on Programming
Languages and Systems, 11(4):491 – 516, October 1989.

[3] S. M. Arvind Srinivasan Timothy Kam and R. K.
Brayton. Algorithms for discrete function manipulation.
In Proceedings of the IEEE International Conference on
Computer-Aided Design, pages 92–95, November 1990.

[4] A. J. C. Bik, M. Girkar, P. M. Grey, and X. Tian.
Automatic intra-register vectorization for the intel R©
architecture. International Journal of Parallel
Programming, 30(2):65 – 98, April 2002.

[5] A. E. Eichenberger, P. Wu, and K. O’Brien.
Vectorization for simd architectures with alignment
constraints. In Proceedings of the ACM SIGPLAN 2004
conference on Programming language design and
implementation, pages 82 – 93, June 2004.

[6] A. Kudriavtsev and P. Kogge. Generation of
permutations for simd processors. In Proceedings of the
2005 ACM SIGPLAN/SIGBED conference on
Languages,compilers,and tools for embedded systems,
pages 147 – 156, June 2005.

[7] S. Larsen and S. Amarasinghe. Exploiting superword
level parallelism with multimedia instruction sets. In
Proceedings of the Conference on Programming
Language Design and Implementation, pages 145–156,
June 2000.

[8] R. Leupers. Code Optimization Techniques for
Embedded Processors. Kluwer Academic Publishers,
2000.

[9] T. Miyamori, J. Tanabe, Y. Taniguchi, K. Furukawa,
T. Kozakaya, H. Nakai, Y. Miyamoto, K. Maeda, and
M. Matsui. Development of image recognition processor
based on configurable processor. Journal of Robotics
and Mechatronics, 17(4):437–446, 2005.

159

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

