
Power Efficient Branch Prediction through
Early Identification of Branch Addresses∗

Chengmo Yang and Alex Orailoglu
Computer Science and Engineering Department

University of California, San Diego
9500 Gilman Drive, La Jolla, CA 92093

{c5yang, alex}@cs.ucsd.edu

ABSTRACT
Ever increasing performance requirements have elevated

deeply pipelined architectures to a standard even in the em-
bedded processor domain, requiring the incorporation of dy-
namic branch prediction subsystems to hide the execution
latency of control-altering instructions. In this paper a low
power early branch identification technique which enables
the design of extremely power-efficient branch predictors and
BTBs is proposed. Through static extraction of program in-
formation regarding the distance to subsequent branches, this
technique enables the calculation of the next branch address
as soon as the direction of the current branch has been pre-
dicted. Early identification of branch addresses enables a
complete elimination of the power hungry BTB lookups nor-
mally occurring at every execution cycle, as well as a just-in-
time wake-up mechanism when accessing “hibernating” en-
tries in complex predictors, switched to power-saving mode
to reduce leakage power dissipation. A cost-efficient Branch
Identification Unit (BIU) to calculate branch addresses is
presented and analyzed in terms of power and timing char-
acteristics. The effectiveness of the proposed BTB access
policy and predictor wake-up mechanism is also confirmed
by the simulation results of the SPECint 2000 and Media-
bench benchmarks.

Categories and Subject Descriptors
C.1.3 [Processor Architectures]: Other Architecture Styles
—Pipeline processors

General Terms
Design, Performance

Keywords
low-power design, dynamic branch prediction, application-
specific processors

∗This work is supported in part by NSF Grant 0082325.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’06, October 23–25, 2006, Seoul, Korea.
Copyright 2006 ACM 1-59593-543-6/06/0010 ...$5.00.

1. INTRODUCTION
In the last half a dozen years, increasing sensitivity to

power consumption has come to constitute one of the defin-
ing challenges of processor architecture design. For embed-
ded processors which typically have constraints of battery
life and heat dissipation, energy efficiency has even been well
established as an important product quality characteristic,
as it may severely undermine the usability and acceptance
of the product. Consequently, techniques to minimize power
consumption of embedded processors are of significant im-
portance in achieving high product quality.

The ever increasing performance requirements have ele-
vated deeply pipelined architectures to a standard even in
the embedded processor domain. However, changes in the
execution flow caused by branch, jump, and subroutine call
instructions introduce significant complications to the effi-
cient utilization of the deep pipeline. Because the instruc-
tions to be fetched after a branch instruction are determined
by the outcome of the branch, the processor front-end has
to wait until the branch is resolved before continuing to
fetch from the correct location. This implies a significant
performance degradation, as precise information regarding
the branch direction and the branch destination are typ-
ically available late in the pipelined execution. To alle-
viate this problem, dynamic branch predictors (BPs) and
branch target buffers (BTBs) have been employed in high-
end general-purpose processors to predict branch direction
and to cache branch destination, respectively. However,
these techniques have not been widely adopted in embedded
processors, mainly due to their significant hardware com-
plexity and power consumption.

To effectively exploit the deeply pipelined architectures in
current embedded processors, an extremely power-efficient
dynamic branch prediction subsystem is required. This con-
stitutes a challenging task, as both the system’s perfor-
mance and the overall energy consumption heavily depend
on branch prediction accuracy. While it would seem at
first glance that using smaller predictors would result in
reduced power dissipation, simply reducing the size of the
branch predictor also increases the probability of aliasing
(two branches improperly affecting each other by mapping
to the same entry in the predictor), reducing in turn predic-
tion accuracy and hence system performance. In fact, such
a localized reduction may actually increase total energy con-
sumption by making programs run longer [1].

In this paper, an approach for designing a power-efficient
branch prediction subsystem while still maintaining high
prediction accuracy is presented. Through static extrac-

169

tion of program information regarding the distance between
the first instruction of each basic block and the correspond-
ing subsequent branch, a cost-efficient Branch Identification
Unit (BIU) is proposed to calculate the next branch ad-
dress as soon as the direction of the current branch has been
predicted. By incorporating this early branch identification
technique into a traditional branch prediction subsystem,
the power hungry BTB lookups for non-branch instructions
normally occurring at every execution cycle are completely
eliminated. Moreover, the whole branch predictor can be
switched into a power-saving “hibernation” mode to reduce
leakage power dissipation. The proposed early branch iden-
tification technique additionally enables a just-in-time wake-
up mechanism to overcome the potential degradation in pre-
diction accuracy caused by accessing hibernating entries.
Consequently, our framework enables significant power sav-
ings in both the BTB and the branch predictor, with negli-
gible reduction in prediction accuracy.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews previous power reduction techniques for branch
prediction subsystems. Section 3 discusses the technical mo-
tivation in detail. The proposed power and performance
efficient branch prediction subsystem as well as the corre-
sponding hardware implementation are presented in sections
4 and 5, respectively. Section 6 provides simulation results,
while section 7 offers a brief summary of this paper.

2. PREVIOUS WORK
In the last half a dozen years, increasing research atten-

tion has been paid to the power/performance exploration of
branch prediction schemes.

Several techniques have been proposed to filter the ac-
cesses to the BTB. In [1], a simple hardware module, namely
a prediction probe detector (PPD), is employed to store some
pre-decoded bits to indicate whether a cache line contains
conditional branches or not. Unnecessary accesses to the
BTB and the predictor are eliminated, yet at the cost of
accessing this SRAM module every cycle. An application
customizable branch target buffer (ACBTB) is proposed in
[2], which records for each branch the ACBTB indices corre-
sponding to the two possible subsequent branches to deter-
mine in advance the ACBTB entry of the upcoming branch.
Another compiler technique is proposed in [3] to filter BTB
accesses in VLIW architectures. To inform the processor
that a branch is forthcoming, a configurable hint instruction
that anticipates the branch address is inserted into the pro-
gram. However, to avoid degrading performance through in-
creasing the number of long instructions, these hint instruc-
tions only substitute existing NOPs in the long instruction
slots, thus limiting the effectiveness of this technique.

