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ABSTRACT

The architectural design of embedded systems is becoming increas-
ingly idiosyncratic to meet varying constraints regarding energy
consumption, code size, and execution time. Traditional compiler
optimizations are often tuned for improving general architectural
constraints, yet these heuristics may not be as beneficial to less
conventional designs. Instruction packing is a recently developed
compiler/architectural approach for reducing energy consumption,
code size, and execution time by placing the frequently occurring
instructions into an Instruction Register File (IRF). Multiple IRF
instructions are made accessible via special packed instruction for-
mats. This paper presents the design and analysis of a compilation
framework and its associated optimizations for improving the effi-
ciency of instruction packing. We show that several new heuristics
can be developed for IRF promotion, instruction selection, register
re-assignment and instruction scheduling, leading to significant re-
ductions in energy consumption, code size, and/or execution time
when compared to results using a standard optimizing compiler tar-
geting the IRF.
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1. INTRODUCTION

Modern processor designs often trade off regularity and orthog-
onality in the instruction set or microarchitecture to better meet
design constraints. This requires compiler writers to rethink well
understood optimization techniques in order to avoid performance
bottlenecks caused by an idiosyncrasy of the processor. Unconven-
tional designs are perhaps most prevalent in new embedded archi-
tectures, since they face the most stringent design requirements for
power, code size, and in some cases execution performance. These
architectures can also more easily exploit new instruction set en-
coding techniques to meet these goals. This requires the compiler
writer to not only target a new set of instructions, but often a very
different method of encoding instructions that may not be suited to
the standard techniques used in code optimization.

One promising embedded architectural feature recently proposed
is the Instruction Register File (IRF), which places the most com-
mon instructions in a small 32-entry register file [10, 12, 11]. A
new instruction is added to the ISA that references up to five IRF
entries in a single 32-bit instruction. Use of the IRF results in
reduced energy consumption, since packed instructions can fetch
their component instructions from the lower-power IRF instead of
the instruction cache. Packing also results in decreased code size,
since multiple instructions from the base ISA can now be repre-
sented in the same space as a single instruction. This feature also
reduces the memory footprint of the application, leading to slight
improvements in execution efficiency.

The compiler determines which instructions are promoted to the
IRF. Prior research used dynamic profile data to determine the most
frequently accessed instructions and made minor changes to the
instruction selection heuristics in the compiler [10, 12]. This ap-
proach enabled the IRF to significantly improve code size as well
as energy consumption, but since the instruction selection, register
allocation, and code scheduling transformations used in the com-
piler were not tuned to the requirements of an IRF architecture,
there was still room for improvement. In fact, effective use of the
IRF is more dependent on well-tuned compiler optimizations than
a more conventional architecture. Also, the IRF approach provides
some unique opportunities for code optimization that are counter-
intuitive to those familiar with more conventional processor de-
signs.

This paper demonstrates how existing compiler optimizations
can be modified to improve the efficiency of instruction packing
with an IRF. Enhancing these optimizations results in reduced fetch
energy consumption, decreased static code size, and slight improve-
ments in execution efficiency. This paper makes the following con-
tributions:
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Figure 1: Decoding a Packed Instruction

e We provide the first detailed description and evaluation of a
compiler framework for instruction packing.

e We propose and evaluate several enhancements for the pro-
motion of instructions to the IRF. These enhancements in-
clude more accurately modeling the benefit of promoting an
instruction, allowing additional I-type instructions to be pro-
moted with different default immediate parameters, and in-
tegrating static and dynamic measures for selecting the in-
structions to promote. Mixed profiling allows a developer
to fine-tune the characteristics of an application across sev-
eral design constraints including static code size and overall
processor energy consumption.

We adapt existing transformations such as instruction selec-
tion, register re-assignment, and instruction scheduling to
enhance the compiler’s ability to pack instructions together.
Our results show that these enhanced optimizations can sig-
nificantly reduce both the static code size and energy con-
sumption of an application, while providing a slight perfor-
mance improvement.

2. INSTRUCTION PACKING

There are a multitude of techniques available for reducing energy
consumption, decreasing code size, and improving execution time.
However, these techniques often require tradeoffs between differ-
ent design constraints that limit their effectiveness, since embed-
ded devices often have to meet very rigid guidelines. Compression
techniques [7, 6, 4, 15, 18] can reduce code size and small, spe-
cialized instruction caches [13, 8] can reduce energy consumption,
but each can increase execution time. Similarly, increases in clock
frequency can improve execution time, but can negatively impact
the overall processor energy consumption. Instruction packing is
a combination architectural/compiler technique for targeting all of
these constraints simultaneously. Furthermore, instruction packing
can be used in a complementary fashion with other compression
and energy saving techniques, such as LO (filter) caches [13] and
loop caches [14].

The motivation for instruction packing is to keep frequently ac-
cessed instructions in registers, just as frequently used data values
are kept in registers by the compiler through register allocation.
Similar to the data register file, effective use of an IRF can have a
dramatic impact on energy consumption, code size and execution
efficiency. Instructions referenced from memory are referred to as
the memory ISA or MISA instructions. Likewise, instructions ref-
erenced from the IRF are referred to as the register ISA or RISA
instructions. Figure 1 shows the use of an IRF at the start of the
instruction decode (ID) stage. It is also possible to place the IRF at
the end of instruction fetch (IF) or store partially decoded instruc-
tions in the IRF should the decode stage be on the critical path of
the processor implementation.
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Figure 2: Tightly Packed Format

Figure 2 shows the special MISA instruction format used to ref-
erence multiple instructions in the IRF. These instructions are called
tightly packed since multiple RISA instructions are accessible via
a single MISA instruction. Up to five instructions from the IRF
can be referenced using this format. Along with the IRF is an im-
mediate table (IMM), as shown in Figure 1, that contains the 32
most commonly used immediate values in the program. The last
two fields that could reference RISA instructions can alternately be
used to reference immediate values from the IMM or a destination
register number to replace the default immediate or destination reg-
ister number of the RISA instruction, respectively. The number of
parameterized values used and which RISA instructions will use
them is indicated through the use of four opcodes and the 1-bit S
field. Prior work with the IRF has used a profiling pass to determine
the 31 most frequently referenced dynamic instructions to be placed
in the IRF. One instruction is reserved to indicate a no-operation
(nop) so that fewer than five RISA instructions can be packed to-
gether. Access to the RISA nop terminates execution of the packed
MISA instruction so no performance penalty is incurred.

In addition to tightly packed instructions, the instruction set is
also extended to support a loosely packed instruction format. Each
standard MIPS instruction (with some exceptions) has 5 bits made
available for an additional RISA reference. This RISA instruction
is executed following the original MISA instruction. If no mean-
ingful RISA instruction can be executed, then IRF entry 0, which
corresponds to a nop, is used. There is no performance penalty
if the RISA reference is 0, since no instruction will be executed
from the IRF and fetching will continue as normal. While the pri-
mary goal of tightly packed instructions is the improved fetch of
frequently executed instruction streams, the loosely packed format
helps in capturing the same common instructions when they are on
infrequently executed paths and not surrounded by other packable
instructions.

