
Addressing Embedded Programming Needs within an ECE 
Curriculum

Kenneth G. Ricks 
The University of Alabama 

Electrical and Computer Engineering 
Tuscaloosa, Alabama 35487-0286 

(205)-348-9777 

kricks@eng.ua.edu 

David J. Jackson 
The University of Alabama 

Electrical and Computer Engineering 
Tuscaloosa, Alabama 35487-0286 

(205)-348-2919 

jjackson@eng.ua.edu 

William A. Stapleton 
The University of Alabama 

Electrical and Computer Engineering 
Tuscaloosa, Alabama 35487-0286 

(205)-348-1436 

wstapleton@eng.ua.edu 
 

ABSTRACT 
In this paper, the typical electrical and computer engineering 
(ECE) curriculum is examined to determine its effectiveness at 
presenting embedded programming skills.  The software concepts 
and programming techniques necessary for embedded systems are 
somewhat different than those seen in other engineering domains.  
Thus, it makes sense to specifically address embedded 
programming needs within the formal programming education 
ECE students receive.  Several topical areas of concern are 
identified, and two possible ways to incorporate these areas into 
an ECE curriculum are presented.  The experiences gained within 
the ECE curriculum at The University of Alabama are presented 
and are used to develop recommendations for incorporating these 
topics into typical ECE curricula. 

Categories and Subject Descriptors 
K.3.2 [Computers and Education]: Computer and Information 
Science Education – curriculum, computer science education.  

General Terms 
Languages 

Keywords 
Embedded systems education, embedded systems programming, 
C programming language, engineering curriculum 

1. INTRODUCTION 
The need for embedded systems engineers is well documented 
and supported by the recent attention the field has gained within 
academia.  Embedded systems education presents some 
interesting problems however.  One of the most important 
problems is the breadth problem [6], i.e. how to feasibly 
incorporate the broad spectrum of embedded systems topics into 
the curriculum.  To gain a perspective on exactly how broad this 
scope is, one can look at the IEEE/ACM model computer 
engineering curriculum report describing recommended topical 
coverage for embedded systems [8].  In this report, there are 11 
knowledge areas covering 59 different topics assessing 34 
learning outcomes.   
In this paper, we address a small part of the breadth problem, 
specifically focusing on the programming skills needed by 
embedded systems engineers.  Since programming is already a 
fundamental component of nearly every electrical and computer 
engineering (ECE) curriculum, one might think students are well 
exposed to the necessary skills in this area.  However, this paper 

will address concerns that the general programming skills being 
taught in typical ECE curricula are not addressing all embedded 
programming skills needed.   
Embedded software programming is a critical aspect of embedded 
systems education.  In [5], it is estimated that the amount of 
embedded software created doubles every ten months, and will 
reach 90% of all software being written by the year 2010.  To 
address this demand, embedded software programming skills 
must be incorporated into embedded systems education curricula 
immediately.   
The rest of this paper is organized as follows.  In Section 2, we 
describe a typical ECE approach to programming and point out 
several pitfalls to such an approach.  Section 3 describes several 
need areas for embedded programming skills not usually 
addressed in this typical approach.  Section 4 presents some 
possible solutions for correcting the problem, and Section 5 
presents the conclusions.   

2. TYPICAL ECE APPROACH 
A typical ECE curriculum includes a two-level approach to 
teaching programming skills.  First, one or more introductory 
general programming courses are typically offered early in the 
curriculum.  The goals of these courses vary considerably 
between programs, but usually a high-level language (HLL) is 
presented.  The motivation for offering this material at an early 
point in the program is to provide engineering students a tool with 
which to solve problems as they progress through the curriculum.   

Later in the curriculum, students are exposed to assembly 
language usually in the context of a microprocessors or 
microcontrollers course.  At this time, students write assembly 
language programs to control and interface with various hardware 
devices thus acquiring low-level hardware interfacing skills.  In 
many cases, students are shown how a HLL program is 
decomposed into the assembly and machine language equivalents, 
thereby tying the two programming levels together. 

