
High-Level Power Analysis for Multi-Core Chips

Noel Eisley, Vassos Soteriou, and Li-Shiuan Peh
Dept. of Electrical Engineering, Princeton University

Princeton, NJ 08544

{eisley, soteriou, peh}@princeton.edu

ABSTRACT
Technology trends have led to the advent of multi-core chips
in the form of both general-purpose chip multiprocessors
(CMPs) and embedded multi-processor systems-on-a-chip
(MPSoCs), with on-chip networks increasingly becoming the
de facto communication fabric between cores as the demand
for on-chip bandwidth scales up. These multi-core chips
are composed of two key subcomponents: processor cores
and a network fabric. Rapid, early-stage power estimation
of these multi-core chips is crucial in assisting compilers in
determining the most efficient thread partitioning and place-
ment. While prior work in high-level power analysis exists,
the focus has been on uniprocessor cores and ignores the in-
teractions between cores via the on-chip network, as well as
the power contribution of the on-chip fabric itself. In this
paper we propose a first high-level power analysis framework
that synergistically considers both computation and commu-
nication in a complete CMP system. Processor cores and
the communication fabric are both abstracted as network
nodes and links, so data dependencies, structural depen-
dencies and communication dependencies are all modeled
as resource contention, with resource utilization as a proxy
for relative power. Our tool has been validated against the
cycle-accurate BTL simulator of the MIT Raw CMP, show-
ing an average speedup of 7X while achieving relative accu-
racy of 9.1%. We see this as a first step towards enabling the
implementation of parallelizing compilers that explore vari-
ous power-performance tradeoffs for future multi-core chips.

Categories and Subject Descriptors: B.8.2 [Perfor-
mance and Reliability]: Performance Analysis and Design
Aids; C.2.0 [Computer-Communication Networks]: General

General Terms: Design, Theory

Keywords: Power analysis, multi-core, chip multiproces-
sor (CMP), system-on-a-chip (SoC), simulation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’06, October 23–25, 2006, Seoul, Korea.
Copyright 2006 ACM 1-59593-543-6/06/0010 ...$5.00.

1. INTRODUCTION
Power has become the most critical constraint in the de-

sign of many systems, from high-performance servers to em-
bedded battery-operated devices. Recognizing the need to
target increasing power consumption and design complexity
in these systems, designers have turned to multi-core archi-
tectures such as chip multiprocessors (CMPs) [15, 26, 34]
and multiprocessor systems-on-a-chip (MPSoCs) [1, 24]. As
the demand for bandwidth rises in these on-chip systems,
multi-core chips are increasingly turning to communication
fabrics in the form of on-chip networks or networks-on-chips1

(NoCs) that effectively scale to handle this increasing com-
munication demand among the cores. Consequently, these
multi-core chips are composed of two key subsystems: com-
putation (processor cores) and communication (NoCs).

Rapid early-stage estimation of both subsystems’ power
contribution is critical as the communication subsystem not
only consumes significant power [2, 40] but also substan-
tially influences the activity on the various computation
cores, with network messages functioning as synchroniza-
tion points between cores. Quick estimates of the effect of
different application partitionings on the power profile of
a multi-core chip are therefore useful in guiding paralleliz-
ing compilers as well as for carrying out rapid design-space
exploration. There is thus a need for fast, high-level power
estimation tools for multi-core chips that synergistically con-
sider processor cores and NoCs.

The challenges encountered in high-level power estimation
are multi-fold. First, a temporal power profile is necessary;
in other words, the power consumption trends of a multi-core
chip across time needs to be captured. Estimating just aver-
age power consumption is insufficient as power consumption
can vary significantly across time [12, 22] and constraining
maximum power is of high interest as it impacts power de-
livery circuits [28]. The battery lifetime of portable systems
can also vary by as much as 20% depending on the power
consumption profile as a function of time [22]. For high-
performance multi-core chips, the chip temperature depends
critically on the average power dissipation across the ther-
mal time constant. Second, speed is crucial for evaluating
cost-benefit tradeoffs across a large array of designs. This
is particularly challenging with multi-core chips, where the
complexity of power estimation scales substantially beyond
that of uniprocessors. Third, the power estimation needs to

1NoCs tend to refer to heterogeneous fabrics for MPSoCs
while on-chip networks are usually used to refer to homoge-
neous fabrics for CMPs. In this paper we do not make this
distinction, and we use these terms interchangeably.

389

maintain relative accuracy so that the power efficiency of
alternative design choices can be accurately traded off. Fi-
nally, the tool needs to be readily extensible to cover myriad
future designs, an especially important feature in multi-core
chips where diverse architectures have been proposed.

In this work, we demonstrate a high-level power analysis
framework for multi-core chips that is based on LUNA [10]
(Link Utilization for Network power Analysis), a high-level
power analysis framework for NoCs that has since been de-
monstrated to be effective for power-aware compiler opti-
mizations in networks [33], and has been incorporated within
the SUIF2 parallelizing compiler for network power estima-
tions and optimizations [5, 6]. In the work by Soteriou et
al. [33], LUNA is employed by the compiler to generate fast
high-level estimates of the expected temporal and spatial
power profiles in the network. These estimates are used to
generate directives which are stored at each router and direct
the operation of dynamic-voltage-scalable (DVS) links, fa-
cilitating rapid responses to changing network traffic condi-
tions. To the best of our knowledge, ours is the first work to
model both processor cores and the communication fabric at
a high level within the same analysis framework. Here, both
processor pipelines and networks are abstracted as nodes
and links. More specifically, processor pipeline stages and
network routers are modeled as nodes, and the data flows
between processor structures and network interconnects are
modeled as links. Our results show that our tool is (1) rapid:
it is close to an order of magnitude faster when compared to
the Raw BTL simulator [35], a cycle-accurate multiproces-
sor simulator running a range of SPEC benchmarks, with
an average speed of 1.2 billion instructions per hour when
simulating a 16-tile multi-core system2; (2) relatively accu-
rate: it exhibits 9.1% relative accuracy on average when
validated against the same simulator; and (3) extensible: it
has been used to model a range of processor cores and net-
works, where both homogeneous CMPs and heterogeneous
MPSoCs can be modeled.

The rest of this paper is organized as follows. In Sec-
tion 2, we present a brief background on LUNA. Following,
in Section 3, we propose how processors can be mapped
onto nodes and links and then present in detail our high-
level power analysis for processors. Section 4 combines the
processor-network frameworks and proposes a new frame-
work for high-level power analysis of complete multi-core
chips. Our results are validated against a detailed model
of the MIT Raw CMP that was verified against actual sili-
con. Section 5 discusses related work, and finally Section 6
concludes the paper.

2. HIGH-LEVEL NETWORK
POWER ANALYSIS

Our proposed power analysis for multi-core chips rests
upon modeling the entire CMP/MPSoC as a network. Both
the processor cores as well as the NoC communication fabric
are modeled as a fully connected directed graph G = (N, L)
where N is the set of nodes and L is the set of links in
G. This enables us to then leverage an existing high-level
network power analysis framework, LUNA [10].

LUNA was chosen as the foundation of our complete chip

2This speedup estimation is based on 1,000-cycle sampling
periods, applied to a CMP with 16 processing tiles ab-
stracted as a 272 node, 464 link network-graph.

power analysis framework for a number of reasons:

• LUNA captures spatial and temporal variability in the
power profile.

• LUNA is fast, with a runtime shown to be up to 360X
faster than Orion [40], a cycle-accurate network power
simulator, as it is an analysis rather than a simulation-
based framework.

