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ABSTRACT
Bank switching is a technique that increases the code and
data memory in microcontrollers without extending the ad-
dress buses. Given a program in which variables have been
assigned to data banks, we present a novel optimization
technique that minimizes the overhead of bank switching
through cost-effective placement of bank selection instruc-
tions. The optimal placement is controlled by a variety
of different objectives, such as runtime, low power, small
code size or a combination of these parameters. We have
formulated the problem as a form of Partitioned Boolean
Quadratic Programming (PBQP).

We implemented the optimization as part of a PIC Micro-
chip backend and evaluated the approach for several opti-
mization objectives. Our benchmark suite comprises pro-
grams from MiBench and DSPStone plus a microcontroller
real-time kernel and drivers for microcontroller hardware de-
vices. Our optimization achieved a reduction of program
memory space between 2.7% and 18.2%, and an overall im-
provement with respect to instruction cycles between 5.1%
and 28.8%. Our optimization achieved an optimal solution
for all benchmark programs.
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1. INTRODUCTION
Embedded systems have become an integral part of the

infrastructure of today’s technological society. They are
prevalent in an ever-increasing range of applications, in-
cluding consumer electronics, home appliances, instrumen-
tation/measurement, automotive, communications and in-
dustrial control. Microcontrollers constitute the core of all
embedded systems designs. According to the Semiconductor
Industry Association’s November 2005 forecast, the market
for 4-, 8-, 16-, and 32-bit microcontrollers will grow to $12.8
billion in 2006. The reported share of 8-bit microcontrollers
is 42%. Gartner Dataquest reports that the 8-bit market
reached $5.5 billion in 2004 [6].

The widespread use of 8-bit microcontrollers can be at-
tributed to the following: (1) many embedded systems de-
signs do not need the more costly, energy-burning and com-
plex 16- or 32bit CPUs, (2) many embedded systems designs
distribute small numbers of low-cost electronics instead of
using one powerful and expensive core CPU, (3) embedded
systems designs often employ 8-bit microcontrollers as low-
cost subsystems of complex 32-bit hardware designs, and (4)
there is a trend to add entry-level electronics intelligence to
mechanical-based systems.

Bank switching is a common technique for 8-bit micro-
controllers to increase the size of code and data memory
without extending the address buses of the CPU. The ad-
dress space is partitioned into memory banks, and the CPU
can only access one bank at a time. This bank is called the
active bank. To keep track of the active bank the CPU’s bank
register stores the address of the active bank. A bank selec-
tion instruction is issued to switch between banks. Smaller
address buses result in smaller chip die-sizes, higher clock
frequencies and less power consumption. As an example,
Motorola 68HC11 8-bit microcontrollers addresses a maxi-
mum of 64KB memory using their 16-bit address registers.
This scheme allows multiple 64KB banks to be accessed al-
though only one can be active at a time. As another exam-
ple, the PIC16F877A microcontroller allows data accesses to
be switched between four 128B data banks. Other processor
families have similar features such as Zilog’s Z80 and Intel’s
8051 processor families. Architectures such as Ubicom’s 8-
bit SX microcontroller organize their registers in register
banks to shorten the cycle time avoiding multi-porting [15].

The disadvantage of bank switched architectures is the
code-size and runtime overhead caused by bank selection
instructions. Several commercial and open-source compil-
ers for microcontrollers provide limited support to generate
bank-switched code. For example, GNU GCC for Motorola
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68HC11 and 68HC12 will compile a function declared with
the far attribute by using a calling convention that takes
care of switching banks when entering and leaving a func-
tion. However, the GCC compiler does not eliminate re-
dundant bank selection instructions. The CC5X compiler
for mid-range PICmicro devices (from B Knudsen Data) ex-
pects the programmer to allocate variables to banks but
will insert bank selection instructions automatically with no
guarantee of optimal placement of the bank selection in-
structions. The PICC-18 for the PIC18Fxxx family appears
to have automated both tasks under certain language re-
strictions. As far as the authors are aware of, the bank
switching schemes used in existing compilers seem to be ad
hoc, and it is still a challenging research problem to generate
efficient memory accesses for bank-switched architectures.

This work is concerned with developing a compiler opti-
mization for optimal placement of bank selection instruc-
tions in a bank-switched architecture. This problem is im-
portant because poor placement of bank selection instruc-
tions increases runtime, code-size, and power consumption.
Given a program in which all variables have been assigned
to banks (by the programmer or compiler), we present an
optimization that inserts a minimum number of bank selec-
tion instructions in the program to guarantee that banked
memory is accessed correctly. The optimal placement is con-
trolled by a variety of objectives such as runtime, low power,
small code size or a combination of these parameters. The
authors are only aware of an ad-hoc approach in this area,
which was introduced in [8].

Most previous efforts on partitioned memory architectures
focus on maximizing parallel data accesses to make mem-
ory banks simultaneously active [2, 10, 16, 17, 19, 21, 25,
26]. By enabling parallel memory accesses in a single in-
struction, one can increase memory bandwidth and thus
improve program performance. Such partitioned memory
banks are found in Motorola’s DSP56000, Analog Devices’
ADSP2016x and NEC’s μPD77016. Some researchers re-
organize the order of instructions and the layout of data,
e.g., by loop transformations [3], to reduce energy consump-
tion in partitioned memory architectures. In the case of
heterogeneous memory banks such as scratchpad SRAM, in-
ternal DRAM and external DRAM, we refer to [1, 11, 23,
24] and the references therein for a number of compiler tech-
niques proposed on performing automatic scratchpad man-
agement.

The contributions of this paper are as follows:

• We present a novel algorithmic approach to minimize
the number of bank selection instructions in a parti-
tioned memory architecture for a given cost metric.

• We formulate the problem as a form of Partitioned
Boolean Quadratic Programming (PBQP). We present
experimental evidence that PBQP is very efficient for
real-world applications.

• We introduce an intra- and inter-procedural approach
for placing bank selection instructions.

• We have implemented the optimization as part of a
backend for a Microchip microcontroller. Microchip
is the No. 1 8-bit microcontroller manufacturer with
45000 customers worldwide (Gartner, 2004 [5]). We
present our experimental results over a benchmark suite

to show that our optimization can accommodate a va-
riety of optimization objectives such as speed, space
and a combination of both.

The paper is organized as follows. In Section 2, we de-
scribe the background. In Section 3, we define and motivate
the problem of minimizing the costs of bank selection in-
structions across basic block boundaries. The optimization
algorithm is presented in Section 4. In Section 5, we present
and discuss our experimental results. We draw our conclu-
sions in Section 6.