By and large this two-level approach to programming in ECE 
curricula is effective and provides students with many useful 
skills.  However, from an embedded programming perspective, 
there are pitfalls in this approach.  First, general programming 
courses often incorporate many different concepts that do not map 
directly to the skill set needed by embedded systems engineers.  
This is especially the case for general programming courses 
supporting students from many different engineering disciplines.  
It is quite common for these courses to serve a multipurpose role 
within the curriculum covering all sorts of topics including 



teaching programming language syntax [1, 3, 12], problem 
solving [4, 11], teaming [4], communication skills [4], program 
design [4], algorithm design, and object-oriented (OO) 
programming techniques.  While these concepts are valuable, they 
do not replace the fundamental programming skills needed by 
embedded systems engineers, and they tend to dilute the 
programming aspects of the course from the embedded systems 
perspective.  There are other effective techniques to teach 
problem solving using the computer that can be incorporated into 
other parts of the curriculum [1, 4].  Also, OO approaches are not 
applicable to all engineering disciplines including some 
embedded applications [11].  In some cases, the general 
programming courses are given an engineering flavor by focusing 
on engineering applications and problems [11].  This makes the 
applications more appropriate to embedded programming but 
does not necessarily improve the programming fundamentals 
presented.   

The assembly language courses also have drawbacks.   Since 
these languages are tied very closely to the hardware, class time is 
required to address syntax, basic assembly software design, 
particular hardware interfacing issues for specific devices, system 
integration, debugging, and concepts such as pulse width 
modulation and analog-to-digital conversion.  These are skills and 
concepts needed in many embedded applications, but this is a 
large amount of information to present in one course and tends to 
overwhelm the basic programming skills aspects of the course.  
Also, assembly language is not the most popular language used 
for embedded applications.  In 2000, 80% of all embedded 
systems applications were written in a HLL, specifically the C 
programming language [16], and this number increases as more 
capable tools introduce more abstraction.   

Embedded systems engineers are migrating to a higher level of 
abstraction, using tools and development environments to handle 
the lower level details, such as the hardware/software interfacing 
aspects of embedded systems.  But, the typical ECE curriculum 
depends on general purpose programming courses and low-level 
assembly language courses to present the programming skills 
required of embedded systems engineers.  This approach to 
programming does not prepare students to address low-level 
details from higher levels of abstraction.  It is not uncommon for 
students in such curricula to encounter problems in upper-level 
ECE courses, like a senior-level Embedded Systems course or a 
Capstone Design course, where they are expected to use higher 
levels of abstraction to address the embedded system.  A higher 
level view of embedded programming is needed in the curriculum 
to address this concern.   

3.  EMBEDDED PROGRAMMING NEEDS 
This section describes four specific areas where ECE students in 
typical curricula are likely to encounter problems with high-level 
programming skills needed for embedded applications.  These 
areas, summarized in Table 1, are derived from research, personal 
communications with educational and industry professionals, and 
personal observations made within the ECE curriculum at The 
University of Alabama (UA).  UA follows the traditional two-
layer approach to programming, as described in the previous 
section, within its ECE curriculum.   

 

Table 1.  Summary of areas of concern for embedded 
programming skills. 

Areas of Concern for Embedded Programming Skills 
Choice of HLL 

Peripheral Interfacing Using Registers 
Program Structure 

Resource Constraints 

3.1  Choice of HLL 
Since we are addressing programming skills needed by embedded 
systems engineers, let’s begin with the most basic idea, the choice 
of HLL.  While there are compelling arguments for the use of 
many different programming languages within education, at this 
time there is little argument over the need for embedded systems 
engineers to know the C programming language.  As previously 
mentioned, C is the language of choice for a large majority of 
embedded applications.  It is our experience that students without 
a working knowledge of C are at a significant disadvantage when 
competing for jobs related to embedded systems.  While having 
experience with a different HLL certainly flattens the learning 
curve for those desiring to learn C, there is no reason that C 
should not be the language of choice for ECE students.   
To expand on this idea a bit more, it is our belief that students 
should begin with ANSI C.  This provides a portable 
programming foundation upon which additional skills can be 
built.  Introductory programming courses that mix object-oriented 
concepts and other concepts with ANSI C tend to dilute the basic 
understanding of C and undermine its portability across hardware 
platforms.  Portability is an important concept to embedded 
programmers because it promotes code reuse thereby shortening 
time-to-market and impacting design decisions.  Software 
development tools are ranked as the number one factor for 
microprocessor choice for embedded systems [17], and portability 
is a key evaluation criterion for these tools and the code they 
produce.  In the following sections, the C programming language 
is used for all examples.   