As for branch predictors, current low power techniques
have mainly focused on the reduction of the number of ac-
cesses to subpredictors in a combined branch predictor.1 In
[4], a small SRAM module is employed to record the sub-
predictors used by recent branches, based on which accesses
to subpredictors are selectively blocked to achieve power re-
duction. The same authors extend their work in [5] by fur-

1A combined branch predictor employs a hierachical predic-
tion mechanism; multiple subpredictors with various index-
ing mechanisms are employed to generate multiple predic-
tions, while at a higher level another predictor is employed
to select which subpredictor’s outcome is to be used.

thermore filtering well behaved simple branches from access-
ing the complex hierarchical branch predictor. Both tech-
niques require dedicated hardware support to record pro-
gram behavior dynamically. As a comparison, the authors
of [6] employ the compiler to characterize branch prediction
demands. Each application is partitioned into modules for
static profiling, whose results are utilized during dynamic
execution to disable subpredictors of the combined branch
predictor as well as to resize the BTB.

A leakage power reduction technique originally proposed
in [7] is adapted to BPs and BTBs in [8]. Entries in BPs
and BTBs are turned off if they are not accessed for a cer-
tain number of cycles, monitored by a dedicated counter per
SRAM row. Obviously, the additional power consumed in
these counters limits the amount of energy savings achieved
by this technique. More importantly, this technique intro-
duces sizable degradation in prediction accuracy when ac-
cessing an entry in hibernation, since the original informa-
tion regarding previous branch outcomes gets lost.

3. TECHNICAL MOTIVATION
Designing a power-efficient branch predictor with minimal

negative performance impact requires a closer look at the
underlying principle of the state-of-the-art branch predic-
tion scheme. Fundamentally, control-altering instructions,
such as branches, have long been known to introduce signif-
icant performance degradation to pipelined processor archi-
tectures. To hide the latency of executing each branch, both
the branch direction and the target address should be avail-
able to the processor front-end in advance before fetching
is resumed from the correct program location. Accordingly,
modern pipelined architectures usually predict the branch
direction dynamically using BPs, while caching the branch
target addresses in BTBs. A typical access flow chart is
presented in Figure 1a. Fundamentally, the purpose of the
BTB is to provide early branch identification, that is, to de-
termine whether an instruction under fetch is a branch or
not. This implies that the BTB has to be always looked up
during the first fetch cycle for each instruction, even if for
non-branch instructions. As ideally only the branches pre-
dicted to be taken need to look up the BTB to obtain their
target addresses, this access policy results in a significant
amount of power waste in BTB accesses.

Unlike the BTB, branch predictors can be accessed either
in parallel with the BTB for each instruction to hide ac-
cess latency, or in later pipeline stages but only for branch
instructions that are already identified through BTB ac-
cesses, as shown in Figure 1a. Nonetheless, there exists
another source of power inefficiency, as the hardware com-
plexity and hence the associated leakage power dissipation of
the predictors is non-trivial. As semiconductor technology
advances towards deep submicron, threshold voltages have
been lowered to the point where leakage power becomes an
important and growing fraction of total power dissipation.
More specifically, the elimination of the aforementioned po-
tential aliasing problem tends to enlarge predictor sizes to
ensure a sufficiently high prediction accuracy, although for
each predictor access only one entry of data is needed. This
inefficiency in leakage power dissipation becomes even more
significant when hierarchical, multi-level predictors are em-
ployed, thus necessitating accesses to multiple subpredictors
for generating a prediction for each branch [10].

170

BTB

BTB

(a) Traditional branch
prediction subsystem

PC

hit?

branch
predictor

direction target

to I−cache

(b) Use of BIU to identify
branch addresses

BIU

predictor
branch

branch addr

PC

target direction

taken?

Figure 1: Various BTB access flow charts

In order to eliminate unnecessary BTB accesses, the BTB
needs to be freed from the constraint of having to identify
branch instructions early. In other words, other units should
inform the processor of the subsequent branch address in ad-
vance. In this paper, this is achieved through the usage of
a cost-efficient Branch Identification Unit (BIU). More
specifically, we propose a technique to statically extract pro-
gram information regarding branch distance for each basic
block, that is, the distance between the beginning of that
basic block and the corresponding subsequent branch. Dur-
ing dynamic execution, the extracted program information
is transferred to the BIU, which calculates the next branch
address as soon as the direction of the current branch has
been predicted. This early branch identification technique
enables the elimination of BTB accesses not only for non-
branch instructions, but also for branches predicted to be
not-taken. As shown in Figure 1b, if the calculated branch
address indicates that the next branch is not forthcoming, an
access to the dynamic branch predictor can be completed at
first, enabling the BTB to be only looked up if the branch
is predicted to be taken. In fact, the ability to eliminate
BTB accesses for non-taken branches constitutes the most
significant advantage of our framework over previous BTB
filtering techniques [1, 2, 3].

As for branch predictors, because only one entry of data is
necessitated for each predictor access, if idle entries in BPs
can be identified, they can be switched into a power-saving
mode to reduce leakage power. Previous techniques have
been proposed to dynamically identify inactive SRAM en-
tries for power reduction [7, 9]. However, the lack of a policy
for pre-activating entries in hibernation limits the applica-
bility of these techniques to BPs, as accesses to hibernating
BP entries result in sizable reduction in prediction accuracy
[8]. To overcome the consequent performance degradation,
in this paper we propose a prefix analysis technique to clev-
erly activate “hibernating” rows in a branch predictor that
will be accessed relatively shortly. Since the proposed tech-
nique can analyze both global branch histories and branch
addresses provided by our BIU, it is effective for BPs with

various index mechanisms, for example, pure branch PC
[11], pure global history [12], or a combination of both [13].