Figure 3 shows the differences between the traditional MIPS in-
struction formats and the loosely packed MISA extension. With R-
type instructions, the shamt field can be used for a RISA reference
and shift amounts can now be specified in rs. Immediate values in
I-type instructions are reduced from 16 bits to 11 bits to make room
for a RISA reference. The lui (load upper immediate) instruction
is the only I-type that is adjusted differently, in that it now uses
only a single register reference and the remaining 21 bits of the in-
struction for the upper immediate portion. This is necessary since
we still want a simple method for creating 32 bit constants using
the [ui with 21 bits for an immediate and another I-type instruction
containing an 11 bit immediate value.

In order to more effectively pack instructions for applications
with diverse function and phase behavior, the IRF was extended
to support 4 hardware windows [12], much in the same way that
the SPARC data register file is organized [22]. Using windows is
preferable to just increasing the size of the IRF, since the windows
do not require any changes to the tightly packed instruction format.
This means that instead of using only 32 instruction registers, there
are a total of 128 available physical instruction registers. Only 32 of
these registers are accessible at any single point in time, however,
so the remaining 96 registers can be kept in a low-power mode
in which they retain their values, but cannot be accessed. On a
function call and/or return, the target address uses 2 bits (shown
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as win) to distinguish which instruction window we are accessing.
All function addresses are updated at link-time according to which
window of the IRF they will access. The IMM for each window
is the same, since previous results have shown that 32 immediate
values are sufficient for parameterizing most instructions that will
exist in an IRF. Using two bits to specify the instruction window in
a function address limits the effective address space available for an
application, but we believe that over 16 million instruction words
is large enough for any reasonable embedded application.

Instruction packing, however, is not without its limitations. First
of all, there is only so much redundancy available in the instructions
of an application. Similar to existing code compression enhance-
ments [5], support has been added in the form of parameterization
to more effectively capture instruction redundancy. Second, the
IRF can only hold a limited number of instructions, since IRF spec-
ifiers have to be encoded within the base ISA, and it is preferable
to keep the overall complexity low for energy efficiency. IRF win-
dows provided a convenient solution that minimized ISA changes,
while also providing a simple mechanism for scaling IRF utiliza-
tion.

These solutions have been primarily architectural in nature, and
would be more difficult to address from the compiler perspective.
Yet there still exist several limitations that can potentially be ad-
dressed by compiler optimizations. Existing instruction packing
algorithms have focused primarily on the dynamic behavior of an
application in an effort to minimize fetch energy [12, 11]. The
static composition of an application should also be used when pro-
moting instructions to the IRF, as code size can have a significant
impact on the memory architecture of an embedded system. For an
instruction to be promoted to the IRF, the opcode and all operands
must match exactly. Parameterization provides a partial solution
for capturing additional instructions, but the compiler can intelli-
gently seek out even more cases where register operands can be
modified to allow an instruction to be packed. Additionally, the
order of instructions in a basic block can artificially limit the pack-
ing density, since packable instructions work best when they are
adjacent. Finally, there are several artificial limitations on forming
packs of instructions. For example, in previous implementations,
any packed branch instruction had to occupy the final slot of the
packed instruction, as packs were not allowed to span basic block
boundaries. Each of these limitations can be effectively addressed
with detailed compiler analyses and transformations.
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3. IMPROVING THE PROMOTION OF

INSTRUCTIONS TO THE IRF

Instruction promotion is the process of selecting which instruc-
tions should reside in each IRF window, as well as which immedi-
ate values should reside in the IMM. This process of promotion has
been performed offline by supplying static or dynamic profile data
to irfprof, an IRF selection and layout tool [12]. Functions are par-
titioned and placed into statically allocated IRF windows by irfprof
according to a greedy algorithm that has been previously explored.
This algorithm operates by estimating the potential cost/benefit of
packing the instructions of a function into each particular IRF win-
dow, and then greedily selecting the most beneficial function to
assign to a window until each function has been allocated.

In the original irfprof, IRF-resident instructions were evaluated
as having a cost of 1, while non-resident instructions had a cost of
100. These costs were chosen based on the relative energy bene-
fit of placing an instruction into the IRF versus keeping it in the
instruction cache. However, not all instructions will obtain equal
benefits from being promoted to the IRF. Parameterizable I-type
instructions were originally coalesced together with the most fre-
quent immediate value becoming the default immediate, while each
individual parameterizable form of the instruction contributed to
the overall benefit for promoting this instruction. However, the
benefit of immediate instructions that require a parameter should
be lower, since they will occupy two slots of a MISA instruction,
thus making them impossible to loosely pack. They also require
two register reads, since both the IRF and the IMM will be active
when fetching this particular instruction.

The benefit of promoting to the IRF can be modeled more accu-
rately by quantifying the possible potential improvement (based on
code size and fetch energy). For instance, a tightly packed instruc-
tion cannot achieve any further benefit, so its potential improve-
ment is 0. A parameterized packable instruction (one which has to
use the IMM) has a potential improvement of 1, since it could be
promoted with its immediate value as the default. A loosely pack-
able instruction has a potential improvement of 3, since it normally
would occupy approximately 4 of the slots in a MISA instruction,
with the remaining slot available for a single RISA reference. Fi-
nally, an instruction that is not loosely packable like /ui has a po-
tential improvement of 4, since packing it into a single RISA entry
will free up 4 additional slots in the MISA instruction. By calculat-
ing the potential improvements in this manner, we provide a means
for multiple I-type instructions that differ only in default immediate
value to reside in the IRF simultaneously. This allows each entry to



remain loosely packable, which can be beneficial if each operation
occurs very frequently.

In all prior IRF work, instructions have been promoted to the IRF
based purely on static or dynamic profile data. Although the IRF
is designed to improve the overall efficiency of instruction fetch,
this division may not produce an adequate balance between code
size savings and energy reduction, particularly when dealing with
the highly constrained embedded design space. Dynamic profiling
exposes the kernel loops of the application, and correspondingly
the most frequently executed instructions from these loops. The
static profile will likewise reveal those instructions that comprise
the greatest portion of the application’s code. A unified approach
encompassing static and dynamic measures may yield a majority of
the benefits of each, resulting in a more suitable packing strategy
for the embedded domain. The promotion algorithm can be modi-
fied to incorporate the scaling of both the static and dynamic profile
data to provide such flexibility.