• LUNA preserves relative accuracy, which was shown
to be within 5.9% of Orion.

• LUNA is extensible and has been shown to model a
wide range of communication fabrics with ease, as it
does not require the explicit modeling of each compo-
nent’s functionality as in most cycle-accurate simula-
tors.

• LUNA has also been shown to be effective in enabling
compiler-driven power optimizations of the network
fabric [33], and it has been incorporated into the SUIF2
parallelizing compiler framework [6, 5].

2.1 Link Utilization as a Proxy for Power
Figure 1 shows the microarchitecture of a typical on-chip

network router consisting of buffers, an arbiter, a crossbar,
and a set of links. Dynamic network power, PN , is a function
of activity/utilization and energy costs (constants) for each
of these key router components:

PN =

4NX

j=1

(Ulinkj
· Elink + Ubufwrj

· Ebufwr +

+ Uarb�j/4� · Earb + Ubufrdj
· Ebufrd +

+ Uxbar�j/4� · Exbar) (1)

where N is the number of nodes in the network, j is the
enumerated index of each link (four links per router in a
typical mesh), and E[component] is the energy cost for a major
component of the router [40].

LUNA uses link utilization as an abstraction for network
power; in other words, the level of activity at a network link
is used as a proxy for the overall power consumption of that
network router and link, reducing Equation 1 to

PN =

4NX

j=1

ULinkj
· (Elink + Ebufwr + Earb + Ebufrd + Exbar)(2)

Such an abstraction works for high-level network power
analysis because each flit3 of a packet will definitely incur
the various energy costs: it will traverse the incoming link,
be written into the buffer, go through arbitration(s)4, be
read out from the buffer when granted crossbar traversal,
and finall traverse the crossbar. Since NoCs typically do not
drop packets, the activity at a link is a strong indicator of
the internal activity of the router across all of its components
(buffers, crossbar, etc.) as the two sets of activity, internally
in the router and at the link are almost identical. Thus,
the link utilization is a good proxy for measuring dynamic
power. As described in the work by Eisley and Peh [10],
leakage power can also be modeled by adding a fixed cost
to link utilization, or by lowering the link capacity by a
constant factor.

3Flit stands for flow control unit, a fixed-size segment of a
packet.
4Only the number of arbitrations will differ depending on
the level of network contention. However, it has been shown
that arbiter power is a small fraction of total router and link
power [40].

390

Arbiter
N

S

W

E

S

W

ECrossbar

N

Input port Output port

Elink

Earb
Ebufrd, bufwr

Exbar

Figure 1: Microarchitecture of a typical NoC router
and its associated energy costs for each component.

0 1 2

(a) Network message flows

Msg A

Msg B

In
je

ct
io

n
R

a
te

In
je

ct
io

n
 R

at
e

(b) Step 1: Injection rate functions

100

10060

Msg A

Msg B

10060

Msg A

100

Msg B

(c) Step 2: Mapping injection
rate functions onto link

utilization functions

U
til

iz
at

io
n

U
til

iz
a

tio
n

0.4

0.5

0.8

10060

Link

U
til

iz
at

io
n

10060

Link

U
til

iz
at

io
n

1.3

0.9

(d) Step 3: Summing the
utilization function of each link

0.8

0.8

0.4

0.4

0.5

10060

Msg A

U
til

iz
a

tio
n 0.8

0.4

Link

U
til

iz
at

io
n

1.3

11210060

(e) Step 4: Propagating
overflow for link

Link

U
til

iz
at

io
n

112

1.0

60 110

Msg B

Msg A

(f) Step 5: Constituent
message splitting

0.9 0.9

0

0

0

0 0 0

0

0

0

10 →

21→ 21 →
21 →

21→

21→

10 →

21 →

t

t

t

t
t

t

t

t

t

Figure 2: A walkthrough example showing LUNA’s five-

step link utilization analysis. Time t is in terms of clock

cycles.

Clearly, abstracting (network) power as resource (link)
utilization ignores many detailed components of power, such
as the effect of bit-level switching activity on dynamic power,
and that of input state on leakage power. However, this
approach enables a stateless analysis framework that is much
faster than cycle-accurate architectural power simulations
[40] while maintaining good relative accuracy [10].

2.2 How LUNA Analyzes Link Utilization
With the aid of Figure 2 we explain in detail LUNA’s five

key steps of analysis for deriving the link utilization of every
network link across time, when fed with a specific network
traffic. For clarity, we use a small three-node network whose
nodes are enumerated as 0, 1, and 2 (see Figure 2(a)).

Step 1. In the first step, message traffic between nodes
is captured as injection rate functions, with the injection
rate of each message expressed in units of flits per cycle.
These injection rate functions can be obtained by integrat-
ing LUNA into the compiler flow: as the compiler maps the
code to the processors of a multi-core chip, it uses knowledge
of the instruction dependencies and explicit message-passing
instructions along with the source and destination of each
dependency to calculate the injection rate functions. Figure
2(b) shows the injection rate functions of two message flows
A and B over the first 100 clock cycles.
Step 2. In this step, the injection rate functions of Step 1
are mapped onto links of a network topology as specified by
the routing algorithm, translating them into link utilization
functions, again measured in terms of flits per cycle. Fig-
ure 2(c) shows how message flows A and B are both routed
along links 0 → 1 and 1 → 2 for the same time duration of
100 clock cycles.
Step 3. Next, for each link, all utilization functions which
have been mapped to that link are superimposed and summed,
to reflect the sharing of links amongst multiple message flows

in a network. Figure 2(d) shows that this summation detects
traffic contention or overflow in link 1 → 2 between cycles
60 to 100 since the normalized utilization rate of 1.0 is ex-
ceeded (here we assume that the maximum link bandwidth
is one flit per cycle).
Step 4. To account for link contention, LUNA propagates
this overflow as depicted by the shaded area in Figure 2(e).
Intuitively, this overflow area corresponds to the number of
flits that have to be buffered and transmitted later as they
exceed the maximum link capacity.
Step 5. Finally, the link utilization functions are split back
into constituent message flows to reflect how individual mes-
sage flows are affected by the contention. Fair arbitration is
assumed in splitting the link utilization among the message
flows as shown in Figure 2(f).

These steps are repeated unidirectionally along the tem-
poral axis until no more traffic is injected into the network
and there is no remaining traffic that has been held back
due to contention. The resulting link utilization functions
provide an estimation of network power across space and
time.

3. HIGH-LEVEL PROCESSOR POWER
ANALYSIS

Here, we model a processor core’s architecture as a net-
work so as to enable us to utilize LUNA’s framework to
analyze processor power consumption. Modeling of the pro-
cessor architecture is carried out as follows: each resource
of the processor (functional units, cache, register file, etc.)
is mapped to a link in the network so that the utilization of
each resource becomes a link utilization in the network and
thus forms a proxy for its power consumption. The nodes in
our network merely exist to connect the links (resources) in
an orderly manner to reflect the processor microarchitecture
and its pipeline.

Our modeling consists of two phases: first the processor
microarchitecture is mapped onto a network; and second the
instructions are mapped (translated) to network messages.
Formally, our framework performs the following mappings:

R → L × N (3)

I → M (4)

where R is the set of resources, such as the functional units
of the microprocessor to be modeled, L is the set of links
in the network, N is the set of nodes in the network, I is
the set of instructions in the assembly program, and M is
the set of messages injected into the network. Note that the
user decides upon the actual resources of the microprocessor
to be modeled and the depth of detail of the microprocessor
model. We briefly discuss the issue of the appropriate level
of detail in Section 3.5.