2. BACKGROUND
A basic block is a sequence of statements in which flow

of control can only enter from its beginning and leave at
its end. A control flow-graph(CFG) is a directed graph
G = 〈V, E, s, e〉 where V is the set of vertices represent-
ing basic blocks and E is the set of edges. Vertex s is the
entry node (aka. start node) of the CFG and e is the exit
node (aka. end node). The set of predecessors preds(u) is
defined as {w|(w, u) ∈ E} and the set of successors succs(u)
as {v|(u, v) ∈ E}. A critical edge is an edge (u, v) for
which |succs(u)| > 1 and |preds(v)| > 1. A path π is a
sequence of vertices 〈v1, . . . , vk〉 such that (vi, vi+1) ∈ E for
all 1 ≤ i < k. In a CFG, all vertices are reachable, i.e. there
is a path from s to every other vertex in V .

The PBQP problem [20, 4] is a specialized quadratic as-
signment problem and is NP-complete. Consider a set of
discrete variables X = {x1, . . . , xn} and their finite domains
{D1, . . . , Dn}. A solution of PBQP is a simple function
h : X → D where D is D1 ∪ . . . ∪ Dn; for each variable
xi we choose an element di in Di. The quality of a solution
is based on the contribution of two sets of terms:

1. for assigning variable xi to the element di in Di. The
quality of the assignment is measured by a local cost
function c(xi, di).

2. for assigning two related variables xi and xj to the
elements di in Di and dj in Dj . We measure the
quality of the assignment with a related cost function
C(xi, xj , di, dj).

Thus, the total cost of a solution h is given as

f =
X

1≤i≤n

c(xi, h(xi)) +
X

1≤i<j≤n

C (xi, xj , h(xi), h(xj)) . (1)

The PBQP problem asks for an assignment at a minimum
total cost.

We solve the PBQP problem using matrix notation. A dis-
crete variable xi becomes a Boolean vector �xi whose vector
elements are zeros and ones and whose length is determined
by the number of elements in its domain Di. Each 0-1 ele-
ment of �xi corresponds to an element of Di. An assignment
of xi to di is represented as a unit vector whose element for
di is set to one. Hence, a possible assignment for a variable
xi is modeled by the constraint �xT

i
�1 = 1 that restricts vec-

tors �xi such that only one vector element is assigned one;
all other elements are set to zero.

The related cost function C(xi, xj , di, dj) is decomposed
for each pair (xi, xj). The costs for the pair are represented
as matrix Cij . A matrix element corresponds to an assign-
ment (di, dj). Similarly, the local cost function c(xi, di) is
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mapped to cost vectors �ci. Quadratic forms and scalar prod-
ucts are employed to formulate PBQP as a mathematical
program:

s.t. ∀1 ≤ i ≤ n : �xi ∈ {0, 1}|Di|

∀1 ≤ i ≤ n : �xT
i
�1 = 1

min f =
X

1≤i≤n

�xT
i �ci +

X
1≤i<j≤n

�xT
i Cij�xj .

In [20, 4] a solver was introduced, which solves a sub-class
of PBQP problems optimally in O(nm3), where n is the
number of discrete variables and m is the maximal number
of elements in their domains, i.e. m = max (|D1|, . . . , |Dn|).
For a given problem, the solver eliminates discrete variables
until the problem is trivially solvable. Each elimination step
requires a reduction. The solver has reductions R0, RI, RII,
which are not always applicable. If no reduction can be
applied, the problem becomes irreducible and a heuristic is
applied, which is called RN. The heuristic chooses a bene-
ficial discrete variable �xi and a good assignment for it by
searching for local minima. The obtained solution is guar-
anteed to be optimal if the reduction RN is not used.

3. MOTIVATION
The goal of our optimization is to insert a minimum num-

ber of bank selection instructions while ensuring that banked
memory is accessed correctly. The underlying optimization
assumptions are that all variables in a program have been
assigned to memory banks and that we do not re-order state-
ments to further minimize the number of bank selection in-
structions. For the sake of simplicity, we assume that a
statement has at most one banked-memory access. To ex-
tend the optimization to more than one banked-memory ac-
cess in a statement, the optimization is performed for each
bank register separately.

A statement is said to be bank-sensitive if it accesses
banked memory, otherwise it is transparent. For example,
all banked-memory accesses of load and store statements are
bank-sensitive. A bank-sensitive statement requires that the
bank of the access is made active prior to its execution. Oth-
erwise, the program semantics is violated.

In the intra-procedural optimization, function calls are
considered to be bank-sensitive but are handled differently
from load and store statements. For a function call, we do
not know which bank is made active after returning from the
function call. Therefore, a call statement denotes a banked-
memory access to an unknown bank. To optimize bank
selection instructions across call sites, an extension of the
intra-procedural optimization is described in Section 4.4.

The local predicate bank(s) gives the bank property of
statement s. It is defined as follows:

bank(s) =

8<
:

b∗, if s is transparent,
bx, if s requires bank bx,
b?, if s requires an unknown bank.

(2)

For a bank-sensitive statement, bank(s) is either b? denoting
an unknown bank or bx denoting a concrete bank.

A linear scan over a basic block is sufficient to find an
optimal placement of bank selection instructions in the ba-
sic block. However, with a linear scan it is not possible
to determine whether the bank of the first bank-sensitive
statement is already active at the entry of the basic block or

not. Therefore, placing bank selection instructions for the
first bank-sensitive statements becomes an intra-procedural
optimization problem.

If a basic block has only transparent statements then we
call it a transparent basic block, otherwise it is bank-sensitive.
In our intraprocedural analysis, we need to distinguish be-
tween transparent basic blocks u ∈ T and bank-sensitive
basic blocks u ∈ S, where T is the set of transparent basic
blocks and S is the set of bank-sensitive basic blocks.

The bank selection instruction for the first bank-sensitive
statement is the only bank selection instruction that can
be beneficially moved across basic basic block boundaries.
Hence, the transformation of the intraprocedural optimiza-
tion limits the placement of bank selection instructions to
the following points inside a basic block: (1) before the first
bank-sensitive statement, (2) after the last bank-sensitive
statement, and (3) inside the transparent basic block.

Splitting critical edges creates a transparent basic block
in the control flow graph (a so called critical basic block).
Critical basic blocks are potential hosts for bank selection
instructions and therefore yield optimization opportunities.
However, splitting critical edges is not free because addi-
tional jump statements need to be inserted to split an edge.
Note that the intra-procedural optimization only splits criti-
cal edges if a bank selection instruction is eventually inserted
on the critical edge. Otherwise, it is only considered in the
cost analysis of the optimization.

Consider our running example in Fig. 1(a), where each
basic block is numbered with its basic block number shown
to its left in bold. Fig. 1(b) shows the resulting CFG where
all five critical edges have been split tentatively. The un-
derlined numbers alongside CFG edges represent execution
frequencies. The execution frequency of a basic block is the
sum of frequencies of either its incoming or outgoing CFG
edges. Let us assume that our example architecture has two
banks, i.e., bank 0 and bank 1, and either bank 0 or bank 1
is active. All memory operations are done by load and store
statements of the form LD v and ST v, respectively where v
is a variable residing in either bank 0 or bank 1. Our exam-
ple has five variables: A and B reside in bank 0 and X, Y and
Z in bank 1. Before a load or store for variable v is executed,
the bank of the variable must be active.