4. INSTRUCTION SELECTION

Instruction selection is the process by which a compiler chooses
which instruction or instruction sequence to use for a particular se-
mantic operation. The VPO compiler operates on register transfer
lists (RTLs) that have a one-to-one correspondence with machine
instructions. We can modify instruction selection to increase the
amount of redundancy in the code without negatively impacting
code size or performance. There are several methods for using in-
struction selection in this manner. First, we can choose equivalent
parameterizable operations to replace simple operations, such as
encoding move operations as additions with 0. Second, commuta-
tivity rules can be applied to make sure that all semantically equiv-
alent instruction instances use the same order for operands. Third,
we can apply parameterization to the destination registers of R-type
instructions, which were previously unable to be parameterized.

Choosing equivalent parameterizable instructions over simple in-
structions is a technique that has previously been applied to instruc-
tion packing [10]. In this paper, we quantify the exact benefits
of these transformations in increasing the instruction redundancy
within an application. Most of these equivalence transformations
occur for the mov and li pseudo-instructions. Register moves are
normally performed using the addu instruction with the hard-wired
register zero as the second source argument. Instruction selection
instead generates this operation as an addiu instruction with zero
as the immediate operand. Load immediate instructions with small
constants can interchangeably be generated as addiu instructions or
ori instructions that use register zero as their first source operand.
To increase code redundancy, the profiling pass always converts
these instructions to an addiu format. Each of these transforma-
tions increase the number of opportunities that parameterization
will have for packing various sequences of instructions.

Simple transformations can also be used to increase redundancy
by reducing or completely eliminating instruction diversity. The
native MIPS ISA uses PC-relative addressing for branches and ab-
solute addressing for jumps. Absolute addressing poses problems
with instruction packing, since there can be quite a diverse set of
jump target addresses. To increase the ability for frequent jumps to
be placed in the IRF, short distance jumps (-16 to +15 instructions)
are converted into branches that compare register zero to itself.
These instructions can then be parameterized in the same manner
as conditional branches. If short distance jumps occur frequently
in the application, then only a single RISA entry is necessary to
parameterize each of them.

The prior ISCA work also applied transformations to place the
operands for commutative operations in the same order for each in-
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struction. If the destination register is also a source register, then
that register is placed first in the operand list. If all registers are dif-
ferent, then the operands are ordered from lowest to highest num-
ber. This transformation unifies equivalent commutative operations
in an attempt to further increase the level of instruction redundancy.

Although parameterization of I-type RISA instructions has al-
ways been available to the IRF, in this paper we have extended
simple parameterization to R-type destination registers. This works
similarly to traditional IRF parameterization, consuming an addi-
tional RISA slot in the tightly packed instruction format to specify
the replacement value (5 bits) for rd. It is important to note that the
requirements for supporting this feature are minimal, as the exist-
ing parameterized instructions will not require any modifications.
Only a small amount of additional hardware is necessary, primarily
in the form of multiplexers going to the instruction decoder.

S. REGISTER RE-ASSIGNMENT

Compilers often attempt to minimize register usage in order to
keep additional registers available for further optimizations. Since
the VPO compiler applies optimization phases repeatedly, it also
rigorously attempts to minimize the number of distinct registers
used in each particular function. This strategy can clearly lead to
different register usage patterns in the generated code for similar
but slightly different functions due to the varying register pressure.
A small difference in register numbering can eliminate the possibil-
ity of instruction packing for a sequence of instructions. Although
the IRF supports a limited ability to parameterize registers, reg-
ister re-assignment can be beneficial by replacing entire register
live ranges. With re-assignment, these registers can be adjusted to
match existing IRF instructions, leading to increased pack density.

Optimizing compilers have often employed register renaming
to eliminate anti-dependences in generated code [17, 21]. Anti-
dependences restrict the scheduling of instructions for an in-order
pipeline, and can also negatively affect the issue of instructions in
out-of-order pipelined architectures. It is for this reason that many
modern out-of-order architectures employ additional hardware reg-
ister renaming techniques to eliminate anti-dependences. Rather
than renaming to avoid anti-dependences, we will re-assign regis-
ters to make instructions match existing IRF entries when possible.

Although compiler register renaming algorithms often operate
within basic blocks to keep compile time fast, the IRF register re-
assignment algorithm uses a register interference graph to calcu-
late the entire inter-block live range span for each register. When
constructing the register interference graph, registers that are used
and set within a single RTL are split into two distinct live ranges.
This splitting allows us to re-assign registers in a more fine-grained
manner than the merging of these live ranges would have allowed.
Shorter live ranges have reduced potential for conflicts, which can
limit the effectiveness of such a transformation.

We use a greedy algorithm for selecting the candidates for reg-
ister re-assignment. Basic blocks are ordered from most frequently
executed to least frequently executed based on dynamic profiling
data. With this information, each potential re-assignment is exam-
ined individually. Live ranges of registers that cannot be altered
(e.g. calling conventions) are marked so they are not re-assigned in
any manner. Since we are not going to perform multiple renames
simultaneously, we must verify that the target register to which we
are attempting to re-assign is not live at any adjacent node in the
graph. Using the register interference graph, we can now perform
the register substitution on the appropriate portion of each given
RTL. Note that we cannot change all references, since we are split-
ting uses and sets within a single RTL into multiple live ranges of
the same register number.
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L64: L64:

lw $8,0($14) # Iw $8,0($14) {2}
lw $3,0($12) # IRF (2)

slt $1,$3,$8 # slt $1,$3,$8

beq $1,$0,.L165 # IRF (4) +
# IMM (.L165)

beq $1,%0,.L165

L64: L64:
lw $2,0($14) #IRF (1) param4d{1,2,3,4,.L165}
lw $3,0($12) # IRF (2)
slt $1,$3,$2 # IRF (3)
beq $1,$0,.L165 # IRF (4) +

#IMM (.L165)

bne $1,$0,.L164 # bne $1,$0,.L164

w$3,0314)  # sw $3,0(314) sw$3,0314)  # sw $3,0(314) {7}
sw$8,0($12)  # sw $8,0($12) sw$2,0($12)  #IRF (7)
.L165: .L165: .L165: .L165:

Bhe $1,$0,.L164 #

bne $1,$0,.L164

Figure 4: Register Re-assignment

Figure 4 shows an example of register re-assignment. The code
is a single loop with an if statement guarding two store instructions.
Column A shows the component instructions in the code sequence
along with relevant data regarding the IRF entry numbers of the
packable instructions. Note that the IRF contents are already deter-
mined at this point, and any unmarked instruction is not available
via the IRF. The overall packing of the entire loop, assuming that no
other transformations are applied, is shown in column B. If register
re-assignment is performed on the code, then we obtain the code
shown in column C. The last column (D) shows the re-assigned
code after packing the instructions. The result is that the first two
blocks of the original loop that required five MISA instructions can
now be accomplished in two MISA instructions.

6. INSTRUCTION SCHEDULING

Instruction scheduling is another traditional compiler optimiza-
tion that reorders the instructions in a basic block in an attempt to
eliminate pipeline stalls due to long operation dependences. The
actual scheduling often employs a directed acyclic graph (DAG)
to maintain instruction dependence relationships. Once the DAG
is constructed, instructions are issued based on priorities relating
to future dependences. Instructions that have no incoming arrows
in the DAG are considered to be in the ready set, as they have no
dependences on which to wait.