3.1 Resource Utilization as a Proxy for Power
Similarly to the way we abstract network power through

link utilization in Section 2, we abstract the power consump-
tion of a processor by the utilizations of individual resources.
The summation of the energy costs of each component (func-
tional units, register file, caches etc.) is captured by each
respective utilization function as follows:

PP roc =

|component|X

i=1

Ucomponenti
(t) · Ecomponenti

(5)

391

Fundamentally, Equation 1 is a specific case of Equation 5
where Ecomponent = {Elink, Ebufwr, ...}. However, there is
a significant difference between the way we use Equations 5
and 1. In the case of the network fabric, the utilization of
all of the components is approximately equal because mes-
sage flows in networks consume roughly the same amount
of energy per hop. Estimates of individual network compo-
nents’ energy consumptions (Elink, Ebufwr, ...) are thus not
necessary because PN is a relative power measure; constant
factors can be eliminated. However, in the case of a pro-
cessor pipeline, each instruction will not consume the same
amount of energy. The component utilizations hence cannot
be removed and abstracted as a single utilization in Equa-
tion 5. Relative estimates of Ecomponenti are thus required
in order to obtain a relatively accurate estimation of Pproc.

Therefore the additional complexity exhibited here in the
case of a processor modeled as a network as compared to ex-
plicit NoC modeling in Section 2 centers around the issue of
how to obtain relatively accurate energy costs for each pro-
cessor resource. One way is to use capacitance estimates,
since E ∝ CV 2. The most accurate capacitance estimates
are derived from low-level tools which are typically run just
prior to the tape-out of a processor. However, good esti-
mates of capacitance for individual components can be ob-
tained prior to fabrication, even at the early stages of design,
based on previous experience and similar existing designs
and technologies. Furthermore, since capacitance is in turn
a function of area, relative energy can be estimated by the
area of the die that each (processor or network) component
occupies and it can be scaled across process technologies.
In short, while exact estimates can only be obtained from
late-stage designs, good estimates of E[component] can be ob-
tained from early-stage designs and similar existing designs.
Coupled with the U[component] values analyzed and derived
by LUNA, we can then derive a relatively accurate estimate
of the power consumed by each component of the processor
core across time. Section 4.2 investigates and demonstrates
that our framework is not overly sensitive to the accuracy
of these relative energy estimates, affirming its feasibility as
an early-stage power analysis tool.

3.2 Phase 1: Mapping a Processor
Microarchitecture onto a Network

As an illustration, we show a block diagram of the mi-
croarchitecture of a single processor core within the MIT
Raw CMP [34] that we model in Figure 3(a). Figure 3(b)
depicts the corresponding network-mapped representation.
Figure 3 is also used as the basis of our walkthrough exam-
ple in Section 3.4. The Raw chip is described in more detail
in Section 4. We have also modeled three other processor
cores as networks in a similar way using LUNA: the Intel
Pentium Pro, the Alpha 21264 and the MIPS R10000 cores,
but details of their modeling are omitted here for brevity.

In Figure 3(b), we see how the overall structure of the
mapped network emulates the pipeline flow of the proces-
sor. Starting from the left, there is the instruction fetch,
followed by the instruction decode stage, followed by the
register fetch stage. Continuing to the right of Figure 3(b),
instructions flow either through the functional units or, in
the case of memory reads or writes, through the address
(A), tag lookup (TL), and tag verify (TV) stages, and finally
through the writeback stage.

Our framework allows the user to design a custom model;

Register file

Functional
Units

Data cache

EX/MEM WBIDIF

Branch
pred.

Instr.
window

Instr.
cache

(a)

(b)

0 1 2 3

7

4 11

6 8

9 10

5

12

13

RFIDIF

M1 M2

WB

TL

A TV

P

F

U

FP4

BR

RF2

INT ALU

IF: Instruction Fetch, ID: Instruction Decode, RF: Register Fetch, EX: Adder, M1, M2: Integer
Multiply, F, P, U, FP4: FPU, A: Address, TL: Tag Lookup, TV: Tag Verify, WB: Writeback

Legend:

Figure 3: (a) Block diagram of a typical micropro-
cessor architecture and (b) its corresponding net-
work representation. The numbers here represent
node indices which are referred to in the walk-
through.

here we present a set of general rules, using the processor
pipeline of Figure 3(a) and its corresponding network rep-
resentation of Figure 3(b) as an illustrative example:

1. Base network. We begin with a single chain or path
of nodes and links where each link represents a stage in
the processor pipeline. Therefore, if the processor has
an N-stage pipeline, there will be N links and N + 1
nodes. This base network is depicted in the form of a
path 0 → 1 → 2 → 3 → 6 → 7 → 8 → 4 → 11, in
Figure 3(b); it is a 9-node path for the 8-stage Raw
pipeline.

2. Instruction fetch. This represents an access to the
instruction cache: 0 → 1.

3. Instruction decode. Since each instruction must go
through the decode process, a single path sufficiently
models this stage: 1 → 2. For conditional branches,
an additional access to the branch predictor is needed,
requiring another link: 1 → 13.

4. Register fetch. Here, either one or two register val-
ues are read. So there are two paths through the regis-
ter fetch stage corresponding to register reads: 2 → 12
and 2 → 3.

5. Instruction execute. Through the EX/MEM stage,
instructions either pass through one of the functional
units (3 → 4, the integer execution unit; 3 → 5 →
4, the integer multiply unit; or via path 3 → 6 →
7 → 8 → 4, the 4-stage Raw floating point unit) or
make an access to the data cache via path 3 → 9 →
10 → 4. The general trend here is that each possible
path through the processor pipeline is a separate path
through our network. The length of each ALU path
is determined by the latency of that ALU (the integer
multiply is a 2-cycle operation and hence is mapped
onto a 2-hop path 3 → 5 → 4).

6. Writeback. Finally, the last stage is the writeback
stage: 4 → 11. Note that in most cases, even if a result
from an instruction is used by a successive instruction

392

Figure 4: Partial Raw instruction set architecture (ISA) description. addiu: adds r1 and imm and stores the
result into r3; addu: adds r1 and r2 and stores the result in r3; j: jumps to instruction at memory address
imm; sw: stores the value in r1 at the memory address held in r2 plus the offset (imm); add.s: adds r1 and
r2 and stores the result to r3; mulh: multiplies r1 and r2 and stores the upper 32 bits to r3. The various
numbers, for example, “dest 2 0 1 2,” refers to the nodes of the network depicted in Figure 3. The text
contained in parentheses above aids the reader in mapping individual messages to processor pipeline stages.

via the data forwarding path, it still must continue
through the writeback stage.

7. Link bandwidth. With the topology of the “net-
work” mapped, the final step involves setting the band-
width of each link in this mapped network. This is
equal to the pipeline width for a corresponding com-
ponent in terms of instructions per cycle. Thus, if the
processor is capable of fetching four instructions per
cycle, the bandwidth of the 0 → 1 link in Figure 3(b)
is four. Similarly, if there are two identical integer
multiply units, then the bandwidth of links 3 → 5 and
5 → 4 is two. Since the Raw processor is a single-issue
machine, all of the links in Figure 3(b) have bandwidth
of one.

3.3 Phase 2: Mapping Processor Instructions
to Network Messages

Each processor instruction is mapped to one or more mes-
sages in our network. These message-mapped instructions
are then injected into LUNA’s framework. We make use of
the example in Figure 4 to show a partial ISA description
(in this case using Raw’s ISA) where the instructions addiu,
addu, j, sw, add.s, and mulh are given.