A naive approach to ensure correct code is to issue a bank
selection instruction prior to all banked-memory accesses.
However, this approach produces sub-optimal code. For ex-
ample, basic block 4 that contains LD A inside a loop would
require the bank selection instruction BSL 0.

Figs. 1(c)-(e) illustrate the optimal solutions that we find
with respect to the three optimization criteria speed, space,
and a combination of speed and space. In our cost model,
we take into account the costs of additional jump statements
introduced in critical basic blocks (Critical basic blocks are
shown as dashed boxes in Fig. 1(b)). We assume that bank
selection instruction and jump statements have an instruc-
tion length of one byte and they take one cycle to execute. If
we want to minimize the number of bank selection instruc-
tions inserted, we can measure the cost of inserting a bank
selection instruction in a basic block as the dynamic number
of cycles spent on executing the bank selection instruction
times the execution frequency of the basic block. If we place
the bank selection instruction in a critical basic block, we
need to add the extra cost for the jump statement. The op-
timal solution for speed is shown in Fig. 1(c) where we place
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(a) CFG (b) Critical edge splitting (c) Speed (d) Space (e) Speed and space

Figure 1: An example for a two-bank architecture (A and B reside in bank 0 and X, Y and Z in bank 1).

a bank selection instruction before and after the loop and
in basic block 14. In Fig. 1(d) the optmisation for space is
shown. BSL 0 stays inside the loop to avoid the additional
jump statement required if BSL 0 is placed in critical basic
block 11. Optimizing for space reduces the memory foot-
print but increases the execution time of the program. An
optimization which combines speed and space objectives is
shown in Fig. 1(e). For this optimization the speed objec-
tive is weighted a third and the space objective is weighted
two thirds.

4. BANK SELECTION OPTIMIZATION
We develop the bank selection optimization in four steps.

In the first step we discuss how to optimize bank selection
instructions inside a basic block. In the second step we for-
mulate the intra-procedural optimization as a discrete opti-
mization problem. In the third step we show how the dis-
crete optimization problem is mapped to the PBQP prob-
lem, and the last step extends the intra- procedural opti-
mization to whole-programs.

4.1 Local Optimization
Given a basic block in which all variables have been as-

signed to banks, this section gives an algorithm that mini-
mizes the number of bank selection instructions inserted in
the basic block.

In Fig. 2, the linear scan algorithm for inserting bank se-
lection instructions is listed. The algorithm initializes vari-
able first, which points to the first bank-sensitive statement,
variable last, which points to the last bank-sensitive state-
ment, and variable rbank , which represents the active bank
of the bank register. Inside the loop, we ignore transparent
statements, i.e., those statements s that satisfy bank(s) =
b∗ (in line 5). When the first bank-sensitive statement is
reached, the algorithm sets variable first. For all subsequent
bank-sensitive statements, the algorithm checks whether a
new bank selection instruction needs to be issued. This is

OptimizeBasicBlock (u)
1 first ← entry(u)
2 last ← entry(u)
3 rbank ← b∗
4 for all s ∈ u in seq. order do
5 if bank(s) �= b∗ then
6 if rbank = b∗ then
7 first ← s
8 else
9 if bank(s) �= b? ∧ bank(s) �= rbank then
10 insert BSL 〈bank(s)〉 before s
11 endif
12 endif
13 rbank ← bank(s)
14 last ← s
15 endif
16 endfor
17 return(first , last)

Figure 2: Local optimisation.

the case if the required bank bank(s) for statement s is not
b? and differs from the bank required by a preceding bank-
sensitive statement. After having traversed the basic block,
the algorithm returns the first and last bank-sensitive state-
ments of the basic block. If the basic block is transparent,
first and last will point to the first statement of the ba-
sic block (due to lines 1 and 2), and the following holds:
bank(first) = b∗ and bank(last) = b∗.

Given a basic basic block u, we write first(u) and last(u) to
denote the first and last statement returned by the algorithm
in Fig. 2. We use fbu to denote the bank of statement first(u)
and lbu to denote the bank of statement last(u).

Fig. 3 illustrates the operation of our linear scan algo-
rithm on a sample basic block consisting of the instructions
s0–s7. In this example we assume that variables A and B

reside in bank 0, and variables X, Y and Z reside in bank 1.
The column entitled “bank(s)” depicts the bank-sensitivity
of the respective statements. We use NOP statements to in-

204



Basic Block bank(s) first last
s0 NOP b∗ s0 s0

s1 LD X 1 s1 s1

BSL 0 inserted
s2 ST A 0 s1 s2

s3 CALL foo b? s1 s3

BSL 0 inserted
s4 LD B 0 s1 s4

BSL 1 inserted
s5 ST Y 1 s1 s5

s6 ST Z 1 s1 s6

s7 NOP b∗ s1 s6

Figure 3: Example (A and B reside in bank 0 and
X,Y, and Z in bank 1).

troduce transparency to this example. The call to function
foo in statement s3 potentially modifies the bank select reg-
ister. Therefore, the bank of this statement is unknown (b?).
Columns “first” and “last” denote the first and last bank-
sensitive statement as the algorithm progresses through the
basic block. Since statement s0 is transparent, first is even-
tually set to statement s1. For each bank-sensitive state-
ment, last is updated. The linear scan algorithm introduces
three BSL instructions and sets first and last to the first and
last bank-sensitive statement of the basic block.

Note that the optimization algorithm for basic blocks does
not insert a bank selection instruction for the first bank-
sensitive statement. If we do not take into account the intra-
procedural flow across basic blocks in our analysis, we could
insert the bank selection instruction prior to the first bank-
sensitive statement. However, this would result in a sub-
optimal solution for the entire program.

4.2 Intra-Procedural Optimization
The intra-procedural optimization is effective because bank

selection instructions can be hoisted. For example, instead
of performing the bank selection instruction for LD A of
Fig. 1 inside the loop, we move the bank selection instruction
outside of the loop when optimizing for speed (as depicted
in Fig. 1(c)).

Our approach uses discrete optimization to place bank
selection instructions. The main idea is that we introduce
two controlling variables Pu and Qu for every basic block u.
These two variables describe the state of the bank register
before and after execution of the basic block. The domain
of Pu and Qu is D = {b0, . . . , bm−1, b?}, i.e. variables Pu

and Qu are either set to a concrete bank, or the state of the
bank register is unknown. The semantics of the controlling
variables are as follows: If Pu is set to bx, we can assume that
the bank register has been set to bx prior to the execution of
basic block u. If Pu is set to b?, then the state of the bank
register is unknown upon entry of u. Conversely, variable Qu

forces basic block u to guarantee that the bank register is
set to Qu upon exit.