Packing multiple RISA instructions into a single MISA instruc-
tion is somewhat similar to very-long instruction word (VLIW)
scheduling. In addition to physical hardware constraints, the in-
structions in a VLIW word are executed simultaneously, so depen-
dences have to be placed in separate VLIW words, leading to a
great deal of fragmentation. Scheduling for IRF is similar to VLIW
instruction scheduling, but the primary difference is that dependent
instructions can be packed together in a single pack, since the indi-
vidual RISA references will still be sequentially issued.

Figure 5 shows the algorithm for scheduling IRF instructions
within a basic block. This greedy algorithm is based on several
heuristics for producing dense sequences of packed instructions.
It is invoked iteratively using the ready set until all instructions
have been scheduled for the current block. It is important to note
that the ready set from which selection occurs is sorted with re-
spect to minimizing stalls due to instruction dependences. Thus,
the dependence between instructions often acts as the tie-breaker
for selecting which IRF or non-IRF instruction should be sched-
uled next. Priority is primarily given to loose packs between in-
structions that do not exist in the IRF and tightly packable RISA
references. If three or more RISA reference slots (both IRF in-
structions and parameters) are available, then a tightly packed in-
struction will be started instead. When issuing into a started tightly
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if blk—slots == 0 then

if blk—prev_packable and an IRF insn is in ready set then
L schedule the IRF insn next

else if 3 or more IRF slots are in ready set then
| schedule an IRF_param or IRF insn next

else if IRF insn and packable insn are in ready set then
schedule a loose pack with the packable insn and the
IRF insn

if no instructions have been scheduled yet then
if (blk—prev_packable or blk—slots == 4) and an IRF insn exists
in ready set then
L schedule the IRF insn next
else if / < blk—slots < 3 and any IRF insns in ready set then
| schedule an IRF_param or IRF insn next
else if A non-IRF insn exists in ready set then
L schedule the non-IRF insn
else
| schedule the first IRF_param or IRF insn next

UE)date blk—prev_packable and blk—slots based on the
scheduled instruction(s)

Figure 5: Intra-block Scheduling

packed instruction, we always attempt to schedule the parameter-
ized references first, since they require two slots and are unable to
be loosely packed. If we cannot schedule into a loose pack or a
tight pack, then we attempt to schedule non-IRF instructions next.
This allows us to potentially free up dependent IRF instructions for
packing on future iterations. Finally, we schedule IRF instructions
if there are no ready non-IRF instructions. After choosing an in-
struction or instruction sequence for scheduling, the prev_packable
and slots fields in the basic block structure must be updated appro-
priately.

Figure 6 shows the breakdown of instruction types used in the
diagrams for the remainder of this section. Colored boxes refer to
used portions of the instruction format. Empty boxes denote un-
used RISA slots. Non-packable refers to instructions that cannot
support a loosely packed RISA reference and are not available via
the IRF themselves (e.g. jal). A non-packable instruction occu-
pies the space for all 5 RISA slots, and so there are none avail-
able for packing. Loosely packable refers to an instruction that is
not available via the IRF, but has additional room for a RISA ref-
erence. These instructions occupy 4 of the 5 RISA slots, and so
can accept a single non-parameterized IRF instruction. The param-
eterized tightly packable instruction is one that is available via a
combination of the IRF and parameterization. The parameter can
refer to an entry in the IMM table, a short branch/jump offset, or
register parameterization. Due to referencing both the IRF entry
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Figure 7: Intra-block Instruction Scheduling

and one IMM entry, two slots are occupied, and thus there is space
for up to 3 additional RISA references. Tightly packable refers to
an instruction that is available in the IRF, and does not require any
parameterization. These instructions will occupy only a single slot,
and thus have room for up to 4 more RISA references.

Figure 7 shows an example of intra-block instruction schedul-
ing for improved packing efficiency. The original code consists of
five instructions, of which three are in the IRF (1, 2, 5), one is in
the IRF with a parameter (4), and one is loosely packable, but not
available in the IRF (3). Based on the initial packing algorithm and
no scheduling, we can only pack this sequence down to three to-
tal instructions, since instruction 3 cannot be combined effectively
with any of its neighboring instructions. Since our algorithm fa-
vors loose instruction packs, instructions 1 and 3, which are both
ready at the start of the block, can be combined into a single loosely
packed MISA instruction. Instructions 2, 4, and 5 can then be com-
bined into a param3b instruction. With the intra-block scheduling,
we can shorten this sequence down to two total instructions, leaving
only a single IRF slot empty.

Although conventional instruction scheduling may not include
transformations that move instructions across basic blocks, IRF
packing can benefit from inter-block scheduling. Instructions are
packed using a forward sliding window and thus the final instruc-
tions in a block can be left with unused IRF slots. Although intra-
block scheduling is an attempt to reclaim unused RISA reference
slots, there are two cases where inter-block movement of instruc-
tions can lead to improved pack density. The first case is duplicat-
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A) Before Inter-block Scheduling Z B) After Duplication and Scheduling Z

i

Figure 8: Duplicating Code to Reduce Code Size

ing code for an unconditional successor block in each predecessor.
Typically code duplication only serves to increase code size, but
packed instructions that lead off a basic block can potentially be
moved into unused slots in each predecessor. The second improve-
ment is the addition of instructions after a packed branch, which
will be described later. Each of these inter-block techniques at-
tempts to more densely pack blocks that have already been sched-
uled. Although the code size may remain the same, by moving
these operations earlier in the control flow graph (CFG), we are
attempting to improve our ability to pack instructions in the cur-
rent block. The proposed inter-block scheduling technique is quite
similar to filling delay slots in a RISC architecture, particularly the
annulled branch feature of the SPARC [22].

One interesting phenomenon with inter-block instruction pack-
ing is that duplication of code can lead to an overall code size
reduction. Figure 8 shows an example of such a transformation
on an if-then-else code segment. Basic blocks W, X, and Y have
been scheduled, and block Z is about to be scheduled. Due to the
number of tightly packable and parameterized packable instruc-
tions in Z, we know that the minimum code size (disregarding
any dependencies) for this block must be three MISA instructions
([(442+5 slots)/57). We also notice that the two predecessors of
Z (X and Y) have Z as their unconditional successor (fall-through
or jump target). There are available RISA slots at the end of both
basic blocks (slots a, b, c¢). Instruction 5, which occurs in block X
is an example of a short jump instruction that has been converted
to an unconditional branch with a parameter. Notice that for block
X, the available slots are calculated without regard for the jump
instruction, as the duplicated instruction will have to be placed be-
fore the jump in any case. Figure 8B shows instruction 1 after it
has been duplicated in both predecessors of Z. It is able to be com-
bined in two separate tight packs. Block X shows that the moved
instruction is actually placed before the jump in order to maintain
correctness. After performing intra-block scheduling on block Z,
the parameterized instruction 4 is packed with instructions 2 and 3.
This ultimately results in a net code size reduction of one instruc-
tion.