The inherent flexibility exhibited by our architecture mo-
del leads to the customization of the way instructions are
mapped onto messages. While Section 3.4 explains Figure 4
in detail, here we first describe a set of general rules which
we use in this work and which can be incorporated into the
modeling of any architectural model.

1. All instructions have a message which starts at node
0 (instruction fetch) and ends at node 3 (after register
fetch but before execution). As mentioned previously,
this is due to the fact that all instructions must be
fetched from instruction memory and decoded.

2. An additional message is required from node 3 to node
11. This represents the instruction passing through
the EX/MEM stage and later through the writeback
stage. The reason for splitting an instruction into two
messages, 0 → 3 and 3 → 11, is that instructions may
be fetched and decoded, but then may not be able to
enter execution because they may be either waiting
on previous instructions to finish execution and write
back their results (data dependencies), or they may be
waiting for functional units to become free (structural

dependencies). Incorporating a single message from
node 0 to node 11 (from fetch to commit) prevents
this.

3. Additional resources require further messages which
branch out from the two main messages per instruction
as described above. For example, if the instruction is a
branch it will then traverse the branch predictor path.
To model the branch prediction, a message is injected
from node 1 to node 13.

Dependency modeling and temporal analysis. The
injection time of each message (equivalently the instruction
fetch time) can either be estimated by high-level techniques
such as basic block analysis, or obtained through rapid func-
tional simulation of each thread. What needs to be captured
are the data dependencies between instructions. For exam-
ple, if one instruction writes to register r3, and then a later
instruction reads from r3, we resolve this dependency by not
issuing the latter before the former, as soon as this condi-
tion is identified. In this work, we use the second method
of obtaining instruction fetch times, that of rapid functional
simulation.

The following paragraphs describe the manner in which
the messages of each instruction are assigned timestamps:

1. Instruction fetch time. This is estimated based on
the fetch cycle of the last few instructions (only as
many instructions as the fetch width may be fetched
in one cycle), as well as the type of the last instruction.
For example, no instructions may be fetched in a given
cycle after a branch is encountered.

2. Instruction issue time. This is optimistically esti-
mated as the greater of (1) the time at which it was
fetched plus one cycle, and (2) when all its dependent
instructions have completed execution.

3. Instruction completion time. This is the issue time
plus the latency of the functional unit which this in-
struction uses. For instructions with memory operands,
this translates to the time it takes to retrieve data from
cache or memory.

In addition to inter-instruction dependencies within the
same core, inter-core instruction dependencies exist. Even
though it is straightforward to calculate the expected la-
tency for a message to travel between two nodes from the

393

U
til

iz
at

io
n

A B

Umax

t0 t3
t2t1

(a)
Time

Computation Communication Computation

t0 t1 t2 t3

(b)

Figure 5: An example of inter-core dependency: (a)
Node A performs internal computation, then sends
a block of data to node B, which in turn performs its
own internal computation. (b) Link utilization func-
tion for the link between nodes A and B; compet-
ing traffic from other nodes causes contention (area
above Umax) between t1 and t2, which is propagated
until after t2 (dotted box).

distance and the pipeline depth of each router in the net-
work, it is not possible to statically anticipate whether a
particular message will be delayed in the network due to
contention (and how many cycles it will be delayed). There-
fore, it is important for our model to be able to handle such
inter-core dependencies and hence model the closed-loop na-
ture between the processor cores and the network fabric of
CMPs. To illustrate this point, consider the scenario de-
picted in Figure 5. Here a computation block on node A
generates a block of communication from node A to node B,
which in turn feeds a computation block on node B. It is easy
to calculate the zero-load time at which the communication
will be complete, but it is possible that communication be-
tween other nodes will contend for the same link between
node A and node B, thus reducing the available bandwidth
for node A’s communication to node B. Figure 5(b) shows
the effect of contention in the network propagating some
of the communication to the next time segment. Because
the communication path overlaps with the path of the com-
putation on node B which utilizes the communication, this
propagation will in turn cause contention during the compu-
tation block on node B, delaying a number of the subsequent
instructions. The capturing of this dynamic interaction be-
tween the processor computation and the network commu-
nication is a distinctive feature of our framework.

3.4 A Detailed Framework Walkthrough
We proceed with a more concrete example that comple-

ments the preceding description of our framework. Here, we
present a walkthrough starting from the input: the assembly
code which is given in Table 1, the (partial) ISA description
given in Figure 4, and the architectural model of a processer
core depicted as a network in Figure 3. We will show the
way that the instructions are mapped onto this network, the
generation of the injection rate functions, and the utilization
function output for a single link, that of the integer ALU.

Input: assembly code. The example assembly code
used here is a sequence of three simple repeated loops that
begin with labels blockA, blockB, and blockC as Table 1
shows. Each loop repeats for one thousand instructions.
The reasons for showing these repeated loops are two-fold:
first, the injection rate functions that LUNA takes as in-
puts are described as piecewise constant functions, where
each “piece”5 is described by a pair of numbers, the time at
which the segment begins and its (utilization) value; second,
the use of a small code snippet enables us to feasibly present
our walkthrough.

5Hereafter referred to as a “segment.”

Table 1: Example instruction trace. Vertical ellipses
denote the previous instructions looping repeti-
tively.

Label Instr. no. Instr. Operands
blockA 1 addiu R2 R2 8

2 sw R3 0(R2)
3 j blockA
. . .
. . .
. . .

blockB 1001 addiu R1 R1 8
1002 mulh R1 R5
1003 addu R4 R4 R1
1004 j blockB

. . .

. . .

. . .
blockC 2001 add.s f4 f4 f2

2002 add.s f8 f8 f6
2003 j blockC

. . .

. . .

. . .

Table 2: Message injection rate functions for the
example given by the code snippet in Table 1. Paths
are given as a sequence of network nodes.

Message path Message injection rate function
0 1 2 (0, 1.0) (1000, 1.0) (2000, 1.0)
2 3 (0, 0.33) (1000, 0.75) (2000, 0.67)

3 4 11 (0, 0.33) (1000, 0.50) (2000, 0.0)
2 12 (0, 0.33) (1000, 0.50) (2000, 0.67)

3 9 10 4 11 (0, 0.33) (1000, 0.0) (2000, 0.0)
3 6 7 8 4 11 (0, 0.0) (1000, 0.0) (2000, 0.67)

3 5 4 11 (0, 0.0) (1000, 0.25) (2000, 0.0)

Mapping instructions to messages in the network.
The first instruction in Table 1 is addiu. At this point only
the instruction itself is important and not the operands. An
addiu lookup in the ISA table description (see Figure 4)
reveals that the addiu instruction maps to three messages:
one that reads from the instruction cache and decodes the
instruction; a second that reads a register value; and a third
that travels through the integer ALU, the result bus, and
finally the commit stage, where the destination register is
written. This mapping is depicted in Figure 6(a). Likewise,
the mapping of the next two instructions, sw and j, are
shown in Figures 6(b) and 6(c).