Depending on the values of Pu and Qu we insert bank
selection instructions according to Table 1. For a bank-
sensitive basic block, there are at most two insertions, i.e.,
one before the fist bank-sensitive statement and one after
the last bank-sensitive statement. The first insertion ensures
that the bank register is set to bank fbu if variable Pu is not
set to this bank. The second insertions is used to guarantee

For a bank-sensitive basic block:

Location Insertion Condition
entry BSL〈fbu〉 fbu 	= b? ∧ Pu 	= fbu

exit BSL〈Qu〉 Qu 	= b? ∧ Qu 	= lbu

For a transparent basic block:

Insertion Condition
BSL〈Qu〉 Qu 	= b? ∧ Pu 	= Qu

Table 1: Transformation for configuration (Pu, Qu).

that the bank register is set to Qu after executing basic block
u. For a transparent basic block at most one bank selection
instruction is added to ensure that the bank register is set
to Qu upon exit (cf. again Table 1).

A bank selection transformation T ∈ (D×D)|V | is defined
by configurations (Pu, Qu) for all basic blocks u. All possible
insertions of bank selection instructions at entries and exits
of basic blocks are covered by at least one configuration of
a basic block.

A bank selection transformation T is correct if controlling
variable Ps of the entry node is unknown and for all CFG
edges (u, v) it holds that

(Pv 	= b?) ⇒ (Qu = Pv) . (3)

The start node s cannot assume that a specific bank is
active prior to its execution. Therefore, we set Ps to b?.
For all other nodes, each predecessor needs to have bank Qu

active upon exit if Pv is not equal to the unknown bank.
The controlling variables Pu and Qu determine the cor-

rectness of a transformation and its costs. For each basic
block u, we have a cost function costu(Pu, Qu) that returns
the costs for a given configuration (Pu, Qu). These costs
are chosen from arbitrary metrics such as speed, space, and
mixed cost cost models.

A bank selection transformation T is optimal if it is correct
and if the costs of a transformation are minimal:

min f =
X
u∈V

costu(Pu, Qu). (4)

We split the cost function into the costs for bank-sensitive
basic blocks (u ∈ S) and the transparent basic blocks (u ∈
T ).

f =
X
u∈V

costu(Pu, Qu)

=
X
u∈S

s-costu(Pu, Qu) +
X
u∈T

t-costu(Pu, Qu) (5)

Without loss of generality we devide the costs for a bank-
sensitive basic block into the costs occuring upon entry and
exit of the basic block. Function n-costu(Pu) accounts for
the cost of the bank selection instruction at the entry of the
basic block and function e-costu(Qu) upon exit:

s-costu(Pu, Qu) = n-costu(Pu) + e-costu(Qu). (6)

Both functions are zero if no insertion is performed. Other-
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wise they return the cost cu of a bank selection instruction.

n-costu(Pu) =

(
cu, if fbu 	= b? ∧ Pu 	= fbu

0, otherwise
(7)

e-costu(Qu) =

(
cu, if Qu 	= b? ∧ Qu 	= lbu

0, otherwise
(8)

For a transparent basic block the costs are defined by

t-costu(Pu, Qu) =

(
cu, if Qu 	= b? ∧ Pu 	= Qu

0, otherwise.
(9)

In Eqns. (7) – (9), constant cu represents the insertion cost
of a bank selection instruction in basic block u. Costs are
computed based on a chosen metric. The only restriction we
impose on such a metric is that the costs must have positive
values1, i.e., cu ≥ 0. In our experiment, we have chosen a
parameterizable cost metric:

cu = α × SPEEDu + β × SPACEu (10)

with its two parameters α and β controlling the weights of
the speed and space objectives. Depending on whether u is
a critical basic block (i.e., a basic block introduced due to
critical edge splitting, which must be transparent) or not,
SPEEDu is defined as

SPEEDu =

(
(bsl-cycles+ jump-cycles) × frequ, if u is crit.

bsl-cycles× frequ, otherwise.

(11)
Therein bsl-cycles denotes the number of cycles taken for
executing one single bank selection instruction, jump-cycles
is the number of cycles taken for executing one additional
(unconditional) jump statement introduced in basic block u
due to edge splitting, and frequ is the execution frequency
of u (obtained by profiling).

Similarly, the constant SPACEu is defined as

SPACEu =

(
bsl-size + jump-size, if u is critical

bsl-size, otherwise.
(12)

where bsl-size (jump-size) is the size of a bank selection
(jump) instruction (measured in bytes).

Putting all constraints and costs together, we formulate
the intra-procedural bank selection problem as the following
discrete optimization:

s.t.∀u ∈ V : Pu, Qu ∈ D

Ps = b?

∀(u, v) ∈ E : (Pv 	= b?) ⇒ (Qu = Pv)

min f =
X
u∈S

n-costu(Pu) +
X
u∈S

e-costu(Qu)

+
X
u∈T

t-costu(Pu, Qu). (13)

A related problem was introduced in [9], which is a classifi-
cation problem and it was shown that this problem is hard
to solve, i.e. a set of points should be labeled such that a
cost function is to be minimized. The cost function takes
costs for local labeling and labeling of two related points into

1Note that the PBQP solver would also cope with negative
costs. However, in the context of bank selection negative
costs are not sensible.

T b0 b1 . . . . . . bm−1 b?

b0 0 1 . . . . . . 1 0
b1 1 0 1 . . . 1 0
...

...
. . .

. . .
. . .

...
...

bm−2 1 . . . 1 0 1 0
bm−1 1 . . . . . . 1 0 0
b? 1 . . . . . . . . . 1 0

(a) Transparent basic blocks

R b0 b1 . . . . . . bm−1 b?

b0 0 ∞ . . . . . . ∞ 0
b1 ∞ 0 ∞ . . . ∞ 0
...

...
. . .

. . .
. . .

...
...

bm−2 ∞ . . . ∞ 0 ∞ 0
bm−1 ∞ . . . . . . ∞ 0 0
b? ∞ . . . . . . ∞ ∞ 0

(b) Correctness constraint for CFG edges

Table 2: Cost matrices

account. In [9] an approximation algorithm was introduced.
However, the approximation algorithm is not practical. In-
stead, we use the PBQP problem to solve the underlying
discrete optimization problem for bank selection, for which
we have a very efficient and effective solver.

4.3 Mapping to PBQP
PBQP [20, 4] is used to solve the discrete optimization

problem of Eqn. (13). In the PBQP problem, the control-
ling variables Pu and Qu of basic block u become Boolean
vector variables �pu and �qu. The length of �pu and �qu is |D|,
where each element of the vector represents an element in
D, i.e. Boolean vector �x = (xb0 , . . . , xbm−1 , xb?) has zero and
one variables where the first element corresponds to the first
bank, the second element to the second, and so forth. The
element before the last element corresponds to the last bank
bm−1 and the last element denotes the unknown state of the
bank register.