4. PROPOSED FRAMEWORK

4.1 Identifying incoming branches
In order to filter BTB lookups for non-branch instructions

as well as to activate hibernating entries in branch predic-
tors, the front-end needs to know in advance the address of
the subsequent branch. To exploit maximum power reduc-
tion without incurring additional latency in accessing the
BP and the BTB, a branch identification mechanism needs
to be established in which the next branch address is calcu-
lated as early as possible.

Fundamentally, information regarding which branch is to
be encountered next during execution is not determined un-
til the current branch direction is resolved. In other words,
the earliest point to completely identify the next branch is
the instruction just following the current branch. In either
the fall-through path or the target path case, the determi-
native instruction is located at the beginning of a new basic
block. Consequently, if the information regarding the dis-
tance to the subsequent branch is available at the beginning
of each basic block, the next branch address can be iden-
tified non-speculatively as early as possible. In this paper,
the distance in terms of the number of instructions between
the first instruction of a basic block and the corresponding
subsequent control-altering instruction is denoted as branch
distance. More specifically, because a basic block (BB) is a
linear sequence of instructions with single entry and single
exit points, the subsequent branch for BBi is the last in-
struction of BBj(j > i), if none of BBi, BBi+1, ..., BBj−1

but BBj ends up with a control-altering instruction.
We propose to statically analyze the application to extract

control-flow information regarding the branch distance for
each BB. This process can be illustrated more clearly by con-
sidering an example loop containing three conditional state-
ments presented in Figure 2a. Figures 2b and 2c present the
corresponding control structure in the form of a control flow
graph (CFG) and a possible code layout including 6 control-
altering instructions, respectively. It can be observed from
Figure 2c that the size of each BB is known immediately
after compiling the program, implying that the branch dis-
tance for each BB is also determined. For instance, the
branch distance of B2, which is the distance between its
first instruction and branch2, is |B2| − 1 (with |B| denoting
the number of instructions within a basic block B). Simi-
larly, the branch distance of B6 is |B6|+ |B7| − 1, since the
corresponding subsequent branch is the loop branch. For B3
which ends up with an unconditional jump, the branch dis-
tance is |B3| − 1, because an unconditional jump still needs
to look up the BTB to obtain its target address before being
executed.

For each application, the extraction of branch distance
information is performed during the compile/link time in-
dependently for each hot spot, identified through profiling
or extracted from the algorithmic specifications. Typically
the code size of each hot spot is relatively small as it is well
known that 90% of the execution cycles are spent on 10%
of the code, resulting in a relatively small number of BBs
to be targeted. These various hot spots are furthermore
extremely independent, making it possible to apply local

171

for (i=0; i<N; i++) {

 if (c1) {
 if (c2) {
 A;
 }

 else {
 B;
 }
 }

 else {
 C;

 if (c3) {
 D;
 }
 }

 E;
}

B1

B2

B3

B4

B5

B6

B7

branch1

branch2

jump1

jump2

loop branch

branch3

(c) Possible code layout

B2 B5

B6

B7

B1

B3 B4

(b) CFG(a) Example loop

Figure 2: Control-flow structure

and therefore inexpensive optimization techniques. Conse-
quently, extracting branch distance information separately
for each hot spot delivers maximum performance benefits at
a minimal hardware cost.

By utilizing application knowledge regarding the control
structure of each hot spot and the branch distance of each
BB, a specialized hardware structure can efficiently track the
control-altering instructions in advance by simply adding the
branch distance to the starting address of the correspond-
ing BB. In our technique, this is performed by a Branch
Identification Unit (BIU), with the detailed hardware im-
plementation being elaborated in Section 5.

4.2 Filtering unnecessary BTB accesses

4.2.1 Low-power BTB access policy
The proposed early branch identification technique en-

ables an extremely power-efficient BTB access policy, which
performs BTB lookups only for instructions that need target
addresses, that is, only for unconditional jumps and condi-
tional branches predicted taken. To achieve this, in addition
to the branch distance, the information regarding the type of
the branch should also be stored in the BIU. During dynamic
execution, if the obtained branch type information indicates
that the subsequent control-altering instruction is a return
instruction, only the return address stack is accessed. If it is
an unconditional jump, only the BTB is accessed to obtain
the target address.

In the case where the subsequent control-altering instruc-
tion is a conditional branch, our filtering strategy accesses
the BTB only if the branch is predicted to be taken. The
value of the branch distance determines whether or not an
access to the dynamic branch predictor can be completed
before initiating a subsequent BTB access. Consequently,
to avoid incurring any additional latency in BTB accesses,
different access policies should be selected for the BTB as
well as the branch predictor according to the value of the
branch distance. To be more concrete, suppose the branch
distance is D, the number of instructions fetched per cycle is

n, and the latency to access the BIU and calculate the next
branch address is t cycles. Accordingly, the next branch
address is available in t cycles, whereas the exact branch is
brought into the processor frontend in D/n cycles, at which
time the associated BTB access should be performed to en-
sure no performance degradation. Consequently, if the time
interval (D/n − t) is longer than the latency to access the
dynamic predictor, a predictor access can be completed be-
fore starting a BTB access.

To guide BTB lookups when a predictor access cannot
be completed before starting a BTB access, for each basic
block a static prediction of the corresponding subsequent
branch is also cached in the BIU. Consequently, if the time
interval D/n − t is shorter than the access latency of the
dynamic predictor, a BTB lookup is conditionally performed
based on the value of the static prediction. As the static
prediction cannot achieve the same accuracy as the dynamic
predictor, this access policy causes a slight degradation in
performance. However, compared with the significant power
reduction achieved by this access policy, the resulting slight
performance degradation is negligible.

4.2.2 Handling single instruction basic blocks
In the aforementioned access policy, a BTB lookup can

be performed as soon as the next branch address becomes
available. Because the BIU is a small SRAM structure, typi-
cally the access to the BIU and the subsequent computation
of the next branch address can be completed within 1 cy-
cle. Since the BIU is accessed in parallel with the fetching
of the first instruction of a basic block, initiating a BTB
lookup after a BIU access imposes no performance degra-
dation as long as the first instruction of that basic block is
not a control-altering instruction. However, in the extreme
case where a basic block is nothing but a single2 control-
altering instruction, a 1-cycle additional latency is incurred
in the process of awaiting the calculation of the next branch
address.