The baseline MIPS ISA that underlies our IRF architecture does
not have support for predicated execution of instructions. With
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Figure 9: Predication with Packed Branches

compiler transformations, however, we can mimic predication by
packing instructions after conditional branches. If a forward condi-
tional branch is taken, then the following instructions within the
pack will be skipped. If it is not taken, then they will be exe-
cuted normally, just as the fall-through block normally is. Back-
ward branches are assumed to execute the additional RISA slots
only when they are taken. The baseline IRF implementation re-
serves 5 bits for loosely packing each I-type instruction (except
lui), and the original compiler did not support cross-block packing.
Thus, branches could never loosely pack an additional instruction,
and branches within tight packs always forced termination of the
pack execution. This only serves to decrease the overall packing
density. Note that we will not pack multiple branches or jumps to-
gether, since we still want the branch predictor and branch target
buffer to be associated with the overall MISA instruction address.
One benefit of this style of predicated execution, is that we do not
require any additional bits in the traditional instruction formats for
predicates. Furthermore, these predicated instructions need not be
fetched, decoded or even executed if the predicate is false, which is
not the case for other predicated ISAs like the ARM [20].

Figure 9 shows the potential benefits of predication using a sim-
ple if-then control flow built out of packed instructions. In Fig-
ure 9A, which does not have inter-block instruction scheduling,
block Y consists of three MISA instructions, two of which are
packed instructions, while its only predecessor (block X) contains a
conditional branch with a target of block Z. The conditional branch
in block X has one available RISA slot (a) for packing. Note that
the RISA slot b is unusable since the parameterized instruction 4
requires two slots. In Figure 9B, which does perform inter-block
instruction scheduling, instruction 1 is moved from block Y into the
empty slot (a) of the conditional branch. This results in the ability
for instructions 2, 3 and 4 in block Y to be packed efficiently into
a single tightly packed instruction. This results in a net code size
savings of one instruction.

Figure 10 shows an example of how instruction scheduling is
used to improve pack density in the case of a backward branch. In
Figure 10A, block Y consists of 3 MISA instructions including a
backward branch back to the top of the block, while the preceding
block X has a parameterized packable final instruction. The pack
containing the backward branch in block Y has 3 available slots (d,
e, f), and block X has 3 extra slots as well (a, b, ¢). Since the branch
in Y is backwards, any following RISA entries will be executed
only when the branch is taken. Thus, we can move instructions 1
and 2 (along with its parameter 2’) into both the loop preheader
(a, b, ¢) and the tail of the loop (d, e, f), as shown in Figure 10B.
This movement of instructions is reminiscent of software pipelin-
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Figure 10: Backward Branch Scheduling

ing, although additional registers are unnecessary for carrying the
loop dependencies. After performing this optimization, we can see
that the code size has been reduced by one MISA instruction. This
transformation would be performed even if slots were unavailable
in the preheader. The total code size would be the same in this
instance, but the number of dynamic MISA instructions fetched
would be reduced since the number of MISA instructions in the
loop has been decreased.

The complete instruction scheduling algorithm for improving
pack density is shown in Figure 11. It starts by performing intra-
block scheduling on the function entry block and all loop headers.
We then proceed by choosing the next block that has each of its
predecessors already scheduled. If such a block is not found, then
we select the next un-scheduled block and perform just the intra-
block scheduling pass. If all predecessors of a block have been
scheduled, however, then we have an opportunity to perform inter-
block instruction scheduling to move instructions from the current
block up into each predecessor. We first check if this block has a
single predecessor that ends with a conditional branch. If the last
MISA instruction in the predecessor has available RISA slots, then
we attempt to choose IRF instructions for movement into the avail-
able slots. If the block has multiple predecessors, we can attempt
to do duplication. Each predecessor block needs to have already
been scheduled, have additional slots, and have the current block
as their unconditional successor or branch fall-through. At this
point, IRF instructions can be moved from the current block back
into each individual predecessor block. Any predecessor that is ter-
minated by a jump will have the moved IRF instruction placed in
front of the jump, since jumps automatically terminate basic blocks
and packs. Each predecessor that has instructions moved into it is
then re-scheduled locally in order to see if a better packing solution
exists and more slots can be freed. After all inter-block schedul-
ing has been done, the current block is locally scheduled. By per-
forming the inter-block scheduling early, we are filling up slots in
blocks that have already been scheduled. This has two benefits: re-
ducing the number of instructions to schedule in the current block,
and moving deeper, dependent instructions closer to being ready
in the current block. These benefits will then allow the intra-block
scheduler to do a better job of forming dense instruction packs. If
this block contains a backward branch for a loop, then we attempt
to move instructions into any additional slots after the backward
branch. To do this, we have to examine all predecessors of the loop
header to calculate the minimum number of available slots. At this
point, we can move instructions from the loop into each predeces-
sor block and reschedule.



irf_intra_sched(entry_blk)
foreach blk that is a loop header do
| irf_intra_sched(blk)

while all blocks have not been scheduled do
blk = next block with all preds scheduled
// Predication
if blk is fall through from branch and has no other preds
then
if predecessor has empty slots after branch then
L attempt to move IRF insns from blk into the
slots

// Duplication
ok = TRUE
foreach pblk € blk—preds do
if pblk is unscheduled or pblk—left # blk
or pblk has no slots then
L ok =FALSE

if ok then
slots = minimum of available slots from all pre-
decessors
foreach pblk € blk—preds do
attempt to move IRF insns from blk into the
L slots
irf_intra_sched(pblk)

irf_intra_sched(blk)
// Backward Branch Packing
if blk branches back to loop header toblk then
slots = minimum of slots from toblk preds in-
cluding blk
foreach pbik € toblk—preds do
attempt to move IRF insns from toblk into
L the slots
irf_intra_sched(pblk)

m_ark blk as scheduled

Figure 11: Inter-block Scheduling

7. EXPERIMENTAL EVALUATION

Our modeling environment is an extension of the SimpleScalar
PISA target [1] that was previously used to study instruction pack-
ing [10, 12, 11]. Each simulator is instrumented to collect the rel-
evant data involving instruction cache and IRF access during pro-
gram execution. The baseline IRF configuration has four windows
of 32 instruction register entries and supports parameterization via
a single, 32-entry immediate table. The relative improvement due
to compiler optimizations is similar for non-windowed IRF config-
urations. We model an out-of-order, single issue embedded ma-
chine with separate 8KB, 4-way, set-associative L1 instruction and
data caches and a 128-entry bimodal branch predictor. Power esti-
mation is performed using version 1.02 of the Wattch extensions [3]
for SimpleScalar. Wattch models the power requirements of in-
dividual structures within the pipeline based on Cacti [23] esti-
mations. The total energy estimates presented in this paper are
based on Wattch’s aggressive clock-gating model (cc3). Under this
model, power consumption is scaled linearly for active units, while
inactive portions of the pipeline dissipate only 10% of their maxi-
mum power.