3.2  Peripheral Interfacing Using Registers 
Embedded systems often contain a set of memory-mapped 
locations, called device registers, used for communication with 
the device.  The ability to access and manipulate registers is 
critical for embedded systems.  Device registers are often located 
at specific locations in memory.  Variables in the HLL must be 
declared and initialized to represent data located at those specific 
locations.  One cannot declare a variable in ANSI C so that it 
resides at a specified memory address [14].  Thus, pointers are 
required, and pointer arithmetic becomes critical to maintain 
access to the registers [2, 7, 9, 10].  An understanding of the 
differences between memory-mapped registers and port-based 
input/output (I/O) registers is needed since the type of registers 
determines how they can be accessed from the HLL.  For 
example, memory-mapped registers can be treated like any other 
memory location and read and written using standard assignment 
and dereferencing operators as shown in Figure 1.  But, port-
based I/O registers may require special instructions for reading 
and writing because the underlying processor instruction set 
differs for accessing these types of registers.  Also, bitwise 
manipulation of register contents is required since in many cases 



registers contain unrelated bitfields.  Thus, it is essential to 
present the bitwise operators in C, including the bitwise-AND 
operator “&”, bitwise-OR operator “|”, logical-NOT operator “~”, 
and the bitfield structure operator “:” [2, 7, 9, 10].    

 

int * CSR_ptr = 0xFFAA; 

*CSR_ptr = 1; 

Figure 1.  Example C code that accesses a memory-mapped 
Control/Status register and assigns it a value. 

 

Another important aspect of registers is that in many cases, 
register values change outside the scope of the program.  For 
example, a register might contain a bitfield used as a status 
indicator.  The user program may initialize this register to a 
certain value, and the device writes a new value into this bitfield 
to represent a change in the device’s status.  If appropriate 
variable type qualifiers are not used, compiler optimizations can 
result in erroneous code.  For example, consider the unsafe code 
fragment in Figure 2A.  This fragment initializes the CSR device 
register and then later reinitializes the same register using the 
same value.  The compiler might conclude the second write 
operation to this location is redundant since the same value is 
being written twice and no other assignment operation separates 
the two initialization assignments.  Thus, the compiler removes 
the second write unaware that an external device modified the 
CSR register contents between the writes.  To prevent this, the 
type qualifier “volatile” can be used, shown in Figure 2B, to 
inform the compiler that the variable associated with this register 
may change outside the scope of the program [2, 9, 10, 14].  The 
resulting code segment is safe from these types of erroneous 
optimizations.   

 

int * CSR_ptr = 0xFFAA; 

*CSR_ptr = 1;      /* initialize register contents */ 

... (During this part of the program, the device’s 
status changes and the register value is 
overwritten by the device hardware.) 

*CSR_ptr = 1;     /* re-initialize register contents */ 

A.  Unsafe code fragment subject to erroneous compiler 
optimization. 

 

volatile int * CSR_ptr = 0xFFAA; 

*CSR_ptr = 1;      /* initialize register contents */ 

... (During this part of the program, the device’s 
status changes and the register value is 
overwritten by the device hardware.) 

*CSR_ptr = 1;     /* re-initialize register contents */ 

B.  Safe code fragment not subject to erroneous compiler 
optimization. 

Figure 2.  Example of the importance of variable type qualifiers.   

Students can succeed in the two-layer programming paradigm 
without these register manipulation skills.  Without an emphasis 
on embedded programming, a general-purpose C programming 
class has little motivation to present pointer arithmetic outside the 
context of particular data structures.  Similarly, pointer 
assignment, variable type qualifiers, and bitwise operators are 
topics that are often not covered in depth.  Instead, variables 
represent data needed by the program and are stored “somewhere 
in memory.”  The translation tools including the compiler, 
assembler, linker, and loader abstract the details of exactly where 
in memory the variables reside.  The programmer must use an 
explicit prefix, “&”, to determine this information, if it is needed.   

The information presented within an assembly language course 
does not fill in the gaps left by the general-purpose programming 
course.  The term “register” takes on a different meaning within 
the context of an assembly language course.  In this context, the 
register set of the processor executing the code is usually what is 
meant and care must be taken to prevent confusion between the 
processor registers and the device registers.  Also, students are 
faced with using obscure addressing modes to access the device 
registers instead of using pointers which is needed at higher-levels 
of abstraction.  While it is true that bitwise operators can be more 
commonly seen in assembly language, this does not give students 
the skill to perform these operations in a HLL.   