To handle this problem, in our framework basic blocks
solely composed of a single control-altering instruction are
encoded in their corresponding predecessors. In other
words, for each basic block, two dedicated flags are em-
ployed to indicate whether either of its two subsequent BBs
is composed solely of a single control-altering instruction.
An illustrative example can be seen in the CFG presented
in Figure 2b. If the basic block B3, which is the target BB
of B2, only consists of instruction jump1, a flag is set for B2
to encode this information. During dynamic execution, if
the pre-set flags obtained from a BIU access together with
the predicted branch direction indicate that the incoming
BB begins with a control-altering instruction, a BTB access
rather than a BIU access is performed for the incoming basic
block. This access policy introduces an additional benefit in
that no BIU entry needs to be allocated for a basic block
composed solely of a single control-altering instruction, thus
reducing the total number of BIU entries necessitated for the
corresponding hot spot.

4.3 Waking up hibernating predictor entries
Various techniques [7, 9] have been proposed for on-chip

SRAM structures in order to identify inactive entries that

2Our statistical results indicate that only 4.9% on the aver-
age of all the dynamically executed branches lie on the first
(and in this case are the only) instruction of a basic block.

172

0 1 1 1 1 0

1 1 1 00 1 0 0 1 0 1 0 0

Branch Predictor

activate

row addr

next row addr

Present lookup

Next lookup

column addr

0 0 1 0 1 0 0

GHR

GHR

Figure 3: Activating BP rows indexed by GHR

are switched into hibernation mode to save leakage power.
However, applying these techniques to branch predictors
without adversely impacting performance is more compli-
cated [8], as these techniques only focus on a turnoff mecha-
nism while paying little attention to the activation of hiber-
nating SRAM entries. More specifically, if an active entry
is accidentally considered “idle” and switched into the hi-
bernation mode, a significant performance penalty will be
incurred for the next access. In order to overcome this per-
formance degradation, in this paper we propose a prefix
analysis technique to identify rows in the predictor that
will be accessed relatively shortly.

The effectiveness of our technique can be attributed to
the physical organization of branch predictors; although log-
ically predictor tables are arrays of 2-bit counters, they are
physically implemented as square or nearly-square array struc-
tures, in order to balance the complexity of decoders as well
as the wordline and bitline delay. Since predictor entries
are too small to be deactivated individually, a cost effective
choice for turning off these counters is at the granularity of
rows in the array structure, necessitating corresponding ac-
tivation mechanisms of the same granularity. Because the
row address constitutes the most significant part of the ac-
cess index, designing an effective prefix analysis technique
enables the identification and the pre-activation of the hi-
bernating rows that will be accessed in short order. More
specifically, prefixes can be generated in different ways ac-
cording to the index mechanisms, detailed as follows.

• Global history indices: In this case, a single global
history register (GHR) is employed to record the direc-
tion of the most recent n conditional branches, assum-
ing the size of GHR is n bits. Accordingly, the next
predictor access index is obtained by shifting the cur-
rent GHR one bit to the left, with the last bit equal to
the direction of the most recent branch. This implies
that prefixes of the following predictor access indices
can be easily extracted from the content of the cur-
rent GHR, as shown in Figure 3. More specifically,
the prefix of the next ith predictor access consists of
bit (�n/2� − i) to bit (n − 1 − i) in the current GHR,
implying that all the prefixes up to the next (�n/2�)th

branches can be extracted from the current content of
the GHR, thus enabling the corresponding rows to be
pre-activated as well.

• Branch address indices: If branch addresses are
used as the predictor access index, the next access in-
dex is not necessarily identical to the current index.
However, in most cases the next access prefix can still

be identified in time to pre-activate a hibernating en-
try because of two reasons. As the proposed BIU can
identify in advance the next branch address and thus
the next predictor access prefix, the pre-activation la-
tency can be hidden if the branch distance indicates
that the next branch is not forthcoming. Furthermore,
the small code size of a hot spot makes changes in
the access prefix, which lies in the middle section of
the branch address, infrequent. This implies that the
present branch and the next branch will probably map
to the same row or adjacent rows in the predictor. An
additional case that may need to be considered is the
case where the branch distance is small while the dif-
ference between the two consecutive branch addresses
is large. While this may indeed result in a predictor
row in hibernation not being pre-activated in time, the
simulation results in Section 6 show this to be quite a
rare occurrence.

As most of the state-of-art predictors are indexed by linear
functions of global histories and branch addresses, prefixes
can be generated by combining the two individual prefix
analysis results using the same function as the one used for
generating the access index. For example, the index to the
well-known gshare predictor [13] is generated by xor ing the
global history and the corresponding branch address, im-
plying the next access prefix can be generated by xor ing
the prefixes of the next global history and the next branch
address, both of which can be analyzed as described above.

The proposed prefix analysis technique can cooperate with
all the circuit-level leakage power reduction techniques that
maintain a hibernation mode in addition to the normal func-
tional mode. In this paper, we employ the circuit-level tech-
nique originally proposed in [9], which dynamically modu-
lates the power supply voltage to reduce the leakage cur-
rent, thus preserving the original state of an SRAM cell.
As this circuit-level technique only needs 1 additional cycle
to awaken a hibernating cell, rows in the branch predictor
can be periodically switched into hibernation aggressively
to achieve additional power savings. More specifically, be-
cause no overlapping of code exists between different hot
spots, during dynamic execution, all the rows in the branch
predictor can be switched into hibernation before entering
a hot spot. As the hot spot starts to be executed, the pro-
posed prefix analysis technique is used to identify and pre-
activate hibernating rows for subsequent accesses. In the
worst case where a hibernating row can not be activated in
time, the static prediction stored in the BIU is used to guide
the subsequent BTB access and hence the next instruction
fetch. Because of the strong temporal locality associated
with each hot spot, fewer pre-activations suffice during ex-
ecution, since more incoming branches will probably have
been executed. Once all the predictor rows in the current
working set have been activated after several iterations, no
pre-activation needs to be performed until the execution flow
switches to another hot spot.