Calculating message injection rate functions. To
generate the message injection rate functions, we parse the
instructions one at a time. We keep a hash table where the
keys are the paths (e.g. 0 → 1 → 2), and the values are
the number of times that a message has been read from the
ISA description since the last segment. The values are reset
at every sampling interval; in this case we choose the sam-
pling interval to be one thousand instructions. At the end
of each inteval, the value for each message is divided by the
segment length. This is the average injection rate for the
current message and for the current segment. As an exam-
ple, consider the message from node 0 to node 1 to node 2
(0 → 1 → 2). Note that each instruction generates this mes-
sage, and therefore, the number of times that this message
occurs during the entire program is once per instruction. As

394

(a)

(b)

(c)

Figure 6: Three example instruction mappings: (a)
addiu, (b) sw, and (c) j. Bold directed lines de-
note links upon which respective instructions are
mapped. Filled circles at the beginning of directed
arrows denote the beginnings of messages.

a consequence, the injection rate function for this message
is 1.0 (or one message per instruction) for the entire length
of the code. As another example, consider the message from
node 3 to node 4 to node 11 (3 → 4 → 11). In this case, the
only instructions that generate this message are addiu, addu,
and sw. For the first one thousand instructions (blockA), one
of the three instructions (addiu) generates this message (see
the ISA description of Figure 4) and therefore the injection
rate function is equal to 0.33 for the first segment. For the
next one thousand instructions (blockB), two out of every
four instructions generate this message, so the injection rate
for the second segment is 0.50. Finally, for the last one
thousand instructions (blockC), no messages are generated,
so the injection rate for the last segment is 0.0. The rest
of the message injection rate functions are generated in this
way. Table 2 gives the injection rate functions for each of
the messages encountered by translating the code given in
Table 1.

Generating relative power profiles using LUNA.
We make use of an example with a single link to show how
we generate the relative power profile of the whole network.
Consider the link between nodes 3 and 4 (the integer ALU).
This link is only covered by one message: 3 → 4 → 11. As
a result, the relative power profile is simply given by the
injection rate function of this message. If there were mul-
tiple messages traversing this link, then the relative power
profile would be equal to the sum of the contributing injec-
tion rate functions of all such messages. Finally, if this sum
is greater than the bandwidth (as specified in the architec-
tural description) of a given link and at a given segment,

Block A Block B Block C

Time

Block A Block B Block C

��
��

U
til

iz
at

io
n

2

4

2

4

Before Contention
Propagation

After

Figure 7: A simple contention propagation example.

then this contention needs to be propagated into the next
segment(s). This model of propagation is incorporated into
LUNA. As in the case of a single link, the same procedure
described above is carried out on all links to generate the
relative power profile of the entire network (processor). The
result is simply the sum of all the individual link utilization
functions.

As an example of how we employ LUNA to model re-
source contention in a processor, we consider the scenario
illustrated in Figure 7. Let us suppose that the pipeline
width (fetch, issue, decode, commit) in the network shown
in Figure 6 is four instructions per cycle and that there are
only two integer ALU units. In this case, the injection rate
functions in Table 2 are multiplied by 4 (the fetch width).
The injection rate function of the message 3 → 4 → 11
multiplied by 4 is shown on the left side of Figure 7. Be-
cause there are only two integer ALUs, it is not possible to
achieve a throughput of greater than two instructions per
cycle through the execution stage. This utilization func-
tion is shown by the shaded area in Figure 7, which exceeds
the maximum utilization of 2 (instructions per cycle). To
reflect contention, this area is propagated to a later time
frame. This area represents instructions which must stall
because there are no appropriate execution units available.
The resulting utilization function is shown in the right half
side of Figure 7. This contention modeling and propagation
is handled in LUNA in the same way network contention is
handled.

3.5 Discussion
In the following subsections we discuss various features of

modern out-of-order superscalar processors and how these
features are incorporated into our analysis framework.

Branches and control dependencies. Our current
implementation follows the branching behavior as observed
from the functional simulation of the specific program and
input data set. A more realistic implementation will have to
handle control dependencies. This can be incorporated by
flagging branch instructions with an estimated probability of
being taken, which will then instruct the analysis to proba-
bilistically inject the corresponding instruction/message (or
not) into the processor/network. This probability can be
gathered from compiler profiling (up to 85% branch predic-
tion accuracy [17]) of representative input data sets to form
a natural point of integration between the compiler and our
analysis framework.

Leakage power. In our framework, leakage power is
modeled by adding a constant energy cost to each link (re-
source). In the context of the network representation, the
way this is done is as follows. First, the network is dupli-
cated. That is, a duplicate copy of each link and node is

395

created, with indices i + Nl and j + Nn representing this
duplication, where i is the index of the current link, j is the
index of the current node, Nl is the number of links, and
Nn is the number of nodes. Each link is given a normalized
bandwidth of 1.0. A new message is created for each link
which only traverses one link, and is given an injection rate
of 1.0 (i.e. maximum injection) for the entire time span. The
energy cost of each of the links in the duplicated network
is assigned to be the estimated leakage power for the re-
spective resource. This ensures that the same leakage power
will be added to each point in the profile of each resource.
Note that this modification does not require knowledge of
the program code (except for the code length) and thus does
not lead to a run time increase in our framework.

Cache misses. The L2 (and subsequent levels of) cache
is the most difficult resource to model because the L2 cache
is only accessed if the L1 cache misses. In order to deter-
mine whether a particular L1 access is a hit or a miss, one
must know the state of the cache as well as the value of the
address being accessed. There are two approaches to this
problem. The first solution is detailed profiling. Instead of
our framework using as input just the assembly code from
the compiler, additional information is conveyed to capture
whether each memory access (including instructions) is ex-
pected to hit and if so, in which level of the cache it hits.
Another approach, which is the one we take, assumes a pre-
profiled miss rate for each cache. This approach probabilis-
tically determines if a memory access hits and if so, in which
cache level it hits. This compromises accuracy; however, as
is evident in our validation, this loss in accuracy is not sig-
nificant for high-level power analysis.

Level of pipeline detail. While our framework is flexi-
ble enough in allowing the user to define the level of pipeline
detail, as expected there is a tradeoff between accuracy,
practicality, and complexity. A high level of detail allows
for higher accuracy, but at an earlier design stage, the nec-
essary relative energy values per resource modeled may be
difficult to estimate accurately. A low level of detail allows
for more rapid analysis, as well as the ability to obtain rea-
sonable relative energy estimates more easily, but may not
provide a resultant relative power profile with enough vari-
ation and fine granularity to qualify its use. Here we model
the major components of the Raw core at the same gran-
ularity as that of the capacitance estimates that we have,
and we use the available information to its maximum po-
tential. As an exception, consider the pipelined execution
units depicted in Figure 3. Since we use a single estimate of
the energy for each unit for each completion of an operation,
we assign the cost of the first link in each execution unit’s
network path to be that single estimate, while the costs of
the rest of the links are assigned as zero (no cost). Thus, we
can simplify Figure 3 by collapsing the pipelined execution
unit network paths into one stage (link) each. However, we
choose to model it as we originally presented for two reasons:
first, the mapping of the architecture to the network is more
intuitive; and second, this allows for the easy extension of
breaking the energy cost down by stage. In other words,
if we had an estimate of the energy cost for each stage of
the floating point ALU, we would instead assign non-zero
weights to all four links F, P, U, FP4, in order to increase
the accuracy of the model.

4. PUTTING IT ALL TOGETHER: HIGH-
LEVEL CMP POWER ANALYSIS

With both processor cores and NoCs modeled as nodes
and links in LUNA, combining the models into a compre-
hensive high-level CMP power analysis framework now be-
comes a relatively simple undertaking. First, the processor
core’s network representation is replicated for each node in
the network.6 Then, links are added to connect the commu-
nication fabric to the processor pipelines. For example, Fig-
ure 8 depicts the complete MIT Raw CMP represented by
our analysis framework and highlights the way in which the
NoC and cores are connected. The Raw chip is an on-chip
multiprocessor with sixteen homogeneous cores. Each core
consists of an eight-stage in-order single-issue pipeline with a
single-stage integer ALU, a two-stage integer multiplier, and
a four-stage floating point unit. Additionally, there is 32KB
of data cache and 96KB of instruction cache per core. The
core is mapped by LUNA onto nodes and links by following
the same methodology described in Section 3. To facilitate
communication between cores, the Raw CMP features four
separate networks with each arranged as a two-dimensional
mesh topology. Two of the networks are static and two are
dynamic; the communication over the static networks is de-
termined at compile-time, whereas the communication over
the dynamic networks, such as in the case of cache misses,
is determined at run-time. The communication fabrics are
weaved into the core processor pipeline by allowing the net-
work buffers (four per port per network) to be addressed in
the same way as any other registers in the ISA. Because of
this tight integration, it takes only three cycles for a data
packet (i.e. a register value) to travel from one processor
core to an adjacent core.