3.3  Program Structure 
While basic program structures do not differ significantly 
between general-purpose programming and embedded 
programming, the motivations for using certain structures need to 
be understood by embedded software developers.  For example, 
students need to understand that using subroutines and a modular 
programming approach may offer “divide and conquer” benefits 
such that a large problem may be debugged in smaller, more 
manageable parts.  Similarly, a modular, subroutine-based 
approach may lead to reusable code that reduces “reinventing the 
wheel” over the long term and shortens time-to-market.  On the 
other hand, utilizing in-line code eliminates the overhead 
associated with calling subroutines.  This can reduce execution 
time requirements for real-time applications, but may require 
significantly greater storage requirements since otherwise reused 
code must be replicated in-line.   

Other structural nuances such as global vs. local variables, 
subroutine parameter forms, and the impacts of these concepts on 
embedded system performance are critical.  Variables that are 
global in scope may reduce storage requirements and subroutine 
overhead as they are only stored once and do not need to be 
copied to the subroutine’s context.  Unfortunately, global 
variables may be problematic in a system where multiple routines 
may all access the same data as additional mechanisms must be 
put into place to assure data coherency [9, 10].  Similarly, passing 
data to subroutines by reference rather than by value may reduce 
the amount of data that must be copied as subroutine overhead 
when large data structures are involved.   

In most cases, students are presented many of the HLL 
implementation details associated with these concepts in a general 
programming course.  The observed shortcomings in student 
ability involve understanding the motivations for choosing one 
alternative over another.  For example, most students have seen 
subroutines in a HLL.  The problem is getting students to 



understand their value and to choose a modular programming 
approach when appropriate.  The goal must be to educate the 
students to make the best choice for the given application instead 
of defaulting to what is considered to be easier for the 
programmer.     

In some cases, high-level programming tools abstract structural 
details of software development that embedded programmers 
need to understand.  For example, embedded software developers 
in a team-based development environment often use a modular 
programming approach.  The ability to compile HLL code to 
object code and to link with existing object code to create an 
executable are basic concepts often encountered in such 
development environments.  But, students in general 
programming courses typically use high-level tools that abstract 
the translation process and automatically build executables.  Thus, 
students are seldom aware of the different aspects of program 
translation required to support different program structures.    

3.4  Resource Restrictions 
Because embedded systems typically are more resource-limited 
than general-purpose computing systems, the need to manage 
system resources carefully is much more urgent for embedded 
systems than is typically taught in general-purpose programming.  
This is particularly true when the general-purpose computing 
platforms incorporate object-oriented programs where the 
programming paradigm purposefully hides the resource 
implementation details from the programmer.  Large memory-
footprint objects such as linked lists or arrays of structures that are 
easily accommodated on a general-purpose PC may not be 
possible on an embedded system with limited memory.  Even a 
factor as simple as choosing the most efficient data type can be 
very important to an embedded system with limited resources.  
For example, reducing Boolean variables to single bits from “int” 
size can greatly reduce the memory footprint of a program but 
require the use of bit-manipulation operators that may not be 
considered in a general-purpose programming class.  
Alternatively, the bitfield structure operator “:” may be used to 
create variables of various sizes that may be treated functionally 
much like integers.  But, using this operator requires the 
understanding of how the compiler allocates bits, either starting 
from the most-significant or the least-significant bit position [2, 9, 
10, 14].  Such details are rarely addressed in general-purpose 
programming courses.   
Memory is not the only resource with limitations that must be 
considered for embedded systems that is generally ignored in 
general-purpose computing.  Time is also a limited commodity.  
Many embedded systems programs must operate under significant 
time constraints.  General-purpose programming rarely considers 
hard or soft real-time constraints.  Consequently, coding 
efficiency is typically not given as much emphasis as is required 
for embedded systems.   
Power is another interrelated limited commodity.  Many 
embedded systems operate from batteries or other limited power 
sources and must consequently operate as efficiently as possible.  
Limiting power usage and excess heat production often requires 
embedded system microprocessor clock rates to be limited.  This 
can increase the difficulty of meeting timing constraints. 
Embedded systems programmers must be able to balance the 
tradeoffs involved with execution speed, memory space, and 

available power. Pre-calculated values in tables can reduce the 
execution time and power used at the expense of larger, more 
expensive memories.  Clock rates may be reduced to save power 
at the expense of performance and responsiveness.  Smaller, 
cheaper memories may be used if coding efficiency is increased.  

