
Bringing Embedded Software Closer to Computer Science
Students

Jogesh K. Muppala
Dept. of Computer Science and Engineering

The Hong Kong University of Science and Technology
Clearwater Bay, Kowloon, Hong Kong

Tel: +852 2358 6978

muppala@cse.ust.hk

ABSTRACT
Computer Science students have often shied away from the field
of embedded systems owing to their perception of this area as
“hardware” oriented, not without reason. But recent trends in
embedded systems, with the growing importance of the software
component, has brought about new opportunities for computer
science students to participate and contribute to embedded system
development. In this paper we present our views and experience
gained by teaching Computer Science students, on how we can
bring embedded systems closer to them, to provide them the
opportunity to fully participate in this growing field.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
computer science education, embedded software education.

General Terms
Computer Science Education, Curriculum.

Keywords
Embedded software, embedded systems education.

1. INTRODUCTION
Embedded systems design as a discipline has long been pursued
in the industry in various application domains including avionics,
aerospace, automobile, and industrial control etc. As pointed out
by Lee [11], this area has largely been ignored by academics
because it has not thrown up sufficient complex research
challenges. However, all this has changed recently with
increasing interest being paid by the academic community
towards embedded systems education, as evidenced by the papers
published in the recent special issue of ACM Transactions on
Embedded Computing Systems dedicated to embedded systems
education [1] and the successful organization of the present
workshop last year dedicated to embedded systems education [7].

Embedded systems as a field, is often perceived as a
conglomeration of different areas, and is truly interdisciplinary
[4][7]. Thus teaching “embedded systems” as a unified topic is
viewed as a difficult task [6]. This field is often perceived by
undergraduate Computer Science (CS) students as “hardware”
oriented, not without reason. In our experience at our university,
this perception hinders CS students from considering this dynamic
field as an option for their future career, despite the fact that
embedded systems offers exciting new opportunities for them.
This is truer these days with the growing importance of the

“software” component of embedded systems. In this situation it is
imperative that CS students’ misconceptions about this field be
removed and they be introduced to the exciting new possibilities.

As we reported earlier [12], most university courses tend to
emphasize the “systems” in embedded systems. The emphasis on
the “software” side is not that prevalent. The recent papers on
embedded education in [1] have mostly emphasized about a
comprehensive embedded systems curriculum. These have often
originated in universities with established embedded systems
research groups. Many universities may not have either the
expertise, resources or flexibility to introduce comprehensive
curricula dedicated to embedded systems. Instead, a more feasible
alternative would be to offer elective courses on embedded
systems and software. It is from this perspective that we
introduced two new courses into our curriculum at the Hong Kong
University of Science and Technology (HKUST), one aimed at
embedded systems and the other at embedded software, to give
our undergraduate students the flexibility to take these as
electives in order to gain knowledge and familiarity with
embedded systems.

In this paper, we describe our experience in designing and
offering an embedded software course specifically concentrating
on the software requirements and design for embedded systems.
We briefly revisit the course that we described earlier [12]
including the list of topics, the hands-on laboratory exercises and
some reflections on the experience with the second offering of the
course. We also give a brief account of the students’ perception
and opinions on the course, after some modifications were
introduced into the course based on feedback gathered in the
earlier offering of the course [12].

The paper is organized as follows. Section 2 reviews some of the
background for the course. Section 3 provides the details of the
course. Section 4 reflects on the students’ opinions. Finally we
give conclusions in Section 5.

2. BACKGROUND
Many universities have been actively engaged in designing new
embedded systems curricula as evidenced by the papers published
in the recent special issue of ACM Transactions on Embedded
Computing Systems (TECS) dedicated to embedded systems
education [1]. Similarly a number of papers describing faculties’
experiences with designing and offering embedded systems
related courses were published in the previous workshop on
embedded systems education [7].

It is interesting to note that most of the papers in the special issue
of TECS [1] were dedicated to describing embedded systems
courses offered at the graduate level or about comprehensive
undergraduate curricula. The emphasis has been on
comprehensive curricula but with systems perspective. Two
papers [2][16] did put emphasis on embedded software.

The observations by Sztipanovits et al. [16] about computer
science students’ strength is worth noting. They mention that CS
students tend to be trained well on abstractions, especially about
creating formal abstractions of computational processes and to
relate layers of abstractions to each other. However they lack
training on the relationship to “physical” processes and systems.
These students tend to be trained in formal automata-based and
algebraic models, but lack training in the continuous-time
domain. Thus designing embedded courses for CS students should
keep in mind their strengths and weaknesses.

Given the lack of flexibility in introducing embedded systems
concepts into existing curricula without overtly disturbing the
curricula, we need to find creative approaches to bring about the
modifications. One possible approach that we suggested [12] was
to introduce the embedded software concepts into various related
CS courses like operating systems, compilers, architecture,
programming languages etc. It is interesting to note that such an
approach at least in the context of operating systems was also
considered by Prof. Nutt [13]. In particular, he suggests that a
traditional OS course could be reorganized to emphasize the
growing importance of small computer systems. He views the
computer systems space as consisting of three types based on the
use of interrupts and the CPU mode bit: dedicated systems (DS),
Truasted Process (TP) systems and Managed Process (MP)
systems, each with increasing capability and complexity. In
particular, the DS and TP systems covers what we normally view
as the embedded systems space.