5. IMPLEMENTATION

5.1 Constructing the BIU
According to the analysis in the last section, for each ba-

sic block in a hot spot, four pieces of information need to be

173

S_pred NT_flag T_flag NT_index T_indexvalid B_type B_distance

And

And

Adder

Mux

Subsequent
Branch addrT_flag

NT_flag
prediction

target addr

fall−through addr

PC

B_distance

And

Or

Mux

Comp 0

Dynamic
prediction

Prediction generated?

S_pred

DecoderB_type

Returns

Signal
BTB access

Conditional br

Unconditional br

Mux

Counter

(b) Generating next branch address(a) BIU organization

BB i

BB 5

BB 3

(c) Signaling BTB accesses

Figure 4: Hardware implementation

extracted from profiling: branch type, branch distance, sta-
tic prediction, and two flags used to indicate whether either
of the two subsequent BBs following the next branch con-
stitutes a single control-altering instruction. The proposed
BIU table is designed to contain one entry per BB to store all
the necessary information. As can be seen in Figure 4, each
BIU entry includes a valid bit, a B type field, a B distance
field, an S pred bit, as well as the aforementioned two flags,
NT flag and T flag. Furthermore, to efficiently access the
BIU with no need of associative lookups and tag compar-
isons, two additional fields, NT index and T index, are used
to record the BIU indices corresponding to the fall-through
BB and the target BB following the next branch, respec-
tively.

Transferring the extracted information of each hot spot to
the BIU is performed by having the BIU table accessible by
software. More specifically, prior to entering any application
hot spot, a sequence of instructions inserted by the com-
piler is executed to store the extracted information within
the BIU. The introduced performance overhead is practi-
cally nonexistent since the setup code is executed only once
prior to entering a hot spot. After completing the setup
step, all the basic blocks of a hot spot are mapped to the
BIU in linear order in the program code. When the hot
spot commences execution, the first entry in the BIU, that
is, the entry corresponding to the starting BB, is accessed
immediately. After completing a BIU access, the index for
the next BIU access equals either the NT index field or the
T index field in the current BIU entry, to be selected by the
direction of the incoming branch.

The organization presented in Figure 4 indicates that our
BIU is an extremely power efficient structure. As the num-
ber of basic blocks in a hot spot is relatively small, in most
cases the required BIU size can be limited to within 128 en-
tries. Furthermore, the width of the BIU entries is also tiny.
The valid bit, the S pred field, and the two flags are all 1
bit wide. The B type field is 2 bits wide. The index fields
are 7 bits wide, assuming a BIU size of 128 entries. The
B distance field can be implemented in 5 bits, since typ-
ically the branch distance does not exceed 32 instructions.
In total, each entry is only 25 bits wide. Since the size of the
BIU is much smaller than the instruction cache, the latency
to access the BIU and calculate the next branch address can
be effectively hidden and introduces no pipeline timing con-
straints even for deeply pipelined front-ends. Furthermore,
as a dedicated BIU entry is allocated per BB, no conflicts or

misses can exist in our BIU, implying that the early identi-
fication of the next branch address is always guaranteed.

5.2 Generating the next branch address
The generation of the next branch address is performed as

soon as the branch distance information is obtained through
a BIU access, in parallel with the fetching of the initial
instruction of the corresponding BB from the instruction
cache. In the typical case, the next branch address for
the present BB equals the sum of the B distance field and
the program counter. Moreover, if the incoming BB begins
with a control-altering instruction, an additional BTB ac-
cess needs to be performed for the incoming BB. The various
cases can be detailed as follows:

1. next branch (branch A) addr for present BB
⇐ B distance + PC

2. if T flag field == 1 && branch A == taken
next branch (branch B) addr for incoming BB
⇐ fall-through addr of branch A

3. if NT flag field == 1 && branch A == not-taken
next branch (branch B) addr for incoming BB
⇐ target addr of branch A

Figure 4b presents the hardware logic to implement these
three cases. In most situations only one BIU access suf-
fices for the calculation of the next branch address. The
only exception occurs in the case where the corresponding
branch distance exceeds the representation capability of the
B distance field, forcing the allocation of multiple entries
in the BIU and the execution of multiple lookups to ob-
tain a large branch distance. While performing multiple
lookups implies more power consumption, no performance
degradation is introduced here, since the corresponding large
branch distance indicates that the next branch is at least
more than 2n instructions away, assuming an n-bit width of
the B distance field.

5.3 Signaling BTB accesses
As discussed in Section 4.2, the BTB is accessed for un-

conditional jumps and conditional branches predicted to be
taken. According to the value of the B distance field, a con-
ditional branch is predicted either by the S pred field stored
in the BIU or by the dynamic branch predictor. This access
policy can be summarized as follows:

1. Access the BTB if (B type == unconditional)
‖ (B type == conditional && pred == taken)

174

Branch% Taken% 4Kbimod hit% BTB hit% 4Kgshare hit% BTB hit%
adpcm e 28.68 21.22 70.79 70.78 84.20 84.19

epic 14.71 8.08 95.69 95.68 96.16 96.15
gsm e 4.86 4.05 93.33 93.24 93.65 93.56
meg2 e 17.02 10.38 76.91 76.90 81.58 81.58

mcf 21.10 13.45 91.84 91.84 95.44 95.43
gzip 12.05 7.62 92.78 92.78 94.15 94.15
gcc 13.12 8.53 94.53 92.38 94.54 92.39

parser 15.48 10.05 91.83 91.72 95.57 95.47
twolf 12.08 6.93 87.16 87.16 86.70 86.70
gap 12.65 9.18 96.12 92.88 97.88 94.64

vpr route 10.65 5.50 94.05 94.03 94.11 94.09
average 14.76 9.54 89.55 89.04 92.18 91.67

Table 1: Branch characteristics of the benchmarks

2. if (D/n−LBIU < LBP) ‖ (D/n−LBIU < LBP +Lact

&& BP entry is in hibernation)
pred ⇐ S pred
else pred ⇐ dynamic prediction result

wherein D represents the value of the B distance field, n the
number of instructions fetched per cycle, LBIU the latency
to access the BIU and compute the next branch address,
LBP the latency to access an active BP entry, and Lact the
latency to activate a hibernating BP entry.

