
Methodologies to Bring Embedded Systems to Non-EE
Students

Shekhar Sharad
National Instruments

11500 N Mopac Expwy, Austin, TX
78759, USA

+1-512-683-5219

shekhar.sharad@ni.com

ABSTRACT
With embedded systems being used in every industry, it is
important to empower domain experts who are not embedded
design engineers to be able to design, prototype and deploy
them in their applications. In this paper, we explore some
graphical methodologies available today that provide a higher
level of abstraction that can help professors teach embedded
systems to non-EE majors. We will identify the advantages such
methodologies present and explain with some marquee examples
such as ChallengeX and LEGO.

Categories and Subject Descriptors
Dataflow programming, event structures, abstraction

Keywords
Embedded, innovative teaching methodologies, hands-on
learning, non-EE majors

1. INTRODUCTION
Embedded systems are becoming increasingly pervasive, from
space stations to everyday objects such as cell phones and
microwaves. With technologies converging and silicon
shrinking, embedded systems now present viable opportunities
for individuals and teams that are not embedded design
engineers but domain experts in their field of choice. For
example, a mechanical engineer building the next generation
vehicle may not be an embedded design engineer but is an
expert on the dynamics of a vehicle including the design of the
engine and the drive-train. Hence there is a need for tools that
provide an increasing level of abstraction while providing the
power and flexibility of embedded systems. One of the biggest
hurdles that traditional programming methodologies present to
teaching embedded systems to non-EE majors is that of
complexity. Non-EE majors may have little to no textual
programming experience and hence there is a need for ways that
present an intuitive interface to designing embedded systems so
that Professors can explain the concepts and students can
understand and use embedded platforms for their projects.

One such effective methodology is using Graphical tools and
techniques to teach embedded systems. In this paper, we will
present how graphical programming present a viable platform to
teach embedded design. We will elucidate on some of the
advantages that such graphical programming methodologies
present. We will also show how graphical programming
methodologies provide a flexible platform that can be used to
target embedded hardware such as FPGAs, DSPs or
Microcontrollers giving users the option to completely design,

prototype and deploy their system. We will also list some of the
marquee programs around the world that have been using such
techniques to teach embedded systems.

2. GRAPHICAL PROGRAMMING
It is common in embedded and signal processing communities to
use block diagrams to represent systems. The blocks typically
represent computations and the arrows connecting the blocks
represent flow of data. Graphical programming is based on the
“dataflow” paradigm which in mathematical terms is a directed
graph whose nodes represent computations and the arcs
represent streams of data. The nodes may consist of subsystems
that consist of a series of nodes and arcs or contain algorithms
implemented in a primitive language such as assembly or C. As
it can be observed, graphical programming languages lend
themselves naturally to embedded and DSP programming which
has resulted in a lot of research and development in graphical
programming languages.

There are a number of tools that allow a mixture of visual and
textual programming such as Signal[1], Lustre[2] and Silage[3].
Completely graphical programming environments such as
Ptolemy[4] from University of California, Berkeley and
National Instruments LabVIEW[5] have evolved to present
powerful tools that professors can use to teach embedded
systems without compromising on the flexibility and control that
the traditional methodologies provide. Figure 1 shows a typical
screenshot from both Ptolemy and LabVIEW.

(a) [4]

(b)

Figure 1. Block Diagrams from Ptolemy (a) and NI LabVIEW
(b)

As it can be seen from figure 1, both of these block diagrams
have several common features. First, both languages use a
dataflow approach that comes naturally to engineers designing
systems, embedded or otherwise. Second, the interface provides
a high level of abstraction, thereby resulting in a clean interface
that supports debugging. Third and most important for
professors, both of these representations lend themselves
naturally to teaching concepts using a step-by-step approach.