Prof. Lee [10] advocates a drastic rethinking on the way
embedded software is developed, putting emphasis on the timing
aspects of software. He emphasizes that the traditional approach
to embedded software has paid more attention to optimizing the
software for the resource limitations imposed by the platforms,
rather than on timing issues. This overemphasis on efficiency
with the consequent neglect of functionality and reliability, ill-
serves the embedded software domain. Similarly he mentions that
the thread model adopted for concurrent programming is not the
best suited approach [9]. Threads introduce uncontrolled non-
determinism which is detrimental to the functional and reliability
requirements that most embedded software need to exhibit.

The model-driven approach [15][16] to embedded software
development has also been advocated. Most of the existing
courses that follow this approach are targeted at the graduate level
because of the inherent complexity and the need to have sufficient
background to appreciate this approach. As mentioned in [16]
such concepts are often difficult to teach at the undergraduate
level.

Grimheden and Törngren [4] present didactic analysis of
embedded systems with detailed discussions to establish the
legitimacy and identity of embedded systems. They establish that
embedded systems have a functional legitimacy, implying
emphasis on skills, and a thematic identity. They advocate an
example driven approach with interactive communication.

3. OUR COURSE
In this section we give the details of our course, including the list
of course topics, the hands-on laboratory exercises, and the
student projects. We also reflect on our experience with the
second offering of the course where modifications were
introduced based on student feedback from the first offering of the
course.

3.1 What Should Be Taught?
After having seen the review of various approaches and opinions
presented in the earlier section, the situation begs the question
what should be taught to computer science students? More
generally, what is feasible to be taught to CS students, given their
background knowledge by the time the students reach their
Junior/Senior year in their undergraduate education? Indeed, we
were faced with this dilemma when we first set out to design and
introduce embedded systems “elective” courses into our computer
science/computer engineering curriculum. In this section, we
reflect upon the guiding principles, thought processes and
reasoning behind selecting various topics that we chose to include
in the course on embedded software. While we do not claim to
answer all the questions, we believe that this sharing of ideas
might help elicit similar reflections on part of other faculty facing
similar circumstances.

Through our own deliberations on this issue we came up with a
set of topics that we felt will add sufficiently to the CS students’
knowledge from the perspective of embedded systems. We felt
that three broad categories of topics as listed below can be taught
to CS students, leveraging on the students’ background and the
topics that are already part of the curricula. The emphasis was on
embedded software development, with hardware concepts being
only lightly touched where appropriate.

• Embedded Software Development: CS students are quite
well-versed with software development. The main
emphasis of this section therefore is how embedded
software development differs from traditional software
development. We found that the increasing use of
integrated development environments like Microsoft
Visual Studio™ isolates the students from the entire
process of compilation. Thus we felt it was important to
emphasize this point, and especially make clear the
concept of cross-platform development and issues related
to cross-compilation. The students were introduced to the
ideas of cross-platform development including host based
embedded software development and embedded target
environments, integrated development environments,
interrupts and interrupt handling, and embedded software
architectures.

• Real-Time Operating Systems (RTOS): CS students take
operating systems as a core course during their study. The
emphasis in such courses is usually placed on efficiency
and fairness of resource sharing among processes, and the
use of techniques like resource abstraction, virtual
memory management and file systems. In the embedded
world, the emphasis is more on reliability and timeliness.
Thus in an embedded software course, real-time
scheduling techniques with deadline constraints need to be
emphasized. In our course, task scheduling topics
including rate monotonic scheduling, the priority

inversion problem and its solution were covered. Task
synchronization issues including the use of semaphores
and events were covered. Inter-task communication
mechanisms including message queues, mailboxes and
pipes were covered. Memory management issues
including dynamic memory management, memory leak
and dangling pointer problems were covered. Several
example RTOS were also introduced in the course. As a
simple and efficient real-time kernel, the μc/OS-II was
first introduced. Two full-fledged real-time OS viz.,
Windows CE and Embedded Linux were introduced.

• Embedded Software Engineering: Trying to find a suitable
set of material to cover under the embedded software
engineering heading was the most difficult, because of the
diffuse nature of the area. We leveraged on the existing
techniques from software engineering and briefly covered
several topics including embedded software development,
software development lifecycle, software development
models, including the waterfall model, the spiral model,
rapid application development model, object-oriented
approaches. Sufficient coverage was also given to
software testing. Universal modelling language (UML)
was introduced as an important formal method for
software engineering, and its use in the different parts of
the software development lifecycle was illustrated. We
also concentrated on specific techniques for testing,
verification and validation for embedded systems. It is
interesting to note the observations made in Josesfsson [8]
that industrial software engineering approach taught by
universities are adequate from the technical perspective,
but need more emphasis on business, teamwork and
practical skills.