4.  CURRICULA REFORM 
Now that several need areas have been identified, we must 
address the problem of adding the embedded programming 
specific need areas to the typical ECE curriculum.  We address 
two possibilities of how this can be done.  First, the embedded 
programming topics can be integrated into the existing 
programming courses.  Second, additional courses designed 
specifically to present embedded programming concepts can be 
added to the curriculum.  Each of these options is discussed in the 
following sections along with specific results from the UA efforts.   

4.1  Integration into Existing Curricula 
Integration of embedded programming concepts into an existing 
curriculum begins with the general-purpose programming course.  
If the HLL presented is C, then the first desired skill is 
automatically addressed.  Integrating the other embedded 
programming concepts into an existing C programming course 
does not require a complete re-design of the course.  Many of the 
necessary C constructs are already being presented.  Assignments 
can be modified to address register interfacing, program structure 
alternatives, or resource limitations. Hardware platforms are 
usually required for embedded software development.  These 
platforms are typically not used for general-purpose programming 
courses.  In that case, embedded hardware can be simulated using 
artificial memory constraints, timing deadlines, and register 
addresses.   

In cases where the introductory course is organized as one lecture 
section with smaller laboratory sections, one laboratory section 
can be dedicated as an embedded programming section for ECE 
students.  In this section, assignments can be tailored for 
embedded applications and supplemental material can be 
presented to address embedded programming concepts.  Also, at 
this level it is more plausible to integrate embedded hardware into 
the course.  Such an organization introduces the embedded 
programming concepts for ECE students while not impacting 
students from other disciplines and not requiring additional 
courses be added to the curriculum. 

The embedded programming concepts introduced in the general-
purpose programming course can be revisited and reinforced in 
the microprocessors/microcontrollers course where assembly 
language is presented.  In this course, a higher level of abstraction 
must be incorporated and hardware manipulation from the HLL 
must be included.  Based on the typical content of these courses, 
this is a natural place within the curriculum to present embedded 
programming skills.  Care must be taken, however, not to 
substitute HLL programming skills for the low-level skills 
typically presented in these courses.  While it is true that more 
abstraction is being used in embedded systems, it is still important 
that students learn an assembly language and the programming 
skills associated with it.  These skills are critical as indicated by 
their inclusion in the IEEE/ACM model curriculum and are not 
presented elsewhere in the typical curriculum [8].   



4.2  Adding Courses to the ECE Curriculum 
If integration into existing programming courses is not possible, 
then another option is to address these concepts in dedicated 
coursework.  The one main positive to this approach is that 
existing courses are not affected and widespread coordination 
within the curriculum is not required to achieve the educational 
goals. Of course, there are difficulties associated with adding 
hours to any curriculum if courses cannot be identified for 
replacement.   

For ECE curricula that rely on other departments to teach the 
general-purpose programming courses, one possibility is to 
replace these courses with courses that include embedded 
programming skills and are designed specifically for ECE 
students.  The obvious merits of this include having a course 
taught by ECE faculty designed for ECE students.  The 
drawbacks include additional teaching loads on ECE faculty and 
what appears to administration to be redundancy and waste in the 
curriculum.   

Another possibility is to add a higher-level course to the 
curriculum such as an Embedded Systems course.  This course 
would be taken after the assembly language course and would 
focus specifically on all aspects of embedded systems.  Presenting 
embedded programming skills in such a course is possible, but 
does it make sense?  Addressing basic programming skills is not 
usually part of the syllabus for a junior-level or senior-level 
Embedded Systems course.  These courses are loaded with the 
more advanced knowledge areas, topics, and learning outcomes 
discussed in the IEEE/ACM model computer engineering 
curriculum for embedded systems [8].  For example, real-time 
concepts, interprocess communication, effects of caching on 
program performance, and scheduling are software concepts that 
must be covered, not to mention the hardware, design, and 
interfacing aspects of embedded systems.  Taking time to review 
basic programming skills and teach proper program structure are 
topics that clearly do not belong at this level.  