The costs of bank-sensitive basic blocks are modeled as
cost-vectors and the costs of transparent basic blocks be-
come cost matrices. As a result, the objective function of
Eqn. (13) is transformed to the PBQP objective function:

f =
X
u∈S

�nu �pu
T +

X
u∈S

�eu �qu
T +

X
u∈T

�pu(cu · T )�qT
u . (14)

Therein �nu and �eu are the cost functions n-costu(Pu) and
e-costu(Qu) in vector notation, and (cu·T ) is t-costu(Pu, Qu)
in matrix notation.

The vector �nu is a zero vector. If the bank of the first
bank-sensitive statement is b?. Otherwise, it is of the struc-
ture

�pu b0 b1 . . . bi−1 bi bi+1 . . . bm−1 b?

�nu cu cu . . . cu 0 cu . . . cu cu
(15)

where bi is bank fbu of the first bank sensitive statement
and cu are the costs for inserting a bank selection instruc-
tion. Let’s assume we optimize for speed. Basic block 4
in our motivating example (see Fig. 1(a)) is executed 90
times. The bank-sensitive statement is LD A, which accesses
bank b0. If we assume that it takes one cycle to execute a
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bank selection instruction, then we have 90 cost units for
the insertion before LD A. Thus cu = 90. In vector notation,
n-cost(4) is mapped to �n4 =

`
0 90 90

´
. The first element

of the vector imposes zero costs if P4 is set to b0. If P4 is
set to b1 or b?, 90 cost units are imposed because a bank se-
lection instruction needs to be inserted. Similarly, the cost
vector �eu is constructed for bank sensitive basic block u, i.e.

�pu b0 b1 . . . bi−1 bi bi+1 . . . bm−1 b?

�nu cu cu . . . cu 0 cu . . . cu 0
(16)

where bi denotes bank lbu. We have a bank insertion if the
bank is not equal to Qu or Qu is set to b?.

The structure of the cost matrix T for transparent basic
blocks is given in Table 2(a) and is a direct mapping of
Eqn. (9) in matrix notation with unit costs, i.e. cu = 1.
The rows of T correspond to a bank of variable Pu and the
columns correspond to a bank of variable Qu. If Pu and Qu

are not set to the same bank and Qu is not b?, we have costs
of one, otherwise we have zero costs. We multiply matrix
T with scalar cu in Eq. (14) to model the actual insertion
costs for a bank selection instruction.

To enforce correct transformations, we use the standard
technique of encoding the correctness constraint as part of
the objective function, which we extend to g = f +Δ, where
Δ is 0 if the transformation T is a correct transformation,
and ∞ otherwise. The correctness constraints defined over
CFG edges are mapped to a sum of a scalar product and
quadratic forms,

Δ =
`
∞ . . . ∞ 0

´
�qs +

X
(u,v)∈E

�quR �pv
T , (17)

where the constraint expressed in Eqn. (3) is mapped to
matrix R shown in Table 2(b) and the constraint to set Ps

to b? is mapped to a scalar product. Quadratic forms are
used to express the correctness constraints. In matrix R the
diagonal and the last column contain zeroes, representing
the cases where Qu is equal to Pv or where Pv is set to b?.
All other assignments of Qu and Pv are penalized with ∞
costs.

Our running example in Fig. 1 assumes an architecture
with two banks. Hence, we get the following correctness
matrix R and transparent matrix T .

R b0 b1 b?

b0 0 ∞ 0
b1 ∞ 0 0
b? ∞ ∞ 0

T b0 b1 b?

b0 0 1 0
b1 1 0 0
b? 1 1 0

The objective function without correctness constraints is

f =�n1�p
T
1 + �e1�q

T
1 + �n2�p

T
2 + �e2�q

T
2 + �n4�p

T
4 + �e4�q

T
4 + �n5�p

T
5 +

�e5�q
T
5 + �n6�p

T
6 + �e6�q

T
6 + �n7�p

T
7 + �e7�q

T
7 + �n9�p

T
9 + �e9�q

T
9 +

�p3(c3 · T )�qT
3 + �p8(c3 · T )�qT

8 + �p10(c10 · T )�qT
10+

�p11(c11 · T )�qT
11 + �p12(c12 · T )�qT

12 + �p13(c13 · T )�qT
13+

�p14(c14 · T )�qT
14 + �p15(c15 · T )�qT

15,

where cu for basic blocks 3, 8, 10, 11, 12, 13, 14 and 15
denotes the costs for inserting bank selection instructions.
Constants cu are dependent on the optimization criteria.

Figure 4: Interprocedural analysis.

The correctness constraints are

Δ =
`
∞ ∞ 0

´
�pT

s + �q1R�pT
2 + �q1R�pT

3 + �q2R�pT
6 + �q3R�pT

5 +

�q3R�pT
11 + �q4R�pT

12 + �q4R�pT
13 + �q5R�pT

6 + �q6R�pT
7 +

�q6R�pT
8 + �q7R�pT

9 + �q8R�pT
14 + �q8R�pT

15 + �q9R�pT
10+

�q11R�pT
4 + �q12R�pT

4 + �q13R�pT
6 + �q14R�pT

9 + �q15R�pT
10.

The objective functions g = f +Δ is to be solved to find the
optimal bank selection placement for the running example.

4.4 Inter-procedural Optimization
The bank selection optimization can be extended to hoist

bank selection instructions across call sites. For frequently
executed calls the inter-procedural optimization is highly
effective. The inter-procedural transformation extends the
placement of bank selection instructions to the following pro-
gram points: (1) at the entry of a subroutine, (2) at the exit
of a subroutine, (3) and before a call. In contrast to the
intra-procedural optimization, a single discrete optimization
problem solves the bank selection of the whole program in
one step.

If the inter-procedural optimization decides that a subrou-
tine does not perform the bank selection instruction before
the first bank sensitive statement of a function, then the
caller of the function is forced to perform the bank selec-
tion instruction prior to the call. A similar mechanism is
used to force the call site to set a bank after the call. This
is beneficial for any kind of space optimization whereas the
placement of bank selection instructions prior to a call are
beneficial for speed optimizations.

The mathematical model of the inter-procedural optimiza-
tion problem is an extension of the intra-procedural ap-
proach. The discrete optimization problem for each sub-
routine is constructed as outlined in the previous section.
However, the boundary condition for the start node is re-
moved except for the main subroutine of the program. For
each call site li of subroutine F we add two correctness con-
straints as depicted in Fig. 4. Edges represent correctness
constraints. For call site li we impose a correctness con-
straint between discrete variable Pli and Ps such that

(Ps 	= b?) ⇒ (Ps = Pli) (18)

holds. For the end node of a subroutine we add correctness
constraint

(Qli 	= b?) ⇒ (Qli = Qe) . (19)

The correctness constraints ensure that the call site sets the
correct bank if the bank selection is not performed for the
first bank-sensitive statement within subroutine F . If the
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Figure 5: Speed-up.
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Figure 6: Space reduction.

statements after the call expect a certain bank to be set by
the subroutine, a bank selection instruction is inserted after
the last bank-sensitive statement of subroutine F .