The implementation of this access policy is presented in
Figure 4c. After a BIU access has been performed, the
counter register is loaded with the value D/n−t. The B type
field is forwarded to a decoder and a BTB access is directly
signaled for unconditional jumps. In the case of conditional
branches, if no dynamic prediction has been generated ei-
ther before the counter turns 0 (because of a short branch
distance) or even after the counter turns 0 (because the cor-
responding predictor row is in hibernation), a BTB access
is performed if the S pred field equals 1. Otherwise, the
BTB access will be conditionally signaled by the dynamic
predictor.

6. SIMULATION RESULTS
To evaluate the proposed power reduction techniques for

different types of applications, a set of experimental stud-
ies have been performed on both the Mediabench [14] and
the SPECint 2000 benchmarks. ATOM [15] is used to in-
strument the assembly code to identify the hot spots and
to analyze the corresponding control structures. The sim-
bpred simulator of the SimpleScalar toolset [16] is modified
to simulate the behavior of the proposed branch subsystem.
Such a simulation environment corresponds to an in-order
pipelined processor, which constitutes a typical case for em-
bedded processors with stringent power constraints.

Table 1 lists the branch characteristics of the benchmarks
running on a baseline architecture with a configuration con-
sisting of a 256-set 4-way associative BTB and a 4K branch
predictor. The first column, denoted as Branch%, lists the
ratio of branches to the total number of executed instruc-
tions, a numerical characteristic of the branch instruction
density. It can be observed that the branch density for most
benchmarks is consistently in the range of 10% to 25%, a
typical situation for real applications. The significantly low
branch density of 4.86% for the gsm e is due to the existence

of a basic block containing more than 300 instructions. As
previous BTB filtering techniques [1, 2, 3] have to access
the BTB for all branch instructions, these branch density
values actually reflect the upper bound of power reduction
that can be achieved by previous work. The second column,
denoted as Taken%, lists the percentage of taken branches
out of the total number of executed instructions. The next
two columns present the prediction accuracy of a 4K bimod
predictor3 and the corresponding hit rate of the 256-set 4-
way BTB. In a perfect situation with no BTB conflicts, the
BTB hit rate should be equal to the branch prediction accu-
racy. In practice, however, a difference exists which is due
to branches correctly predicted by the predictor, yet not
found in the BTB when attempting to obtain their target
addresses. As can be observed from Table 1, the differences
between the BTB hit rate and the branch prediction accu-
racy are negligible except for gsm e, gcc, parser, and gap,
implying that a 256-set 4-way BTB suffices to capture al-
most all of the correctly predicted branches in the other
benchmarks. To illustrate the influence of different index-
ing mechanisms, similar results accumulated for a 4K gshare
predictor are presented in the last two columns. As it can
be seen, the gshare predictor can reach a higher prediction
accuracy for most benchmarks, since it enables the exploita-
tion of correlation between multiple branches.

6.1 Power results
We utilize CACTI [17] to analyze the access power char-

acteristics of the BIU, the BTB, and the branch predictor,
since all of them are implemented as standard SRAM struc-
tures. More specifically, the BTB is modeled as a standard
cache structure, while the power characteristics of accessing
the branch predictor and the proposed BIU are extracted
through modeling a direct-mapped cache structure and sub-
tracting the power consumption of the tag array and the
comparator cells. The line width of both the BTB and the
proposed BIU are fixed at 8 bytes, the minimal word size
allowed by CACTI. Moreover, since our framework employs
the circuit-level technique originally proposed in [9] to re-
duce leakage power, we also use the leakage power character-
istics reported in [9]. For each SRAM cell, these power char-
acteristics include the leakage energy consumed in both the
normal mode and the hibernation mode, as well as the dy-
namic power consumed to switch between these two modes.

3A bimod predictor uses pure branch addresses as the access
indices.

175

adpcm_e epic gsm_emeg2_e mcf vpr_route gcc parser twolf gap gzip average
0

0.05

0.1

0.15

0.2

0.25
Normalized Dynamic Power Consumption

BTB power BP power BIU power

Figure 5: Normalized dynamic power consumption
for the BTB and the predictor

The obtained dynamic and static power characteristics,
together with the number of accesses and the number of hi-
bernation cycles reported by the modified SimpleScalar sim-
ulator, are used to evaluate the total energy consumption.
As both leakage and dynamic power values vary heavily with
different designs and fabrication processes, in this paper we
focus for evaluation purposes on the ratios of values. In
addition, since the proposed methodology is independent of
the rest of the processor architecture, we only report power
savings results on the branch subsystem. A measure of the
importance of power consumption in a branch subsystem
can be observed by noting that a number of researchers [1,
6] have estimated the contribution of the branch subsystem
to the total power consumption to exceed 10%.