4.3  The UA Experience 
The UA ECE curriculum uses a typical two-level approach to 
programming.  The prerequisite relationships among the 
programming courses and the core computer engineering courses 
are shown in Figure 3.  Introductory programming skills and 
problem solving skills are taught in CS 114 and CS 116, where 
the C programming language, although not strictly ANSI C, is 
used as the basis.  Object-oriented programming is presented in 
CS 124 by specifically introducing students to C++.  These 
programming courses are taught by the Department of Computer 
Science within the UA College of Engineering and serve as 
prerequisites to ECE 380 and ECE 383.  ECE 380 is a typical 
digital logic course.  The ECE 383 Microcomputers course covers 
the traditional topics associated with such a course including 
assembly language programming and peripheral interfacing.  ECE 
383 serves as a prerequisite to several traditional computer 
engineering courses including ECE 480/481, ECE 484, and ECE 
486/487.  ECE 480/481 is a digital systems design course using 
VHDL.  ECE 484 is a typical microprocessor architecture course.  
ECE 486/487 is a senior-level embedded systems course recently 
added to the curriculum.  The course sequence culminates with 
ECE 494 Capstone Design where students must design and 
implement a complete project within a one-semester timeframe.  

All the core computer engineering courses within the UA ECE 
curriculum have an integrated embedded systems component, 
creating a curriculum with an overall focus on embedded systems 
[13, 15].   

As part of this effort, the authors collected assessment data from 
UA ECE students at the junior level to specifically evaluate 
overall programming skills and embedded programming skills.  
Figure 4 shows some representative questions asked in the 
assessment process and a summary of the results from each 
question.  The results represent the percentage of students who 
provided a reasonably correct answer to each question.  

  

1) “Describe the difference between the ANSI C 
bitwise operators (e.g. “&”) and the logical-test 
operators (e.g. “&&”).  When is each 
appropriate?”  
Results = 19% 
 

2) “Describe the difference between the ANSI C 
bitwise-AND operator “&” used like “X = Y & 
0x1f” and the ANSI C address operator “&” 
used like “ptr = &var;”.  How are these two uses 
for the same character (“&”) distinguished? 
Results = 22% 
 

3) “In ANSI C, what is a pointer?  How is a pointer 
specified?  How is a pointer used? How is the 
pointer value related to the physical memory 
system or computer?”   
Results = 31% 
 

4) “How are parameters passed between C 
subroutines? (i.e. in what format and in what 
order)”     
Results = 9.4% 
 

5) What is the difference between global and local 
variables in ANSI C?  How are each type 
specified?  What are the advantages of each 
type?   
Results = 16% 

 

Figure 4.  Representative assessment questions and the 
corresponding results. 

 

The assessment data collected corroborate several observations 
made by the authors related to students’ performance within the 
UA ECE program and generalized in earlier sections of this paper.  
First, ECE students show a general lack of overall programming 
skills (questions 3, 4, 5).  Second, there seems to be little retention 
by upperclassmen of the HLL programming concepts presented 
early in the curriculum.  Third, students demonstrate a complete 
lack of understanding of the HLL constructs necessary for 
embedded systems programming (questions 1, 2, and 3).  This is 
due to lack of retention and the material not being covered in the 
introductory programming courses.   

 



ECE 494:
Capstone Design 

OR

CS 114: 
Introduction to 
Computer 
Programming 

CS 116: 
Introduction to 
Problem Solving 

CS 124: 
Introduction to 
Computer 
Science 

ECE 380: 
Digital Logic 

CS 325:
Software 
Development 
and Systems 

ECE 383:
Microcomputers 

ECE 484:
Computer 
Architecture 

ECE 486:
Embedded 
Systems 

CS 357:
Data Structures 

ECE 480:
Digital Systems 
Design 

ECE 481:
Digital Systems 
Design 
Laboratory 

ECE 487:
Embedded 
Systems 
Laboratory 

OR

 
Figure 3.  Prerequisite relationships among programming courses and core computer engineering courses within the UA ECE curriculum.   

 
To integrate the desired embedded programming skills into the 
UA ECE curriculum, the senior-level ECE 486/487 Embedded 
Systems course is used.  Supplemental material is presented in 
this course to fill in the gaps resulting from the typical two-layer 
programming approach.  To avoid the loss of significant lecture 
time within the Embedded Systems course, informal presentations 
of embedded programming skills are incorporated into the 
laboratory portion of the course.  The specific embedded 
programming skills presented in this course closely follow the 
need areas presented in Table 1.  Specifically, the strict use of 
ANSI C is required as the programming language.  Device 
register interfacing using ANSI C constructs is required including 
the use of pointers, bitwise operators, and the address operator 
(“&”).  Program structure is presented and students are required to 
write modular code using ANSI C subroutines.  This program 
structure includes emphasis on passing parameters by reference 
and by values as well as the advantages and disadvantages of 
global and local variables.  Finally, resource constraints are 
presented by analyzing variable declarations and the memory 
requirements associated with those declarations.     