The PBQP problem is extended for all subroutines F in
the program and for all calls {x1, . . . , xk} of the subroutine
F as given below:

Δ′ = Δ + �pxiR�ps + �qeR�qxi . (20)

The correctness constraint is identical to Eq. (3) and there-
fore the same matrix R as in the intra-procedural mapping
is used to map the discrete optimization problem to PBQP.

5. EXPERIMENTAL RESULTS
We evaluated our optimization for programs typically run

on contemporary microcontrollers. Our sample included
programs from the MiBench Embedded Benchmark Suite [7]
and from DSPStone and we surveyed a microcontroller real-
time kernel and common microcontroller driver routines.
We conducted this experiment on a PIC16F877A microcon-
troller [13, 12]. We applied different optimization objectives
to show the versatility of our approach.

The PIC family of midrange microcontrollers (cf. [12])

constitutes a RISC-based Harvard architecture with instruc-
tion sizes of 12, 14 or 16 bits, and a data-bus that is 8 bit
wide. The PIC16F877A microcontroller provides 8kB of
program memory and 368B of data memory spread over
four banks [13]. The MiBench programs that we could fit
onto this microcontroller included “basicmath”, “sha”, and
“FFT”. From the DSPStone benchmark suite we included
“adpcm” and “matrix”. We also surveyed a microcontroller
real-time kernel and common microcontroller driver routines
from [14].

Our experimental setup is depicted in Fig. 7. The com-
pilation of a C benchmark program for the PIC16F877A
resulted in a binary image and supplementary program in-
formation comprising the linker map file and a list of C-
prototypes contained in the input program. We ran the
binary image on the GPSIM simulator [22] to obtain exe-
cution frequencies for the instructions of the binary image.
The binary image together with the corresponding execution
frequencies were then fed into the disassembler to produce
an extended assembly file. The disassembler used the linker
map file and the list of C-prototypes to establish procedu-
ral boundaries within the binary image. In this setup, an
extended assembly file consisted of PIC assembly routines,
where each instruction was augmented with its instruction
frequency. It is important to note that the extended as-
sembly file contained the bank selection instructions as they
were generated by the C-compiler. We used this informa-
tion to compare it to the bank selection achieved by our
optimization.

To carry out our optimization we pruned extended as-
sembly files from the bank selection instructions of the C-
compiler. The pruner then performed data-flow analysis to
annotate each operand of the assembly file with the required
bank. In the following we call these annotations bank as-
sertions, and the annotated assembly code is called banked
assembly code.

The goal of the optimizer was then to insert bank selection
instructions into the banked assembly code so that all bank
assertions were satisfied (this is the correctness criteria of
our optimization) at minimal cost. Due to the pruner the
bank selection of our optimizer was completely independent
of the bank selection of the C-compiler.

We checked the correctness of the inserted bank selection
instructions generated by the optimizer. This was achieved
by means of data-flow analysis. We determined the costs
induced by the bank selection instructions in the optimized
binary and compared it to the bank selection achieved by
the C-compiler (from the extended assembly file). We used
the HI-TECH PICC C-compiler as a reference point in this
experiment. HI-TECH PICC is a high-performance C com-
piler advertised by Microchip itself for their whole family of
PIC microcontrollers. It employs an optimizer that makes
full use of PIC-specific features [18]. However, this compiler
does not automatically assign C variables to memory banks
(apart from the default assignment to bank 0).

For this reason we had to manually assign program vari-
ables to memory banks with our benchmark programs. We
replaced file I/O operations by I/O operations via the UART
of the PIC16F877A. Some of the benchmark problem sizes
had to be downsized to fit on an 8-bit microcontroller.

As depicted in Table 3, we determined the overall static in-
struction count (“Total”) together with the number of bank
selection instructions (“BSL”) for each benchmark. We de-
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Instruction count Cycle count Space reduction Improvement
Benchmark Objective α(%) β(%) Total BSL Total BSL Total% BSL% Total% BSL%

adpcm

HiT n/a n/a 6081 795 6.0e+05 76927 n/a n/a n/a n/a
Speed 100 0 5898 558 5.6e+05 33070 3.0 29.8 7.9 132.6
Space 0 100 5683 397 5.6e+05 34322 6.5 50.1 7.6 124.1
Mixed 50 50 5707 411 5.6e+05 33966 6.2 48.3 7.7 126.5

basicmath

HiT n/a n/a 1844 248 5856 1023 n/a n/a n/a n/a
Speed 100 0 1857 237 5545 712 -0.7 4.4 5.6 43.7
Space 0 100 1794 198 5608 775 2.7 20.2 4.4 32.0
Mixed 50 50 1799 199 5590 757 2.4 19.8 4.8 35.1

FFT

HiT n/a n/a 2661 336 53254 6491 n/a n/a n/a n/a
Speed 100 0 2546 206 50683 3920 4.3 38.7 5.1 65.6
Space 0 100 2508 183 50775 4012 5.7 45.5 4.9 61.8
Mixed 50 50 2510 185 50683 3920 5.7 44.9 5.1 65.6

lcd

HiT n/a n/a 307 65 72707 16285 n/a n/a n/a n/a
Speed 100 0 251 9 56431 9 18.2 86.2 28.8 1.8e+05
Space 0 100 251 9 56431 9 18.2 86.2 28.8 1.8e+05
Mixed 50 50 251 9 56431 9 18.2 86.2 28.8 1.8e+05

matrix

HiT n/a n/a 401 62 716 105 n/a n/a n/a n/a
Speed 100 0 368 27 660 49 8.2 56.5 8.5 114.3
Space 0 100 360 21 667 56 10.2 66.1 7.3 87.5
Mixed 50 50 360 21 666 55 10.2 66.1 7.5 90.9

rtkernel

HiT n/a n/a 2097 422 2.6e+08 4.9e+07 n/a n/a n/a n/a
Speed 100 0 2063 343 2.3e+08 1.8e+07 1.6 18.7 13.4 169.9
Space 0 100 1862 187 2.3e+08 1.8e+07 11.2 55.7 13.4 169.8
Mixed 50 50 1864 189 2.3e+08 1.8e+07 11.1 55.2 13.4 169.9

sha

HiT n/a n/a 3017 170 8.2e+05 153749 n/a n/a n/a n/a
Speed 100 0 2886 35 7.5e+05 87390 4.3 79.4 8.8 75.9
Space 0 100 2873 26 7.7e+05 102552 4.8 84.7 6.7 49.9
Mixed 50 50 2880 29 7.6e+05 97498 4.5 82.9 7.4 57.7

Table 3: Experimental results for the PIC microcontroller benchmark programs.