Referring again to Figure 8, we see that the processor core
has two links connecting it to the communication network
(the dashed circle in the upper-right): one from the com-
munication fabric to the beginning of the execute stage, and
one from the end of the execute stage to the communication
network. This is the key in integrating the two components
of the CMP together in our framework. While this scheme
fits the Raw network interface well because the Raw network
is tightly woven into the core pipeline, the same scheme can
be used to model other interfaces as well. For example, if
a cache-coherent shared-memory CMP is modeled, the net-
work interface will be through the cache; the incoming link
from the NoC would then connect to the node between the
address and tag lookup stages. This represents a cache write
when data is received by the processor. The outgoing link
to the NoC remains the same, because its source node is the
destination node for the cache (i.e. tag verify) link already.

While the integration of the processor cores’ models into
the communication fabric model in LUNA is straightfor-
ward, i.e. by constructing the graph as depicted in Figure 8,
integrating the processor instructions (mapped as messages
in the processor cores) with the actual NoC messages is more
challenging. Instructions which have no dependencies out-
side the core are treated in the same way as in our uniproces-
sor model discussed previously. However, like many other
NoCs, the Raw CMP uses a message-passing architecture

6Naturally, only homogeneous CMPs with identical proces-
sor cores can have their models replicated. Heterogeneous
chips simply require distinct network representations for
each distinct core or subsytem.

396

Figure 8: Raw CMP mapped to LUNA’s nodes and
links. The communication fabric is in the lower-left,
and a processor core is depicted in the upper-right.
This core is replicated at each node in the communi-
cation fabric. Note that the dashed node at the top
of the core is actually a node in the communication
fabric.

which means that there are explicit send and receive instruc-
tions at the programmer-level (e.g. using the C language).
As mentioned earlier, at the assembly level, these sends and
receives are carried out by reading from or writing to the
registers which are actually the network buffers. Because
stalls on one core or communication congestion can lead to
stalls on another, it is necessary to capture this behavior in
order to accurately create a temporal power profile. There-
fore, a send or receive in our framework is modeled as a
message whose source is a node in one core, but whose des-
tination is a node in another core. A message that is stalled
will not arrive at the destination core and thus will cause the
injection of subsequent dependent messages to be stalled as
well. The blocked messages then hold up resources in the
processor core and network that in turn propagates con-
gestion backwards to upstream messages and instructions.
This allows intercore as well as intracore instruction depen-
dencies to be modeled cleanly with LUNA’s analysis of link
utilization and contention.

4.1 Validation Results
We validate our methodology against the cycle-accurate

Raw CMP BTL simulator. The Raw CMP BTL simula-
tor [29] has been validated against actual silicon at a cycle-
level granularity. At each cycle, the level of activity at each
microarchitectural component is calculated by the BTL sim-
ulator and coupled with detailed capacitance values gener-
ated by the IBM Chipbench placement tool [19]. These val-
ues are low-level and accurate estimates which were obtained
based on the final layout of the MIT Raw chip prior to tape-
out. This allows the calculation of the power consumption
of the Raw chip at the cycle level.

Our high-level analysis takes as input the instruction trace

of all sixteen tiles of the Raw CMP. This trace was obtained
from the output of the BTL simulator, then abstracted into
1000-cycle segments and fed into our framework (see Sec-
tion 3.4), which then analyzes and returns a relative power
profile for the entire CMP. To calculate the relative error,
the cycle-level Raw power profile from the BTL simulator is
sampled at the same frequency as our relative power profile,
and both profiles are normalized to their respective means.
Therefore, the relative error is calculated as the average ab-
solute difference between the two profiles on a sample-by-
sample basis:

Error =
1

N

NX

i=1

abs(Pli/Plavg − Pri/Pravg) (6)

where Pli is the ith sample of our relative power trace, Plavg

is the average value of our relative power profile across all
samples, Pri is the ith sample of the Raw power trace, and
Pravg is the average value of the Raw power profile across
all samples. The relative errors for a range of benchmarks
that we ran on the Raw simulator are given in Table 3 while
the temporal profiles of two benchmarks (fft and gzip) are
shown in Figures 9 and 10.

While the average relative error is 9.1%, the most note-
worthy trend is that half of the benchmarks exhibited less
than 4% relative error, while the other half of the bench-
marks exhibited greater than 13% relative error. The rea-
son for this is that Equation 6 exaggerates the error per-
centage when there is more variation in the profiles, that
is, fluctuation within the same profile. It is evident from
Figure 9 that even though the profiles match well visually,
upon close inspection, from approximately cycle 150,000 to
the end of the trace, BTL’s output varies much more than
that of LUNA; this is a major source of the relative error
measured. Similarly, in Figure 10, the profile of gzip is
quite flat for both power analysis tools due to the fact that
gzip performs the same operation on a continuous stream of
data. Because there is limited variability, we consequently
observe the lowest relative error. Our analysis framework
also offers a significant speedup over the Raw BTL cycle-
accurate simulator which is close to an order of magnitude
slower.7 Thus we see that our framework will be of use to
compilers as an early-stage power analysis framework which
offers good relative accuracy and a significant reduction in
run time as compared to current high-level cycle-accurate
power simulators.

4.2 Effect of High-Level Energy Estimation
Error

The previous sections discussed a number of methods for
estimating the energy consumption of each processor and
network resource by either using low-level capacitance calcu-
lations or higher-level area estimates. In detail, Section 4.1
demonstrated results using energy estimates based on the
detailed low-level capacitance values of Raw. To further
demonstrate the relative insensitiveness of our framework
to energy estimation errors, here we randomly perturb the
energy estimates for each resource, Ecomponenti , and inves-
tigate the effect on the accuracy of our approach.

Energy perturbation is carried out as follows: each CMP

7There is still room for future improvement as we did not
perform any optimizations on our framework short of turn-
ing on the -O flag of gcc.

397

Table 3: Relative error and speedup of our framework as compared to the Raw CMP BTL simulator.
Benchmark 802 11a enc 8b 10b enc fft gzip twolf bzip2 avg
Relative error (%) 1.1 13.5 13.8 0.7 3.6 22 9.1
Speedup 9.1x 12.1x 7.4x 3.9x 4.1x 3.8x 6.7x

fft - LUNA

0

2000

4000

6000

8000

10000

12000

0 50000 100000 150000 200000 250000

Time

R
el

at
iv

e
P

o
w

er

fft - BTL

0

2

4

6

8

10

12

14

0 50000 100000 150000 200000 250000

Time

P
o

w
er

 (
W

)
(a) (b)

Figure 9: Power profiles for the fft benchmark running on the Raw CMP as captured by (a) LUNA and by
(b) BTL.

gzip - LUNA

0

2000

4000

6000

8000

10000

12000

0 500000 1000000 1500000 2000000

Time

R
el

at
iv

e
P

o
w

er

gzip - BTL

0

2

4

6

8

10

12

14

16

0 500000 1000000 1500000 2000000

Time

P
o

w
er

 (
W

)

(a) (b)

Figure 10: Power profiles for the gzip benchmark running on the Raw CMP as captured by (a) LUNA and
(b) BTL.

resource energy cost Ecomponenti (denoted with a one-hop
link in our NoC abstraction model, see Section 3) now takes
a random value E = Ecomponenti · P , where P is a number
between 1

1+pmax
and 1+pmax, i.e. P is evenly distributed in

the [1
1+pmax

, 1+pmax] range. For example, with pmax = 1.0,
the energy estimates randomly lie between 0.5 and 2X of
their original values. Energy perturbation results for all six
tested benchmarks are presented in Figure 11.