Code is generated using a modified port of the VPO compiler for
the MIPS [2]. This is the same compiler used in previous IRF stud-
ies. Figure 12 shows the general flow of operations for compiling
code to support instruction packing with an IRF. Each benchmark
is profiled statically and dynamically using SimpleScalar and then
instructions are selected for packing using irfprof. The application
is then recompiled and instructions are packed based on the IRF
layout provided by irfprof. The optimizations that have been tested
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Figure 12: Optimizing for Instruction Packing

Table 1: MiBench Benchmarks

| Category | Applications |
Automotive | Basicmath, Bitcount, Qsort, Susan
Consumer | Jpeg, Lame, Tiff
Network Dijkstra, Patricia
Office Ispell, Rsynth, Stringsearch
Security Blowfish, Pgp, Rijndael, Sha
Telecomm Adpcm, CRC32, FFT, Gsm

and applied are listed in the diagram. IRF register re-assignment
occurs after IRF instruction selection. IRF instruction scheduling
is performed after all other IRF optimizations. Note that instruction
packing and the associated optimizations are performed only on the
code generated for the actual source provided for each benchmark.
Library code is left unmodified and is not evaluated in our results
for static code size, however we do present total energy and exe-
cution time results based on the complete application behavior. If
library code was subject to instruction packing, we would expect
results to improve, since several benchmarks make extensive use of
the standard C library functions.

In keeping with previous research on the IRF, we also selected
the MiBench embedded benchmark suite for our experiments [9].
MiBench consists of six categories, each designed to exhibit appli-
cation characteristics representative of a typical embedded work-
load in that particular domain. Figure 1 shows the benchmarks and
associated categories evaluated in each of our experiments. Results
are presented by category average or overall average in each of the
following graphs in this section.

Instruction fetch has been shown to consume nearly one third of
the total processor power of the StrongARM SA110 [16], so fetch
energy efficiency can be extremely important for embedded sys-
tems. Figure 13 shows the results of applying these enhanced opti-
mizations in terms of total processor energy. This is different from
past work on the IRF which presents results for reducing only the
fetch energy consumed by the processor. The baseline IRF archi-
tecture with no optimizations and dynamic profiling reduces total
energy to 87.8% on average. Incorporating the enhanced mixed
instruction promotion increases the total energy consumption to
87.99%, since we have traded some of our less important dynamic
IRF entries for the ability to capture highly redundant static code.
Instruction selection boosts the total energy efficiency, dropping
the overall average to 84.35%. The re-assignment of registers in-
creases the total energy to 84.71%, since it is focused primarily on
improving static code size. Intra-block instruction scheduling is
able to reduce the total energy to an average of 84.55%. Allowing
for inter-block instruction scheduling further reduces the total en-
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Figure 14: Static Code Size

ergy consumption to 84.18%. Overall, instruction selection is the
optimization that has the greatest impact on total energy reduction.

Figure 14 shows the resulting relative static code size of an ap-
plication based on the application of these modified optimizations.
The code generated for a non-IRF implementation of the ISA cor-
responds to 100%. The first bar shows the static code size for ap-
plying our IRF selection process to each application using only the
4-window IRF with immediate parameterization capabilities. The
IRF with no optimizations is only able to reduce the code size to
83.20% on average, while supporting the enhanced mixed promo-
tion drops the code size to 77.95%. After applying our instruction
selection and register parameterization optimizations, the average
code size is reduced to 72.76%. Applying register re-assignment
reduces the code size to 72.39% of the original code size. Intra-
block scheduling further reduces code size to 71.33%, while the
addition of inter-block scheduling drops it to an average of 71.17%.
These results are consistent with our intuition that the largest opti-
mization benefits for code size would occur due to instruction se-
lection and intra-block scheduling, however using a mixed dynamic
and static profile also has a significant impact on code size.

The results regarding execution efficiency of the enhanced IRF
optimizations are shown in Figure 15. The baseline IRF is able to
reduce the execution time to 98.92% on average with dynamic pro-
filing, and 98.91% for the enhanced mixed promotion. Adding in-
struction selection slightly increases the execution time to 99.04%
Register re-assignment reduces the execution time to 98.98%, while
intra-block instruction scheduling gets the overall execution time
down to 98.90% on average. Inter-block instruction scheduling de-
creases the execution time to 98.7%. Fluctuations in execution time
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Figure 16: Evaluating Enhanced IRF Promotion

and/or IPC are primarily due to branch misprediction, which must
now account for restarting in the middle of a packed instruction
(e.g. predication). Improved profiling for commonly predicated in-
structions could help to make better decisions about which instruc-
tions should be moved across basic blocks. Additionally, instruc-
tion scheduling can sometimes move dependent instructions closer
to their original dependence, leading to potential pipeline stalls.
Several of the worse performing benchmarks are dominated by li-
brary calls. Packing these library functions specifically for these
applications could lead to significant improvements in execution
efficiency.

Each of the enhanced optimizations provided significant bene-
fits for at least one benchmark. Enhanced promotion reduced the
code size of Susan by an additional 16.30%. Instruction selection
was responsible for an additional 10.73% reduction in code size for
CRC32. Basicmath was reduced a further 1.67% in code size by
register re-assignment. Intra-block scheduling can reduce the code
size of Tiff by an additional 1.95%. Inter-block scheduling reduced
the total energy consumption of Blowfish by another 2.78%. By
providing each of these optimizations, we facilitate individual ap-
plication improvements that are quite significant, particularly for
the embedded domain.

Figure 16 represents a sensitivity study on the impact of combin-
ing static and dynamic profile information in various ways. Only
code size and total energy are shown since the execution time ben-
efits are similar to the previous experiments. Each combination
of static and dynamic profile data is tested both with and without
all of the previously described optimizations, although promotion
enhancements are enabled for all experiments. As was expected,



the static profile data yields the greatest code compression, while
dynamic profile data yields the greatest total energy savings. It is
interesting that almost all of the energy benefits (83.84% for opti-
mized 100/0 and 84.18% for optimized 50/50) of promoting only
the most frequent dynamic instructions can still be obtained while
incorporating additional frequent static instructions in the IRF. In
this case, the static code size can also be reduced from 74.05% for
optimized 100/0 to 71.17% for optimized 50/50. This is reason-
ably close to the 69.33% relative code size that can be obtained
from packing based on a purely static profile. The significance of
the results of this experiment is that an embedded developer can
adjust the balance of static and dynamic measures to meet varying
design constraints regarding code size and energy consumption.