termined the cycle counts induced by these instruction-cat-
egories for a given benchmark sample input. The given “To-
tal” cycle counts take into account extra jump instructions
that might arise due to the insertion of bank selection in-
structions. For each benchmark these performance figures
were determined for the HI-TECH PICC C-compiler and
for our optimization. We performed our optimization un-
der the objectives (1) speed, (2) space, and (3) mixed (a
combination of speed and space). The corresponding pa-
rameter values for α and β are depicted in Table 3. In
terms of Eqns. (11) and (12), we set bsl-cycles = bsl-size =
jump-cycles = jump-size = 1. The rightmost columns in Ta-
ble 3 depict the memory footprint reduction and the result-
ing performance improvement achieved by our optimization.
The figures clearly reflect the goals of the different optimiza-
tion objectives: optimizing for space results in the lowest
number of issued bank selection instructions, whereas opti-
mization for speed minimizes instruction cycles. Optimiza-
tion for speed and space combines both objectives, resulting
in performance figures between the two. Note however, that
for some benchmarks the speed and space optimizations are
identical, which then applies for the mixed optimization as
well.

It follows from Table 3 that the amount of reduction of
the program memory footprint (corresponding to the over-
all instruction count) is between 2.7% and 18.2% when we
optimize for space. The reduction of bank selection instruc-
tions is then between 20.2% and 86.2%. If we optimize for

speed , the achieved overall improvement is between 5.1% and
28.8%, and the improvement with respect to the execution
of bank selection instructions alone is between 65.6% and
180000%. None of the benchmark programs required the
PBQP solver to apply an RN reduction; this means that
our optimization always achieved the optimal solution. The
overall speedup is shown in the bar chart of Fig. 5, and the
program-size reduction of our bank selection optimization is
shown in Fig. 6.

6. CONCLUSION
We believe this is the first algorithmic approach to ad-

dress the problem of minimizing the number of bank selec-
tion instructions for a given instruction order and a given
data partitioning. We have formulated the bank selection
placement problem as a discrete optimization problem. Op-
timization objectives are modeled as cost metrics and allow
parameterizable trade-offs between several objectives, such
as speed and space. We have provided empirical evidence
that our method performs well for embedded systems ar-
chitectures. We have demonstrated an efficient algorithm
using Partitioned Boolean Quadratic Programming for op-
timal bank selection placement.

We have conducted experiments with programs from the
DSPStone and MiBench benchmark suite to demonstrate
the practicality of our approach. To show the feasibility of
our approach, we have implemented a toolchain for the Mi-
crochip PIC 16F877a microcontroller. This tool-chain op-
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Figure 7: Toolchain.

timizes the bank selections of binaries. For the surveyed
programs we achieved speedups to 28.8% and code size re-
ductions to 18.2% where the base-line is a state-of-the-art
C-compiler for the PIC 16F877a.

Acknowledgements
We would like to thank Merrilee Robb and Wei-Ying Ho for
proofreading the manuscript. We would like to thank Sanjay
Chawla for presenting paper [9] in our algorithmic reading
group.

7. REFERENCES
[1] R. Banakar, S. Steinke, B. Lee, M. Balakrishnan, and

P. Marwedel. Scratchpad Memory: A Design
Alternative for Cache On-chip Memory in Embedded
Systems. In Proceedings of the 10th International
Workshop on Hardware/Software Codesign, CODES,
Estes Park (Colorado), May 2002.

[2] Jeonghun Cho, Yunheung Paek, and David Whalley.
Fast Memory Bank Assignment for Fixed-Point
Digital Signal Processors. ACM Transactions on
Design Automation of Electronic Systems, 9(1):52–74,
2004.

[3] V. Delaluz, M. Kandemir, N. Vijaykrishnan, and M. J.
Irwin. Energy-Oriented Compiler Optimizations for
Partitioned Memory Architectures. In CASES ’00:
Proceedings of the 2000 International Conference on
Compilers, Architecture, and Synthesis for Embedded
Systems, pages 138–147, New York, NY, USA, 2000.
ACM Press.

[4] Erik Eckstein. Code Optimizations for Digital Signal
Processors. PhD thesis, Institute of Computer
Languages, Compilers and Languages Group, Vienna
University of Technology, 2003.

[5] Gartner Dataquest. 2003 Microcontroller Market
Share and Unit Shipments, July 2004.

[6] Gartner Dataquest. Top Companies Revenue from
Shipments of 8-bit MCU — All Applications, April
2005.

[7] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M.
Austin, T. Mudge, and R. B. Brown. MiBench: A
Free, Commercially Representative Embedded
Benchmark Suite. In Proceedings of the IEEE 4th
Annual Workshop on Workload Characterization,
December 2001.

[8] Tokuzo Kiyohara, Scott Mahlke, William Chen, Roger
Bringmann, Richard Hank, Sadun Anik, and Wen-Mei
Hwu. Register Connection: A New Approach to
Adding Registers into Instruction Set Architectures.
In ISCA ’93: Proceedings of the 20th Annual
International Symposium on Computer Architecture,
pages 247–256, New York, NY, USA, 1993. ACM
Press.

[9] Jon M. Kleinberg and Eva Tardos. Approximation
Algorithms for Classification Problems with Pairwise
Relationships: Metric Labeling and Markov Random
Fields. In FOCS ’99: Proceedings of the 40th Annual
Symposium on Foundations of Computer Science,
pages 14–23, 1999.

[10] R. Leupers and D. Kotte. Variable Partitioning for
Dual Memory Bank DSPs. In Proceedings of the IEEE
International Conference on Acoustics, Speech, and
Signal Processing, pages 1121–1124, 2001.

[11] Lian Li, Lin Gao, and Jingling Xue. Memory Coloring:
A Compiler Approach for Scratchpad Memory
Management. In PACT ’05: Proceedings of the 2005
International Conference on Parallel Architectures and
Compilation Techniques, pages 329–338, 2005.

[12] Microchip Technology Inc. PICmicro Mid-Range
MCU Family Reference Manual, 1997.

[13] Microchip Technology Inc. PIC16F87XA Data Sheet,
2003.

[14] MicrochipC.com PIC Micros and C.
http://www.microchipc.com/, 2006.

[15] Erik Nystrom and Alexandre E. Eichenberger.
Effective Cluster Assignment for Modulo Scheduling.
In MICRO 31: Proceedings of the 31st Annual
ACM/IEEE International Symposium on
Microarchitecture, pages 103–114, 1998.

[16] P. R. Panda, F. Catthoor, N. D. Dutt, K. Danckaert,
E. Brockmeyer, C. Kulkarni, A. Vandercappelle, and
P. G. Kjeldsberg. Data and Memory Optimization
Techniques for Embedded Systems. ACM
Transactions on Design Automation of Electronic
Systems, 6(2):149–206, 2001.