For each benchmark we ran four sets of experiments with
different pmax values such that pmax = {0.1, 0.2 ,0.5, 1.0}.
We ran five experiments for each pmax for a total of twenty
experiments per benchmark. The result for each experiment

is a relative error value, as Table 3 demonstrates in the orig-
inal case where no energy cost perturbations are applied, i.e.
pmax = 0 and where the range [1

1+pmax
, 1 + pmax] contracts

to a single point and P = 1. It is noted that by simply
averaging the results for each set of experiments for a given
benchmark and pmax does not reveal much variation in aver-
age accuracy because each new set of energy estimates may
decrease the resultant relative error value as well as increase
it. Instead, here we plot the range between the minimum
and maximum relative error estimates from each set of ex-
periments in order to capture the power profile variations for
the various benchmarks. The values in Figure 11 are normal-

398

0

0.5

1

1.5

2

2.5

tw
olf

bz
ip2 gz

ip fft

80
2_

11
a_

en
c

8b
_1

0b
_e

nc

N
o

rm
al

iz
ed

 r
an

g
e

p_.1
p_.2
p_.5
p_1.0

Figure 11: Normalized range of relative error as
a function of perturbation magnitude (energy esti-
mate inaccuracy). The legend gives pmax values.

ized to the values in Table 3, for each respective benchmark
tested. For example, a variation of 1.06 for twolf and pmax

= 1.0 means that the difference between the minimum and
maximum calculated relative errors is 3.82% (3.6% × 1.06).
The average error values across all benchmarks for pmax =
0.1 and pmax = 0.2 are 0.14 and 0.16 respectively. This
indicates that energy estimates of up to 20% lead to less
than 20% deviation in the calculated relative error. Thus,
substituting higher-level energy or area estimates does not
introduce large errors into our framework showing its high
resilience to energy component resource perturbations.

5. RELATED WORK
There has been substantial prior work in the area of rapid

power estimation for uniprocessor cores [16]. Here, due to
space limitations, we present selected prior related work.
These techniques, however, ignore the communication fab-
ric’s impact on overall power-performance in a multi-core
chip. Power analysis of the processing elements of a CMP
without regard to the communication fabric has two main
disadvantages. First, a CMP is a closed-loop system, and
therefore communication delays due to congestion or con-
tention introduce dependencies between instruction flows
of different cores which cannot be predicted by program
analysis alone. Second, the power consumption of the net-
work fabric comprises a significant percentage of total CMP
power. For example, the four overlapping mesh networks
consume 36% of the Raw CMP’s power [14]. Tiwari et
al. [38, 37] proposed fast software power analysis where
the power consumed by each type of executed instruction is
physically measured so a program’s power consumption can
be estimated by summing the average power consumption of
single instructions or pairs of instructions at high accuracy,
albeit only where the hardware platform is already avail-
able for measurement. Wattch [3], a library of architectural
power models for uniprocessors, has been incorporated into
cycle-accurate simulators such as SimpleScalar, achieving a
fast simulation speed of about 400 million instructions per
hour [32], as well as Simics, a full-system simulator [7, 31]

(80 million instructions per hour, or roughly 1/5th the speed
of SimpleScalar). A low-level power estimation framework is
SimplePower [41], an execution-driven, cycle-accurate, RT-
level power estimation tool based on SimpleScalar. Power
simulation can be further accelerated through sampling, such
as the use of SimPoints [30], where a small number of sim-
ulation points are chosen statistically to represent the com-
plete execution of the program. While this technique does
not increase the simulation speed, per se, in terms of in-
structions per hour, it reduces the time to arrive at over-
all performance estimates by approximately three orders of
magnitude. However, our goal here is to provide a power
profile as a function of time rather than average power, so
the SimPoints approach is not suitable for our framework.
Recent work by Isci et al. [13] collects and analyzes power
phases in running applications. These phase characteriza-
tions can summarize application behavior with representa-
tive execution regions, thus selectively fast-forwarding simu-
lations. However the technique requires a real-system mea-
surement framework which means that the system under
test needs to be available in silicon.

More recent research has explored power estimation for
multi-core chips, looking at both computation and commu-
nication cores. Meyer et al. [18] take a higher-level approach
to system-level simulation, exploring thread or fragment-
level rather than instruction-level power-performance sim-
ulation. Similarly to the work of Tiwari et al. [38], Meyer
et al. statically estimate energy costs per fragment rather
than per instruction. Despite being rapid, this approach
estimates aggregate power estimates instead of providing a
temporal profile. The publicly-released multiprocessor sim-
ulator, RSIM [21], has been extended with power models
from Orion [40] for bus-based multi-core chips [27] (roughly
40 million instructions per hour). Similarly, Orion has been
integrated into the Liberty Simulation Environment [39] to
construct a cycle-accurate interconnection network power
simulator and can be extended for power modeling of the
entire CMP (between 2 million and 130 million instructions
per hour, for 16 and 1 cores simulated, respectively). Other
multiprocessor power simulators such as that of Raw [14, 34]
are specific to their chip architectures and offer little flexi-
bility in investigating other design alternatives. In general,
these detailed full-system simulators are very useful for ar-
chitectural research, but the slow simulation speed renders
them unsuitable for incorporating them within a compiler
flow.

6. CONCLUSIONS
High-level power analysis that enables rapid, early-stage

power estimation with good relative accuracy and which
cannot afford lengthy simulations in order to make power-
aware decisions, is critically needed, particularly within the
compiler flow. Additionally, this problem escalates with the
advent of multi-core chips that require prohibitive simula-
tion lengths with cycle-level architectural power simulators:
in these simulators, the simulation time scales super-linearly
as a function of the number of cores under consideration.

In this paper we proposed a high-level power analysis
framework that synergistically considers both the proces-
sor cores and the communication fabric in a multi-core chip.
This technique maps processor pipelines as networks, there-
by leveraging an existing high-level network power analysis
framework that has been shown to be suitable for incorpora-

399

tion into the compiler flow. In this paper we demonstrated
its effectiveness by analyzing the entire MIT Raw CMP,
realizing 7X speedup on average versus the cycle-accurate
Raw BTL simulator, while maintaining a relative accuracy
of 9.1% on average.

Acknowledgments
We would like to thank the anonymous reviewers for their
helpful comments for this and future work. We would also
like to acknowledge the support for this work: the MARCO
Gigascale Systems Research Center, NSF grant CNS-0509402,
and the Intel Corporation.

7. REFERENCES

[1] ARM Integrated Multiprocessor Core, 2006. Available [online]:
http://www.arm.com.

[2] L. Benini and G. De Micheli. Powering Networks on Chip. In
Proc. of the International Symposium on System Synthesis,
pp. 33-38, Oct. 2001.