8. FUTURE WORK

The optimizations focused on in this paper happen relatively late
in our optimizing compiler. It is possible that enhancing earlier
stages of optimization can be even more beneficial for packing.
Register assignment is the required phase in which physical reg-
ister numbers are assigned to pseudo-register live ranges. This
process happens fairly early in code optimization, as many other
optimizations depend on knowing how many physical registers are
still available (register allocation of variables, loop-invariant code
motion). Our register re-assignment optimization is currently de-
signed to remap register live ranges after the IRF contents have
already been decided. We can also perform register re-assignment
before profiling in an attempt to target specific registers for certain
operations. By making certain registers more likely to be used for
particular opcodes, the amount of redundancy in the code can be
increased. Skewing the distribution of registers could lead to more
saves and restores for callee-save registers, but the reductions in
fetch energy consumption from increased packing density (particu-
larly within tight loops) could outweigh the potential code growth.

Other compiler optimizations may enhance the opportunities for
instruction packing. Applications with large basic block sizes favor
instruction scheduling approaches, particularly if the basic blocks
consist of mostly independent instructions. Loop unrolling trans-
formations can often yield larger basic block sizes, by compacting
multiple iterations of the same loop. The IRF can enhance loop
unrolling by packing the duplicated loop body instructions, poten-
tially using register parameterization. Profile guided code position-
ing algorithms cause blocks in the frequent path to have more fall-
through transitions [19]. This can facilitate inter-block scheduling
transformations that perform predication, since there will be many
frequently executed fall-through transitions. Loop unrolling causes
code size increases that may not be appropriate for embedded sys-
tems, however the IRF may be able to minimize the impact of the
code duplication.

It may also be possible to improve the packing of instructions
through the use of more flexible parameterization styles. Although
the current implementation parameterizes the rd or immediate field
of instructions, we can change the IRF instruction representation
so that each entry specifies how a parameter is to be used. This
would allow us to parameterize based on the rs, rt fields or a com-
bination of fields (for accumulator style instructions). For exam-
ple, we could implement a parameterizable increment instruction
by specifying “add $r3, $r3, 1” as the IRF entry and rs/rt as the
parameterizable portion.

9. CONCLUSIONS

The IRF architecture is capable of more efficient instruction en-
coding than conventional ISAs. In this paper, we evaluated a set of
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compilation techniques that have been adapted to exploit the IRF
to further improve code density while minimizing instruction fetch
energy requirements. We have shown that incorporating both static
and dynamic measures for selecting instructions for IRF promotion
can allow for the majority of the benefit that each could provide
individually when targeting code size or energy reduction respec-
tively. Instruction selection was modified to prioritize for the se-
lection of the most common instruction encodings. Simple trans-
formations were used to create semantically equivalent instruction
sequences that match some of the common instructions likely to
be promoted to the IRF. Register re-assignment increased the in-
stances where the register operands matched instructions in the IRF
with the same opcode. Intra-block instruction scheduling improved
the ability to place IRF instructions into loosely and tightly packed
instructions by increasing the number of consecutive IRF instruc-
tions in a basic block. Inter-block instruction scheduling further im-
proved the ability to pack IRF entries into the same instruction by
moving instructions from successor blocks. Each of these transfor-
mations increased the pack density of an application, reducing the
number of instructions that need to be fetched from and/or stored
in the larger, less efficient instruction cache. Some transformations
are unique to the IRF. For instance code duplication can be per-
formed to move instructions to packed instructions in multiple pre-
ceding blocks to decrease code size and reduce power consumption.
A unique form of predication is also possible by packing instruc-
tions after a conditional branch in a packed instruction. Energy
savings for adding an IRF was 12.2% using an optimizing compiler
targeting the IRF. The energy savings was increased to over 15.8%
after the enhanced transformations were performed. Even consider-
ing that the original compiler [12] performed instruction selection,
the energy savings by developing more targeted optimizations were
further enhanced by approximately 1.07% which translates into a
7.2% improvement over the prior results. Static code size reduction
was improved from 16.80% to over 28.83% after applying each of
the adapted transformations. Again considering the previous in-
struction selection, this results in a net further 12.03% reduction,
which is a 71.56% improvement over the existing results.

We believe that this paper shows how rethinking conventional
optimization heuristics for our embedded architecture can lead to
significant improvements in code quality. We further believe that
compilers and their associated optimizations used to target embed-
ded architectures with idiosyncratic ISA designs must be flexible
enough to be easily modified in order to extract the full benefits of
the underlying hardware.

10. ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive com-
ments and suggestions. This research was supported in part by
NSF grants EIA-0072043, CCR-0208892, CCR-0312493, CCF-
0444207, and CNS-0615085.

11. REFERENCES

[1] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An
infrastructure for computer system modeling. /[EEE
Computer, 35:59-67, February 2002.

M. E. Benitez and J. W. Davidson. A portable global
optimizer and linker. In Proceedings of the SIGPLAN’88
conference on Programming Language Design and
Implementation, pages 329-338. ACM Press, 1988.

D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A
framework for architectural-level power analysis and
optimizations. In Proceedings of the 27th annual

(2]

3

—



(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

International Symposium on Computer Architecture, pages
83-94, New York, NY, USA, 2000. ACM Press.

K. Cooper and N. McIntosh. Enhanced code compression for
embedded risc processors. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design
and Implementation, pages 139-149, May 1999.

M. L. Corliss, E. C. Lewis, and A. Roth. A DISE
implementation of dynamic code decompression. In
Proceedings of the ACM SIGPLAN Conference on
Languages, Compilers, and Tools for Embedded Systems,
pages 232-243, June 2003.

S. K. Debray, W. Evans, R. Muth, and B. DeSutter. Compiler
techniques for code compaction. ACM Transactions on
Programming Languages and Systems, 22(2):378-415,
March 2000.

C. W. Fraser, E. W. Myers, and A. L. Wendt. Analyzing and
compressing assembly code. In Proceedings of the SIGPLAN
"84 Symposium on Compiler Construction, pages 117-121,
June 1984.

A. Gordon-Ross, S. Cotterell, and F. Vahid. Tiny instruction
caches for low power embedded systems. Trans. on
Embedded Computing Sys., 2(4):449-481, 2003.

M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,

T. Mudge, and R. B. Brown. MiBench: A free, commercially
representative embedded benchmark suite. IEEE 4th Annual
Workshop on Workload Characterization, December 2001.
S. Hines, J. Green, G. Tyson, and D. Whalley. Improving
program efficiency by packing instructions into registers. In
Proceedings of the 2005 ACM/IEEE International
Symposium on Computer Architecture, pages 260-271. IEEE
Computer Society, 2005.

S. Hines, G. Tyson, and D. Whalley. Improving the energy
and execution efficiency of a small instruction cache by
using an instruction register file. In Proceedings of the 2nd
Watson Conference on Interaction between Architecture,
Circuits, and Compilers, pages 160—-169, September 2005.