[17] Preeti Ranjan Panda, Nikil D. Dutt, and Alexandru
Nicolau. On-Chip vs. Off-Chip Memory: The Data
Partitioning Problem in Embedded Processor-Based
Systems. ACM Transactions on Design Automation of
Electronic Systems, 5(3):682–704, 2000.

[18] PICC ANSI C Compiler. http://www.htsoft.com/,
2006.

210



[19] Mazen A. R. Saghir, Paul Chow, and Corinna G. Lee.
Exploiting Dual Data-Memory Banks in Digital Signal
Processors. In ASPLOS-VII: Proceedings of the 7th
International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
234–243, New York, NY, USA, 1996. ACM Press.

[20] Bernhard Scholz and Erik Eckstein. Register
Allocation for Irregular Architectures. In
LCTES-SCOPES ’02: Proceedings of the Joint
Conference on Languages, Compilers and Tools for
Embedded Systems, pages 139–148. ACM, 2002.

[21] A. Sudarsanam and S. Malik. Memory Bank and
Register Allocation in Software Synthesis for ASIPs.
In ICCAD ’95: Proceedings of the 1995 IEEE/ACM
International Conference on Computer-Aided Design,
pages 388–392, 1995.

[22] The Gpsim SW Simulator for PIC Microcontrollers.
http://www.dattalo.com/gnupic/gpsim.html, 2006.

[23] Sumesh Udayakumaran and Rajeev Barua.
Compiler-Decided Dynamic Memory Allocation for
Scratch-Pad Based Embedded Systems. In CASES
’03: Proceedings of the 2003 International Conference
on Compilers, Architecture and Synthesis for
Embedded Systems, pages 276–286. ACM Press, 2003.

[24] Manish Verma, Lars Wehmeyer, and Peter Marwedel.
Cache-Aware Scratchpad Allocation Algorithm. In
DATE ’04: Proceedings of the Conference on Design,
Automation and Test in Europe, pages 1264–1269,
Washington, DC, USA, 2004. IEEE Computer Society.

[25] Xiaotong Zhuang, Santosh Pande, and John
S. Greenland Jr. A Framework for Parallelizing
Load/Stores on Embedded Processors. In PACT ’02:
Proceedings of the 2002 International Conference on
Parallel Architectures and Compilation Techniques,
pages 68–79. IEEE Computer Society, 2002.

[26] Qingfeng Zhuge, Bin Xiao, and Edwin Hsing-Mean
Sha. Variable Partitioning and Scheduling of Multiple
Memory Architectures for DSP. In IPDPS ’02:
Proceedings of the 16th International Parallel and
Distributed Processing Symposium, page 332,
Washington, DC, USA, 2002. IEEE Computer Society.

211



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Academy
    /AgencyFB-Bold
    /AgencyFB-Reg
    /Alba
    /AlbaMatter
    /AlbaSuper
    /Algerian
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialRoundedMTBold
    /ArialUnicodeMS
    /BabyKruffy
    /BaskOldFace
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BlackadderITC-Regular
    /BodoniMT
    /BodoniMTBlack
    /BodoniMTBlack-Italic
    /BodoniMT-Bold
    /BodoniMT-BoldItalic
    /BodoniMTCondensed
    /BodoniMTCondensed-Bold
    /BodoniMTCondensed-BoldItalic
    /BodoniMTCondensed-Italic
    /BodoniMT-Italic
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BradleyHandITC
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /CalisMTBol
    /CalistoMT
    /CalistoMT-BoldItalic
    /CalistoMT-Italic
    /Castellar
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chick
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CopperplateGothic-Bold
    /CopperplateGothic-Light
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Croobie
    /CurlzMT
    /EdwardianScriptITC
    /Elephant-Italic
    /Elephant-Regular
    /EngraversMT
    /ErasITC-Bold
    /ErasITC-Demi
    /ErasITC-Light
    /ErasITC-Medium
    /EstrangeloEdessa
    /Fat
    /FelixTitlingMT
    /FootlightMTLight
    /ForteMT
    /FranklinGothic-Book
    /FranklinGothic-BookItalic
    /FranklinGothic-Demi
    /FranklinGothic-DemiCond
    /FranklinGothic-DemiItalic
    /FranklinGothic-Heavy
    /FranklinGothic-HeavyItalic
    /FranklinGothic-Medium
    /FranklinGothic-MediumCond
    /FranklinGothic-MediumItalic
    /FreestyleScript-Regular
    /FrenchScriptMT
    /Freshbot
    /Frosty
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Gigi-Regular
    /GillSansMT
    /GillSansMT-Bold
    /GillSansMT-BoldItalic
    /GillSansMT-Condensed
    /GillSansMT-ExtraCondensedBold
    /GillSansMT-Italic
    /GillSans-UltraBold
    /GillSans-UltraBoldCondensed
    /GlooGun
    /GloucesterMT-ExtraCondensed
    /GoudyOldStyleT-Bold
    /GoudyOldStyleT-Italic
    /GoudyOldStyleT-Regular
    /GoudyStout
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /ImprintMT-Shadow
    /InformalRoman-Regular
    /Jenkinsv20
    /Jenkinsv20Thik
    /Jokerman-Regular
    /Jokewood
    /JuiceITC-Regular
    /Karat
    /Kartika
    /KristenITC-Regular
    /KunstlerScript
    /Latha
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSans-TypewriterBoldOblique
    /LucidaSans-TypewriterOblique
    /LucidaSansUnicode
    /Magneto-Bold
    /MaiandraGD-Regular
    /Mangal-Regular
    /MaturaMTScriptCapitals
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MSOutlook
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /OCRAExtended
    /OldEnglishTextMT
    /Onyx
    /PalaceScriptMT
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Papyrus-Regular
    /Parchment-Regular
    /Perpetua
    /Perpetua-Bold
    /Perpetua-BoldItalic
    /Perpetua-Italic
    /PerpetuaTitlingMT-Bold
    /PerpetuaTitlingMT-Light
    /Playbill
    /Poornut
    /PoorRichard-Regular
    /Porkys
    /PorkysHeavy
    /Pristina-Regular
    /PussycatSassy
    /PussycatSnickers
    /Raavi
    /RageItalic
    /Ravie
    /Rockwell
    /Rockwell-Bold
    /Rockwell-BoldItalic
    /Rockwell-Condensed
    /Rockwell-CondensedBold
    /Rockwell-ExtraBold
    /Rockwell-Italic
    /ScriptMTBold
    /ShowcardGothic-Reg
    /Shruti
    /SnapITC-Regular
    /Square721BT-Roman
    /Stencil
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /TwCenMT-Bold
    /TwCenMT-BoldItalic
    /TwCenMT-Condensed
    /TwCenMT-CondensedBold
    /TwCenMT-CondensedExtraBold
    /TwCenMT-Italic
    /TwCenMT-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Vrinda
    /Webdings
    /WeltronUrban
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