3. EMPOWERING DOMAIN EXPERTS
As noted in a previous section, the designers are not necessarily
DSP-design experts. However, they are experts in their
application area and want to use embedded platforms such as
DSPs and FPGAs for their application because of the
advantages that these platforms provide. Conventional
programming methods increase the learning curve making it
difficult to use DSPs or FPGAs for application development,
especially for domain experts who are not embedded design
engineers. Graphical programming languages alleviate this
problem by providing a simple, easy-to-use interface that can be
used to program DSPs, FPGAs and microcontrollers
empowering the domain experts to quickly design, prototype
and deploy systems. Figure 2 compares the steps that are
required when using conventional and graphical programming
techniques for DSPs. A similar chart can be drawn for other
hardware platforms such as FPGAs or Microcontrollers.

Figure 2. Abstracting complexities using graphical programming

The comparison between the two approaches in figure 2 present
a very interesting perspective to teaching embedded systems to
non-EE majors. The domain expert, in this case, the non-EE
students are concerned with their design only. By providing a
higher level of abstraction we are able to abstract the complexity
in designing the embedded system helping the domain expert
focus on the design at the same time teaching them how to use
embedded systems.

4. A MARQUEE EXAMPLE - ChallengeX
ChallengeX[6] is a multi-year student competition in which
seventeen teams have been challenged to re-engineer a GM
Equinox, a crossover sport utility vehicle to minimize energy
consumption, emissions, and greenhouse gases while
maintaining or exceeding the vehicle's utility and performance.

The team that won ChallengeX in 2006, Virginia Polytechnic
Institute and State University in the United States consisted
primarily of mechanical engineers who are experts in the design
of vehicles. In this competition, there was a need to use
embedded systems that could be used to build complex Control
Units and other regulatory parts for the Equinox. Figure 3 shows
the overall architecture that Virginia Tech presented.

Figure 3. ChallengeX Vehicle design from Virginia Tech

Virginia Tech used graphical system design techniques to design
their system. They used NI LabVIEW to program an FPGA-
based platform, NI CompactRIO. The key point here is that the
team was not comprised of embedded design experts, but
because of they learnt embedded design using graphical
techniques, they were able to design a highly efficient embedded
control system.

5. ANOTHER EXAMPLE – LEGO
LEGO Mindstorms have been used by several professors and
educators to demonstrate engineering concepts [7][8][9][10].
While it may seem as a toy, it is also a powerful robotics
platform. For example, the new LEGO Mindstorms NXT brick
is a 32-bit ARM processor that interfaces with sensors and
motors and communicates with the host via Bluetooth. The key
pedagogical element here is that the individuals for whom this
“toy” is aimed at are typically between the 5-15 years of age
group! The reason for this “toy” being successful is that it uses a
completely graphical interface. Figure 4 shows the LEGO
Mindstorms NXT software.

Figure 4. The next generation LEGO Mindstorms NXT software

Not only is this tool being used by high-school kids, but
professors from engineering disciplines such as mechanical and
aerospace systems are using this tool to help students learn
about the nuances of embedded systems such as limitations on
memory without having to worry about the implementation
details such as memory allocation, pointers and netlist
generation. The software takes care of all these details allowing
the student to focus on the design of his or her system.

6. BENEFITS OF GRAPHICAL
PROGRAMMING
6.1 Drag-and-drop interface
Graphical programming languages provide the user with a true
drag-and-drop interface that reduces the learning curve
drastically. Figure 5 shows an example of a block diagram from
NI LabVIEW. Ptolemy has similar diagrams as well. From a
pedagogical standpoint, the benefit for professors is that they
can now teach the students using block diagrams using a chalk
and a whiteboard and create the same block diagram in software
that automatically translates and runs on hardware.

Figure 5. Drag-and-drop interface helps teach concepts easily

6.2 Hundreds of Pre-built Function Blocks
Designing embedded systems is incomplete without signal
processing and control functions. As it was shown in figure 5,
graphical programming environments aim to minimize textual
code needed to design algorithms and provide users with a
library of basic functions that can be used to develop embedded
systems quickly. Graphical environments achieve this goal by
providing pre-built function blocks that can be wired together to
design a system. The advantage that graphical environments
provide is that the same program that is used for simulation
purposes can also be downloaded to supported targets and hence
give the students access to real-world signals and enhance
hands-on learning. Figure 6 shows some examples of time-
domain function blocks.