There are several lessons learned from the UA embedded systems 
programming approach.  First, based upon the assessment data 
presented earlier showing the limited programming skills of our 
students, any exposure to software development within the 
curriculum is important.  Thus, adding a significant software 
development component to the ECE 486/487 course is viewed as 
a positive.  Second, incorporating this material into the curriculum 
tends to break down the stereotypes associated with “software” 

engineers and “hardware” engineers.  Although these distinctions 
exist in other disciplines, in the embedded systems world, 
engineers must be proficient in both the hardware and the 
software domains to be successful.  Third, it is difficult to 
integrate introductory programming concepts into a senior-level 
course.  Although attempts were made to present this material in 
the laboratory portion of the course to reduce lecture time 
dedicated to these concepts, the students cannot be expected to 
conquer more advanced concepts when such fundamental skills 
are lacking.  For example, it is difficult to introduce real-time 
scheduling concepts to students that do not understand modular 
program structure and multitasking.  Finally, programming skills 
are more important in an embedded systems course than the 
hardware platform used.  Hardware platforms are plentiful and in 
many cases, design of embedded systems courses centers around 
the selection of an appropriate hardware platform.  However, it is 
the programming skills that should take priority. As long as the 
hardware platform provides access to basic peripherals, device 
registers, and memory, the focus of the equipment should be the 
software development environment.  Students without sound 
embedded programming skills will struggle regardless of the 
platform used.   

Based upon the experiences at UA, the following 
recommendations can be made.  First, presenting embedded 
programming concepts in an introductory programming course 
does not appear to be a good solution.  The retention problem 
would persist when students are asked to recall the information 
for the first time years later.  Also, early in the curriculum, 



students do not have an appreciation for the skill sets needed for 
embedded applications.  Thus, presentation of these concepts later 
in the curriculum is recommended.  A senior-level Embedded 
Systems course was used at UA for this purpose and the results 
were mostly positive.  But, not every ECE curriculum has such a 
course, and there are problems associated with adding courses to a 
curriculum.  Also, there is no debating the fact that introductory 
programming skills do not really belong in senior-level courses.  
Incorporating these concepts into ECE 486/487 replaces more 
advanced embedded systems topics that need to be included.  
Therefore, it is recommended that incorporation of embedded 
programming concepts should first occur in the microprocessors 
or microcontrollers course where assembly programming is 
presented.  This course appears to be the best fit for the embedded 
programming topics.  The interfacing aspects already present in 
such a course make it easy to include interfacing to device 
registers.  Also, this course serves to introduce assembly 
programming.  So, there is already a programming component to 
which embedded programming concepts can be attached.  
Presenting C and linking it to the underlying assembly is an 
especially attractive possibility in such a course. 

5.  CONCLUSIONS 
As embedded systems continue to increase in number and 
complexity, ECE curricula must address the embedded 
programming skills needed by their graduates.  The typical ECE 
programming experience does not address these embedded 
programming concepts, often leaving graduates to acquire these 
skills on-the-job.  This paper presents four areas of concern 
regarding embedded programming concepts not addressed in 
typical ECE curricula.  These areas include a lack of C 
programming skills, inability to interface to registers, incomplete 
knowledge of appropriate program structures, and the inability to 
address resource constraints common in embedded systems.   

To address these problems, ECE curricula must incorporate these 
concepts into existing programming courses or introduce new 
dedicated courses to address these specific topics.  Each of these 
options presents its own set of concerns.  The ECE curriculum at 
UA introduced these topics in a dedicated embedded systems 
course introduced at the senior level.  The lessons learned from 
this experience indicate that these topics belong in the assembly 
language programming course found in typical ECE curricula.  
UA is currently investigating implementing this change in its 
curriculum and developing a plan to assess its effectiveness.     

6.  REFERENCES 
[1] Bjedov, G., Andersen, P.K., “Should Freshman Engineering 

Students Be Taught a Programming language?”, Proceedings 
of the 26th Annual Frontiers in Education Conference, 
Volume 1,  Nov. 6-9, 1996, pp. 90-92. 