Reduction in dynamic power: Figure 5 reports the
dynamic power consumption of the proposed branch pre-
diction subsystem, normalized to a traditional branch sub-
system that accesses the BTB and the branch predictor for
each instruction under fetch. The presented data is accumu-
lated for a simulation configuration consisting of a 128-entry
BIU, a 256-set 4-way associative BTB, and a 4K gshare pre-
dictor. For each benchmark, the data reported here corre-
sponds to the entire program, including both the hot spots
and the remaining parts. Each power consumption value
is broken down into the power consumed by the BTB, the
BIU, and the branch predictor, in order to illustrate the con-
tribution of each individual component. As it can be seen,
the proposed technique achieves a significant reduction in
dynamic power consumption, ranging from 76.6% to 94.8%,
with the average equaling 87.4%. Not surprisingly, more
power savings can be achieved if the benchmark displays a
relatively lower branch density. In addition, the extra power
spent in accessing the BIU for each basic block is much less
than the significant power reduction achieved through fil-
tering the BTB accesses, implying that the dynamic power
overhead introduced in our technique is negligible. More
importantly, for each benchmark except gsm e, the value
presented in Figure 5 is always smaller than the value listed
in the first column of Table 1, implying that the extra en-
ergy savings achieved through filtering the BTB accesses for
not-taken branches exceeds the energy overhead introduced

0

0.2

0.4

0.6

0.8
Normalized Leakage Power for 4K bimod

adpcm_e epic gsm_emeg2_e mcf vpr_route gcc parser twolf gap gzip average
0

0.2

0.4

0.6

0.8
Normalized Leakage Power for 4K gshare

BP leakage Dynamic switch power

Figure 6: Normalized leakage power consumption
for the branch predictor

by the BIU. The only exception is gsm e, in which only 16%
of all the dynamic executed instructions are resolved to be
not-taken. As the first column of Table 1 constitutes a lower
bound of dynamic power consumption for previous BTB fil-
tering techniques, these values indicate that the proposed
technique outperforms all previous BTB filtering techniques
in reducing dynamic power.

Reduction in leakage power: Figure 6 reports the nor-
malized leakage power consumed by the branch predictor in
applying the turn-off and wake-up policies outlined in Sec-
tion 4.3. Both leakage power savings and dynamic power
spent in activating hibernating predictor entries are taken
into consideration. To illustrate the influence of different in-
dexing mechanisms, the results for both a 4K bimod and a
4K gshare predictor are presented. According to the leakage
power characteristics reported in [9], we assume that for each
SRAM cell the leakage power consumed in the hibernation
mode is 16% of the normal mode, while the dynamic switch
power is 10 times of the original leakage power. As it can be
seen, the leakage power consumed by the bimod predictor
can be reduced to 22.9% on average, which is quite close to
the lower bound of 16%. In fact, most predictor rows are
kept in hibernation during execution, as the active ratio (the
percentage of active predictor rows) for the bimod predictor
is only 8.4% on average. This is because the bimod predictor
displays a strong temporal locality since each static branch
only touches one predictor entry, as well as a strong spatial
locality since conditional branches within a neighborhood
conceivably are mapped to the same or consecutive predic-
tor rows during execution. This strong locality also results
in a limited number of pre-activations required by the bimod
predictor; only 1.2% of the original leakage power is spent
in activating hibernating predictor entries. On the other
hand, because each static branch can be mapped to multi-

176

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Total activations for 4K bimod

adpcm_e epic gsm_emeg2_e mcf vpr_route gcc parser twolf gap gzip average
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Total activations for 4K gshare

On−time activations Late activations

Figure 7: Pre-activations needed for accessing pre-
dictor entries in hibernation

ple entries in the gshare predictor, the corresponding average
active ratio is 41.0%, almost 5 times that of the bimod pre-
dictor. However, even for the gshare predictor, the leakage
power can still be significantly reduced to 50.3% on average,
and only 4.4% of the original leakage power is spent in acti-
vating hibernating rows. This indicates that even for predic-
tor structures designed to hash branch addresses over many
entries, the proposed turn-off and wake-up policies still show
significant promise for addressing leakage concerns. In sum,
the proposed leakage power reduction technique is quite ef-
fective, as it can achieve a 75.9% reduction in leakage power
for a 4K bimod predictor, and a 45.3% reduction for a 4K
gshare predictor.

6.2 Performance results
As discussed in Section 4.2, the latency to access the BIU

and calculate the next branch address can be completely hid-
den in the proposed framework. As a result, the proposed
power reduction technique only affects the system’s overall
performance by reducing prediction accuracy. This occurs
when no dynamic prediction can be obtained before the cor-
responding branch instruction is brought into the front-end,
resulting in the S pred field stored in the BIU being used
to guide the BTB access and subsequent instruction fetch.
In the proposed framework, the inability to complete an
access to the dynamic predictor is attributed to either a
short branch distance or the hibernation of the correspond-
ing predictor row. Fortunately, the proposed prefix analysis
technique can effectively hide the penalty caused by the sec-
ond case.

Effectiveness of pre-activation: To evaluate the effec-
tiveness of the proposed prefix analysis technique, Figure
7 presents the percentage of executed branches that need
to be pre-activated for the 4K bimod and gshare predic-
tors. We do not report the results of pure global history

0

0.05

0.1

0.15

0.2

0.25

0.3

Mis−prediction rate for 4K bimod

adpcm_e epic gsm_emeg2_e mcf vpr_route gcc parser twolf gap gzip average
0

0.05

0.1

0.15

0.2

0.25

0.3

Mis−prediction rate for 4K gshare

Original With proposed power reduction

Figure 8: Impact on mis-prediction rate

indices, since in that case prefixes for subsequent predic-
tor accesses can always be identified in advance, ensuring
consistent on-time pre-activations. Each value reported in
Figure 7 is broken down into on-time pre-activations and
late activations. It can be observed from Figure 7 that the
proposed pre-activation policy is quite effective, as it can
capture on average 89.0% of all the accesses to hibernat-
ing rows for the bimod predictor and 85.1% for the gshare
predictor. Here, the bimod predictor again outperforms the
gshare predictor in that fewer pre-activations are needed and
an increased percentage of pre-activations can be performed
on time. In fact, the bimod predictor displays quite a strong
temporal and spatial locality, as for most benchmarks the
number of executed branches that need to be pre-activated
is less than 1%. While this may limit the importance of our
pre-activation technique for the bimod predictor, the more
accurate gshare predictor still has a non-negligible number
of branch instructions mapped to hibernating predictor en-
tries, thus requiring the use of the proposed prefix analysis
technique to effectively hide the activation latency.