Figure 6. Some pre-built function blocks for time-domain

Professors can also teach students to build complex functions
using the basic function blocks and hence promote the concept
of reuse in embedded systems.

6.3 Ability to Re-use Existing C Code
Embedded design has traditionally involved a lot of C and
assembly code. Professors and students may also have a lot of
existing C code that they may wish to reuse. Graphical
environments present a ways to reuse existing C code. The
underlying implementation may vary for the different
environments. One of the simplest techniques is shown in Figure
7. This technique is used in NI LabVIEW. Professors and
students can insert their C code and create the input and output
terminals and the compiler will compile any C code in the
inline-C node into a header file and include it in the embedded
project.

This also provides an opportunity for professors to introduce the
finer aspects of embedded programming to non-EE majors. An
example scenario may involve designing the application using
the pre-built function blocks and then redesign the system by
replacing the function blocks with C code that may involve
custom optimization that enhance the performance of that
particular application. In this way, students get to experience the
intricacies of embedded programming while still being able to
learn about designing the system by using the pre-built function
blocks

Figure 7. Reusing Existing C code in Graphical Environments

6.4 Inherent Concurrency and Parallelism
In text-based languages, implementation of parallelism often
requires a complex balance of library calls to operating system
functions, resource management, memory protection, and
locking mechanisms. As a result, the compiler needs extensive
code to be written to ensure shared sections of code are properly
protected, making it cumbersome to build parallel programs.
However, parallel programming forms the cornerstone for
embedded architectures such as FPGAs that are used extensively
in Academia. The same is true for several other applications that
needs some form of parallelism. Because graphical
programming is based on the dataflow approach, concurrency
and parallelism are inherent making it easy to design such
systems. Figure 8 shows an example of parallel programming
where in input is acquired and filtered in the top loop and a
triangle waveform is generated and output in the second loop.

Figure 8. Implementing Parallelism in Graphical Programming

7. CONCLUSION
Embedded systems are pervasive and have moved away from
being used only by embedded design experts. Because of the
general adoption by “domain” experts in various areas, there is a
need to teach the basics of embedded design to non-EE majors.
Graphical programming helps address this challenge by
providing a simple, easy-to-use interface that provides a
platform with a higher level of abstraction allowing the domain
experts to focus on their design and hence present a viable
alternative for professors and students to learn to design
embedded systems. In this paper, we presented an overview of
graphical programming systems and explained their benefits. We
have also outlined two use cases - ChallengeX and LEGO
Mindstorms NXT – the next generation LEGO system that is
targeted for the kindergarten and middle-school children that
take advantage of the graphical programming approach.

8. REFERENCES
[1] A. Benveniste and P. Le Guernic, “Hybrid Dynamical
Systems Theory and the SIGNAL Language,” IEEE Tr. on
Automatic Control, Vol. 35, No. 5, pp. 525-546, May 1990

[2] N. Halbwachs, P. Caspi, P. Raymond, D. Pilaud, “The
Synchronous Data Flow Programming Language
LUSTRE,”Proceedings of the IEEE, Vol. 79, No. 9, 1991, pp.
1305-1319

[3] P. Hilfinger, “A High-Level Language and Silicon Compiler
for Digital Signal Processing”, Proceedings of the Custom
Integrated Circuits Conference, IEEE Computer Society Press,
Los Alamitos, CA 1985, pp 213-216

[4] The Ptolemy Project http://ptolemy.eecs.berkeley.edu/

[5] Overview of LabVIEW
http://zone.ni.com/devzone/conceptd.nsf/webmain/F34045D2C
C5357F486256D3400648C0F?OpenDocument&node=200067_
us

[6] ChallengeX tournament official website

http://www.challengex.org/

[7] Teaching Engineering through LEGO mindstorms
http://www.areeonline.org/?id=5193

[8] LEGO Robotics in Engineering
www.asee.org/acPapers/00638_2001.pdf

[9] ROBOLAB @ CEEO website
http://www.ceeo.tufts.edu/robolabatceeo

[10] LEGO Mindstorms NXT System
http://mindstorms.lego.com/