S. Hines, G. Tyson, and D. Whalley. Reducing instruction
fetch cost by packing instructions into register windows. In
Proceedings of the 38th annual ACM/IEEE International
Symposium on Microarchitecture, pages 19-29. IEEE
Computer Society, November 2005.

53

[13] J. Kin, M. Gupta, and W. H. Mangione-Smith. The filter

cache: An energy efficient memory structure. In Proceedings

of the 1997 International Symposium on Microarchitecture,
pages 184-193, 1997.

[14] L. Lee, B. Moyer, and J. Arends. Instruction fetch energy

reduction using loop caches for embedded applications with

small tight loops. In Proceedings of the International

Symposium on Low Power Electronics and Design, pages

267-269, 1999.

C. Lefurgy, P. Bird, .-C. Chen, and T. Mudge. Improving

code density using compression techniques. In Proceedings

of the 1997 International Symposium on Microarchitecture,

pages 194-203, December 1997.

[16] Montanaro J., et al. A 160-mhz, 32-b, 0.5-W CMOS RISC
microprocessor. Digital Tech. J., 9(1):49-62, 1997.

[17] D. A. Padua and M. J. Wolfe. Advanced compiler
optimizations for supercomputers. Commun. ACM,
29(12):1184-1201, 1986.

[15]

[18]
instruction format supporting parallel fetch and decode. In
Proceedings of the 2001 International Conference on
Compilers, Architecture, and Synthesis for Embedded
Systems, pages 168—175. ACM Press, 2001.

K. Pettis and R. C. Hansen. Profile guided code positioning.
In Proceedings of the ACM SIGPLAN 1990 conference on
Programming Language Design and Implementation, pages
16-27, New York, NY, USA, 1990. ACM Press.

S. Segars, K. Clarke, and L. Goudge. Embedded control
problems, Thumb, and the ARM7TDMI. IEEE Micro,
15(5):22-30, October 1995.

N. J. Warter, G. E. Haab, K. Subramanian, and J. W.
Bockhaus. Enhanced modulo scheduling for loops with
conditional branches. In Proceedings of the 25th annual
international symposium on Microarchitecture, pages
170-179, Los Alamitos, CA, USA, 1992. IEEE Computer
Society Press.

D. Weaver and T. Germond. The SPARC Architecture
Manual, 1994.

S. J. Wilton and N. P. Jouppi. CACTI: An enhanced cache
access and cycle time model. IEEE Journal of Solid State
Circuits, 31(5):677-688, May 1996.

(19]

[20]

(21]

(22]

(23]

H. Pan and K. Asanovi¢. Heads and Tails: A variable-length




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Academy
    /AgencyFB-Bold
    /AgencyFB-Reg
    /Alba
    /AlbaMatter
    /AlbaSuper
    /Algerian
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialRoundedMTBold
    /ArialUnicodeMS
    /BabyKruffy
    /BaskOldFace
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BlackadderITC-Regular
    /BodoniMT
    /BodoniMTBlack
    /BodoniMTBlack-Italic
    /BodoniMT-Bold
    /BodoniMT-BoldItalic
    /BodoniMTCondensed
    /BodoniMTCondensed-Bold
    /BodoniMTCondensed-BoldItalic
    /BodoniMTCondensed-Italic
    /BodoniMT-Italic
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BradleyHandITC
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /CalisMTBol
    /CalistoMT
    /CalistoMT-BoldItalic
    /CalistoMT-Italic
    /Castellar
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chick
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CopperplateGothic-Bold
    /CopperplateGothic-Light
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Croobie
    /CurlzMT
    /EdwardianScriptITC
    /Elephant-Italic
    /Elephant-Regular
    /EngraversMT
    /ErasITC-Bold
    /ErasITC-Demi
    /ErasITC-Light
    /ErasITC-Medium
    /EstrangeloEdessa
    /Fat
    /FelixTitlingMT
    /FootlightMTLight
    /ForteMT
    /FranklinGothic-Book
    /FranklinGothic-BookItalic
    /FranklinGothic-Demi
    /FranklinGothic-DemiCond
    /FranklinGothic-DemiItalic
    /FranklinGothic-Heavy
    /FranklinGothic-HeavyItalic
    /FranklinGothic-Medium
    /FranklinGothic-MediumCond
    /FranklinGothic-MediumItalic
    /FreestyleScript-Regular
    /FrenchScriptMT
    /Freshbot
    /Frosty
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Gigi-Regular
    /GillSansMT
    /GillSansMT-Bold
    /GillSansMT-BoldItalic
    /GillSansMT-Condensed
    /GillSansMT-ExtraCondensedBold
    /GillSansMT-Italic
    /GillSans-UltraBold
    /GillSans-UltraBoldCondensed
    /GlooGun
    /GloucesterMT-ExtraCondensed
    /GoudyOldStyleT-Bold
    /GoudyOldStyleT-Italic
    /GoudyOldStyleT-Regular
    /GoudyStout
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /ImprintMT-Shadow
    /InformalRoman-Regular
    /Jenkinsv20
    /Jenkinsv20Thik
    /Jokerman-Regular
    /Jokewood
    /JuiceITC-Regular
    /Karat
    /Kartika
    /KristenITC-Regular
    /KunstlerScript
    /Latha
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSans-TypewriterBoldOblique
    /LucidaSans-TypewriterOblique
    /LucidaSansUnicode
    /Magneto-Bold
    /MaiandraGD-Regular
    /Mangal-Regular
    /MaturaMTScriptCapitals
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MSOutlook
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /OCRAExtended
    /OldEnglishTextMT
    /Onyx
    /PalaceScriptMT
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Papyrus-Regular
    /Parchment-Regular
    /Perpetua
    /Perpetua-Bold
    /Perpetua-BoldItalic
    /Perpetua-Italic
    /PerpetuaTitlingMT-Bold
    /PerpetuaTitlingMT-Light
    /Playbill
    /Poornut
    /PoorRichard-Regular
    /Porkys
    /PorkysHeavy
    /Pristina-Regular
    /PussycatSassy
    /PussycatSnickers
    /Raavi
    /RageItalic
    /Ravie
    /Rockwell
    /Rockwell-Bold
    /Rockwell-BoldItalic
    /Rockwell-Condensed
    /Rockwell-CondensedBold
    /Rockwell-ExtraBold
    /Rockwell-Italic
    /ScriptMTBold
    /ShowcardGothic-Reg
    /Shruti
    /SnapITC-Regular
    /Square721BT-Roman
    /Stencil
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /TwCenMT-Bold
    /TwCenMT-BoldItalic
    /TwCenMT-Condensed
    /TwCenMT-CondensedBold
    /TwCenMT-CondensedExtraBold
    /TwCenMT-Italic
    /TwCenMT-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Vrinda
    /Webdings
    /WeltronUrban
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