Increase in mis-prediction rate: Figure 8 presents
the increase in mis-prediction rate caused by the proposed
framework, with the proposed prefix analysis technique in-
corporated to hide pre-activation latency. As can be ob-
served, for adpm e, mcf and parser which display a rela-
tively larger branch density, the S pred field is used more
frequently, resulting in a relatively higher degradation in
prediction accuracy. On average a 1.8% increase in mis-
prediction rate is obtained for the bimod predictor, and
similarly a 2.2% increase for the gshare predictor. While
the increase in the mis-prediction rate seems non-negligible
at first sight, the fundamental reason is that we employ a
simple approach of predicting all forward branches to be
not-taken and all backward branches to be taken for stat-
ically setting the S pred. As can be seen, even with such
an inaccurate static prediction scheme, the proposed prefix

177

adpcm_e epic gsm_emeg2_e mcf vpr_route gcc parser twolf gap gzip average
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014
Performance degradation

4K bimod 4K gshare

Figure 9: Performance degradation

analysis technique still effectively pre-activates hibernating
predictor entries, thus significantly reducing the usage fre-
quency of the S pred field. This degradation in prediction
accuracy can be easily reduced if each static branch is guided
more precisely through static profiling results.

Performance degradation: Figure 9 shows the perfor-
mance degradation caused by using the S pred field stored
in the BIU when no dynamic prediction can be obtained be-
fore the corresponding branch instruction is brought into the
front-end. In can be observed that the performance degrada-
tion caused by the proposed technique is negligible, ranging
from 0.02% to 1.34%, with the average degradation of 4K
bimod and gshare predictors respectively equal to 0.27% and
0.37%. Throughout all the benchmarks the gshare predic-
tor displays a higher degradation in performance, since the
original prediction accuracy associated with the gshare pre-
dictor is consistently higher than the bimod predictor. Not
surprisingly, the data presented here is strongly correlated
to the mis-prediction rate presented in Figure 8 in that a rel-
atively higher performance degradation occurs for adpm e,
mcf and parser wherein the S pred field is used more fre-
quently due to their larger branch density.

7. CONCLUSIONS

We have presented a methodology to design a power-
efficient branch subsystem in this paper. A branch iden-
tification unit (BIU) has been proposed to achieve early
identification of incoming branch addresses according to the
static extracted program information regarding the control-
flow structure as well as the branch distance. By accessing
the cost-efficient BIU once per basic block, the highly power
expensive cycle-by-cycle BTB lookups are replaced by BTB
accesses performed only for branches predicted taken. Fur-
thermore, hibernating predictor rows can be pre-activated
for subsequent accesses, minimizing the performance degra-
dation originally imposed by applying leakage power reduc-
tion techniques to branch predictors. The proposed frame-
work enables the integration of the traditional branch pre-
diction subsystem methodology into a wide range of embed-
ded processor architectures.

8. REFERENCES

[1] D. Parikh, K. Skadron, Y. Zhang, M. Barcella, and
M. R. Stan. Power issues related to branch prediction.
in Proc. 8th HPCA, pages 233–244, Feb. 2002.

[2] P. Petrov and A. Orailoglu. Low-power branch tar-
get buffer for application-specific embedded processors.
IEE Transactions on Computers & Digital Techniques,
152(4):482–488, July 2005.

[3] M. Monchiero, G. Palermo, M. Sami, C. Silvano,
V. Zaccaria, and R. Zafalon. Low-power branch predic-
tion techniques for VLIW architectures: A compiler-
hints based approach. Integration, the VLSI Journal,
38(3):515–524, Jan. 2005.

[4] A. Baniasadi and A. Moshovos. Branch predictor pre-
diction: a power-aware branch predictor for high-
performance processors. in Proc. ICCD: VLSI in Com-
puters and Processors, pages 458–461, Sep. 2002.

[5] A. Baniasadi and A. Moshovos. SEPAS: A highly accu-
rate energy-efficient branch predictor. in Proc. ISLPED
’04, pages 38–43, Aug. 2004.

[6] D. Chaver, L. Pinuel, M. Prieto, F. Tirado, and M. C.
Huang. Branch prediction on demand: an energy-
efficient solution. in Proc. ISLPED ’03, pages 390–395,
Aug. 2003.

[7] S. Kaxiras, Z. Hu, and M. Martonosi. Cache decay: ex-
ploiting generational behaviour to reduce cache leakage
power. in Proc. 28th ISCA, pages 240–251, July 2001.

[8] Z. Hu, P. Juang, K. Skadron, D. Clark, and
M. Martonosi. Applying decay strategies to branch
predictors for leakage energy savings. in Proc. ICCD:
VLSI in Computers and Processors, pages 442–445,
Sep. 2002.

[9] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and
T. Mudge. Drowsy caches: Simple techniques for reduc-
ing leakage power. in Proc. 29th ISCA, pages 148–157,
May 2002.

[10] P. Y. Chang, E. Hao, and Y. N. Patt. Alternative imple-
mentations of hybrid branch predictors. in Proc. 28th
Micro, pages 252–257, Dec. 1995.

[11] J. E. Smith. A study of branch prediction strategies. in
Proc. 8th ISCA, pages 135–148, May 1981.

[12] S. T. Pan, K. So, and J. T. Rahmeh. Improving the
accuracy of dynamic branch prediction using branch
correlation. in Proc. 5th ASPLOS, pages 76–84, Oct.
1992.

[13] S. McFarling. Combining branch predictors. Tech. Note
TN-36, DEC WRL, June 1993.

[14] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. Me-
diabench: A tool for evaluating and synthesizing multi-
media and communications systems. in Proc. 30th Mi-
cro, pages 330–335, Dec. 1997.

[15] A. Srivastava and A. Eustace. ATOM: A system for
building customized program analysis tools. Tech. re-
port, Western Research Lab, March 1994.

[16] D. C. Burger and T. M. Austin. The SimpleScalar tool
set, version 2.0. Computer Architecture News, 25(3):13–
25, June 1997.

[17] P. Shivakumar and N. P. Jouppi. Cacti 3.0: An inte-
grated cache timing, power and area model. Tech. re-
port, Western Research Lab, Aug. 2001.

178

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