[2] Bramer, B., Bramer, S., C for Engineers, 2nd Edition, John 
Wiley & Sons, New York, New York, 1997. 

[3] Budny, D., Lund, L., Vipperman, J., Patzer, J.L.I.I.I., “Four 
Steps to Teaching C Programming”, Proceedings of the 32nd 
Annual Frontiers in Education Conference, Volume 2,  
November 6-9, 2002, pp. F1G-18 - F1G-22.   

[4] Davenport, D., “Experience Using a Project-Based Approach 
in an Introductory Programming Course”, IEEE 

Transactions on Education, Volume 43, Issue 4,  November 
2000, pp. 443 – 448. 

[5] Ganssle, J., “The Demise of the Embedded Generalist”, 
Embedded.com, Available: 
http://www.embedded.com/showArticle.jhtml?articleID=512
02213, November 2, 2004. 

[6] Haberman, B., Trakhtenbrot, M., “An Undergraduate 
Program in Embedded Systems Engineering”, Proceedings 
of the 18th Conference of Software Engineering Education 
and Training (CSEET’05), April 18-20, 2005, pp. 103-110.   

[7] Harbison III, S. P., Steele Jr., G. L., C: A Reference Manual, 
5th Edition, Prentice Hall, Upper Saddle River, New Jersey, 
2002.   

[8]  Joint Task Force on Computer Engineering Curricula, IEEE 
Computer Society, Association for Computing Machinery, 
“Computer Engineering 2004: Curriculum Guidelines for 
Undergraduate Degree Programs in Computer Engineering”, 
December 12, 2004, pp. A.43 – A.45, Available: 
http://www.computer.org/education/cc2001/CCCE-
FinalReport-2004Dec12-Final.pdf. 

[9] Kernighan, B. W., Ritchie, D. M., The C Programming 
Language, 2nd Edition, Prentice Hall, 1988.   

[10] Kochan, S. G., Programming in ANSI C, Prentice Hall, 
Indianapolis, Indiana, 1994. 

[11] Nagurney, L.S., “Teaching Introductory Programming for 
Engineers in an Interactive Classroom”, Proceedings of the 
31st Annual Frontiers in Education Conference, Volume 
3, October 10-13, 2001, Reno, Nevada, pp. S2C - 1-5.   

[12] Parrish, A., Borie, R., Cordes, D., Dixon, B., Jackson, J., 
Pimmel, R., “An Integrated Introductory Course for 
Computer Science and Engineering”, Proceedings of the 29th 
Annual Frontiers in Education Conference, Volume 
1, November 10-13, 1999, pp. 11A3/12 - 11A3/17. 

[13] Ricks, K. G., Stapleton, W. A., Jackson, D. J., “An 
Embedded Systems Course and Course Sequence”, in Proc. 
of the 2005 Workshop on Computer Architecture Education 
(WCAE), Madison Wisconsin, June 5, 2005, pp. 46-52.   

[14] Saks, D., “Representing and Manipulating Hardware in 
Standard C and C++”,  Embedded Systems Conference, 
Session ESC-243, San Francisco, California, March 6-10, 
2005, Available: 
http://newit.gsu.unibel.by/resources/conferences%5Cesc_20
04%5CSan_Francisco%5Cesc_243.pdf. 

[15]  Stapleton, W. A., Ricks, K. G., Jackson, D. J., 
“Implementation of an Embedded Systems Curriculum”, in 
Proc. of the 20th International Conference on Computers and 
Their Applications (CATA’05), New Orleans, Louisiana, 
March 16-18, 2005, pp. 302-307.  

[16] 1999/2000 TRON Association Survey, Available: 
http://www.ncsu.edu/wcae/ISCA2005/submissions/ricks.ppt. 

[17] Turley, J., “Survey says: Software Tools More Important 
Than Chips”, Embedded Systems Design, Available: 
http://www.embedded.com/showArticle.jhtml?articleID=160
700620, April 11, 2005. 

 


	INTRODUCTION
	TYPICAL ECE APPROACH
	3.  EMBEDDED PROGRAMMING NEEDS
	3.1  Choice of HLL
	3.2  Peripheral Interfacing Using Registers
	3.3  Program Structure
	3.4  Resource Restrictions
	4.  CURRICULA REFORM
	4.1  Integration into Existing Curricula
	4.2  Adding Courses to the ECE Curriculum
	4.3  The UA Experience
	5.  CONCLUSIONS
	6.  REFERENCES