[3] D. Brooks et al. Wattch: A Framework for
Architectural-Level Power Analysis and Optimizations. In
Proc. of the International Symposium on Computer
Architecture, pp. 83–94, June 2000.

[4] M. Burtscher and I. Ganusov. Automatic Synthesis of
High-Speed Processor Simulators. In Proc. of the International
Symposium on Microarchitecture, pp. 55–66, Dec. 2004.

[5] G. Chen et al. Compiler-Directed Channel Allocation for
Saving Power in on-Chip Networks. In Proc. of the
Symposium on Principles of Programming Languages, pp.
194–205, Jan. 2006.

[6] G. Chen et al. Reducing NoC Energy Consumption Through
Compiler-Directed Channel Voltage Scaling. In Proc. of the
Conference on Programming Language Design and
Implementation, pp. 193–203, June 2006.

[7] J. W. Chen et al. SimWattch: An Approach to Integrate
Complete-System with User-Level Performance/Power
Simulators. In Proc. of the International Symposium on
Performance Analysis of Systems and Software, pp. 1–10,
March 2003.

[8] W. J. Dally and B. Towles. Route Packets, Not Wires:
On-Chip Interconnection Networks. In Proc. of the Design
Automation Conference, pp. 684–689, June 2001.

[9] L. Eeckhout et al. Statistical Simulation: Adding Efficiency
to the Computer Designer’s Toolbox. IEEE Micro, Vol. 23,
No. 5, pp. 26–38, Sept.-Oct. 2003.

[10] N. Eisley and L.-S. Peh. High-Level Power Analysis for
on-Chip Networks. In Proc. of the International Conference on
Compilers, Architecture and Synthesis for Embedded Systems,
pp. 104–115, Sept. 2004, LUNA: Available [online]
http://www.princeton.edu/∼eisley/LUNA.html.

[11] Gigascale Systems Research Center (GSRC), 2006. Available
[online] http://www.gigascale.org/roadmap/.

[12] C.-T. Hsieh et al. Profile-Driven Program Synthesis for
Evaluation of System Power Dissipation. In Proc. of the
Design Automation Conference, pp. 576–581, June 1997.

[13] C. Isci and M. Martonosi. Phase Characterization for Power:
Evaluating Control-Flow-Based and Event-Counter-Based
Techniques. In Proc. of the International Symposium on High
Performance Computer Architecture, pp. 121–132, Feb. 2006.

[14] J. S. Kim et al. Energy Characterization of a Tiled
Architecture Processor with on-Chip Networks. In Proc. of
the International Symposium on Low Power Electronics and
Design, pp. 424–427, Aug. 2003.

[15] P. Kongetira et al. Niagara: A 32-Way Multithreaded Sparc
Processor. IEEE Micro, Vol. 25, No. 2, pp. 21-29, March/April
2005.

[16] E. Macii et al. High-Level Power Modeling, Estimation, and
Optimization. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, Vol. 17, No. 11, Nov. 1998.

[17] S. McFarling and J. Hennessy. Reducing the Cost of Branches.
In Proc. of the International Symposium on Computer
Architecture, pp. 396–403, June, 1986.

[18] B. H. Meyer at. al. Power-Performance Simulation and
Design Strategies for Single-Chip Heterogeneous
Multiprocessors. IEEE Transactions on Computers, Vol. 54,
No. 6, June 2005.

[19] MIT Raw Team, personal communication, 2006.

[20] J. Oliver et al. Synchroscalar: A Multiple Clock Domain,
Power-Aware, Tile-Based Embedded Processor. In Proc. of
the International Symposium on Computer Architecture, pp.
150–161, June 2004.

[21] V. S. Pai et al. RSIM: An Execution-Driven Simulator for
ILP-Based Shared-Memory Multiprocessors and
Uniprocessors. In Proc. of the International Symposium on
High Performance Computer Architecture, pp. 72–83, Feb.
1997.

[22] M. Pedram and Q. Wu. Design Considerations for
Battery-Powered Electronics. In Proc. of the Design
Automation Conference, pp. 861–866, June 1999.

[23] D. Penry et al. Exploiting Parallelism and Structure to
Accelerate the Simulation of Chip Multi-Processors. In Proc.
of International Symposium on High Performance Computer
Architecture, pp. 29–40, Feb. 2006.

[24] D. Pham et al. The Design and Implementation of a
First-Generation Cell Processor. In Proc. of the International
Solid-State Circuits Conference, pp. 184–185, March 2005.

[25] PoPNet Simulator, 2006. Available [online]
http://www.princeton.edu/∼lshang/popnet.html.

[26] K. Sankaralingam et al. Exploiting ILP, TLP, and DLP with
the Polymorphous TRIPS Architecture. In Proc. of the
International Symposium on Computer Architecture, pp.
422–433, June 2003.

[27] R. Sasanka et al. The Energy Efficiency of CMP vs. SMT for
Multimedia Workloads. In Proc. of the International
Conference on Supercomputing, pp. 196–206, June 2004.

[28] L. Shang et al. PowerHerd: Dynamically Satisfying Peak
Power Constraints in Interconnection Networks. In Proc. of
the International Conference on Supercomputing, pp. 98–108 ,
June 2003.

[29] L. Shang et al. Thermal Modeling, Characterization, and
Management of On-Chip Networks. In Proc. of the
International Symposium on Microarchitecture, pp. 67–78,
Dec. 2004.

[30] T. Sherwoood et al. Automatically Characterizing Large Scale
Program Behavior. ACM SIGPLAN Notices, Vol. 37 , No. 10,
pp. 45–57, Oct. 2002.

[31] Simics, 2006. Available [online]: www.simics.net.

[32] SimpleScalar LLC, 2006. Available [online]:
http://www.simplescalar.com.

[33] V. Soteriou et al. Software-Directed Power-Aware
Interconnection Networks. In Proc. of the International
Conference on Compilers, Architecture, and Synthesis for
Embedded Systems, pp. 274–285, Sept. 2005.

[34] M. B. Taylor et al. Evaluation of the Raw Microprocessor:
An Exposed-Wire-Delay Architecture for ILP and Streams.
In Proc. of the International Symposium on Computer
Architecture, pp. 2–13, June 2004.

[35] M. B. Taylor et al. Scalar Operand Networks. IEEE
Transactions on Parallel and Distributed Systems, Vol. 16, No.
2, pp. 145–162, Feb. 2005.

[36] The Standard Performance Evaluation Corporation, 2006.
Available [online]: http://www.spec.org.

[37] Vivek Tiwari et al. Instruction Level Power Analysis and
Optimization of Software. Journal of VLSI Signal Processing,
Vol. 13 Issues 2–3, pp. 223–238, Aug.-Sep. 1996.

[38] Vivek Tiwari et al. Power Analysis of Embedded Software: A
First Step towards Software Power Minimization. In Proc. of
the 1994 International Conference on Computer-Aided Design,
pp. 384–390, Aug. 1994.

[39] M. Vachharajani et al. Microarchitectural Exploration with
Liberty. In Proc. of the International Symposium on
Microarchitecture, pp. 271–282, Nov. 2002.

[40] H. Wang et al. Orion: A Power-Performance Simulator for
Interconnection Networks. In Proc. of the International
Symposium on Microarchitecture, pp. 294–305, Nov. 2002.

[41] W. Ye et al. The Design and Use of SimplePower: A Cycle
Accurate Energy Estimation Tool. In Proc. of the Design
Automation Conference, pp. 340–345, June 2000.

[42] K. C. Yeager. The MIPS R10000 Superscalar Microprocessor.
IEEE Micro, Vol. 16, No. 2, pp. 28–40, April 1996.

400

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