While these three are the broad categories of topics that we
decided to cover in our course, we do acknowledge that other
topics can be considered for inclusion. In particular we decided
not to include topics on interfacing and device drivers in this
course, leaving it to a companion course on embedded systems.
Application programming interfaces like the approach adopted by
Phidgets Inc. [14] makes it feasible to do programming with a
conceptual view of the hardware, rather than being concerned
with the details.

We do notice that the detailed curricula proposed in several
papers in [1] at the undergraduate level typically include courses
on real-time systems and software engineering. Our course is
designed more as an umbrella course covering these topics within
a single course, which within a semester offers a reasonable
coverage of the aforementioned topics.

3.2 Course Topics and Structure
The list of topics covered in the course is given in Table 1.

Table 1: List of Course Topics

1. Introduction

• Introduction to Embedded Systems

• Examples of Embedded Systems

• Embedded System Characteristics
2. Embedded Systems Architecture

• Hardware Fundamentals: Processors, Memory, Bus, etc.

• Software: OS, Application Software
3. Embedded Software Development

• Hosts and Targets
4. Interrupts

• Introduction to Interrupts

• Interrupt Handlers and Interrupt Service Routines
5. Embedded Software Architectures
6. Real-Time Operating Systems (RTOS)

• Review of Operating Systems Basics
o Tasks, Processes and Threads
o Task Scheduling: Rate Monotonic Scheduling,

Priority Inversion
o Task Synchronization and Coordination
o Intertask Communication
o Memory Management

• Example RTOS: μC/OS-II, Windows CE, Embedded
Linux

7. Embedded Software Engineering

• Basics of Software Engineering

• Software Engineering Models

• Unified Modeling Language (UML)

• Software Testing
8. Testing and Debugging Embedded Systems

3.3 Hands-on Laboratory Exercises
The hands-on laboratory component concentrated mainly on
introducing the students to embedded software development using
Windows CE. A general purpose teaching laboratory equipped
with standard PCs was used for the laboratory exercises. The
majority of the labs were organized around the Microsoft
Windows Embedded software including Platform Builder 4.2 and
Windows CE. Students were introduced to the Platform Builder
IDE, Visual Studio environment including the Embedded Visual
C++ and “.NET” compact framework. Then the students did
several laboratory exercises which were aimed at illustrating
several RTOS concepts including threads, task scheduling, task
synchronization, and memory management, including memory
leaks. The laboratory exercises were mainly aimed at preparing
the students for designing and implementing the course projects.

The students also had access to Ebox-II Windows CE 5.0 jump-
start embedded software development kits from ICOP
Technology Inc. [5]. This system is built around a Vortex X86
system on a chip technology with 128 MB system memory and 64
MB IDE bootable flash storage. Also additional Intel PXA-255
based embedded development kits from Emdoor Inc. [3] were
also available.

3.4 Course Projects
The course project was an important part of the student
assessment, in addition to quizzes and examinations. Students

formed teams of up to 3 students per team and proposed their own
project based on their interest. The students had about 2 months to
develop their idea, propose the project, design and implement it.
Students were encouraged to apply the software engineering
principles learnt in the course during the design and
implementation of the project, starting from requirements analysis
to final implementation and testing.

The students were very enthusiastic and proposed and
implemented interesting projects. While there were the typical
projects implementing games on handheld devices, several unique
projects were also designed. A list of some of the most interesting
project topics with a brief description are presented below:

• Automatic "Dim Sum" Ordering System: the students
designed a restaurant menu based ordering terminal for
ordering Chinese “Dim Sum” which can be deployed at each
table enabling customers to enter their orders online. The
terminals are connected to a back-end order tracking system
in the kitchen and pantry to schedule and supply the ordered
dishes to the tables.

• On-line Retail Management System (RMS): This system
enabled retail merchants to keep track of their inventories.
The system was designed with a Pocket PC handheld
connected to a barcode scanner, with the backend database
support.

• Stock Manager: This system was implemented for a Pocket
PC handheld with the provision for online stock information
display and trading.

• Podcast CE: A Windows CE based device was designed to
support podcast reception and playback.

• Video Surveillance System: This system enabled
surveillance video being streamed to a Pocket PC.

• “Bomberlady” – an embedded linux game: This project
implemented the classic “bomberman” video game on an
embedded linux platform

• NewStation: This project designed a news kiosk based on
Windows CE to display news headlines subscribed from
various sources through RSS subscription

• Real Time Operating System – USTOS: This project aimed
at designing a very compact real-time operating system with
basic functionality from the scratch.

The final project reports of these projects is available online at
http://www.cse.ust.hk/~muppala/comp355/project/reports.html.

As can be seen from the long list of topics, several interesting
ideas were developed by the students. The students felt that this
experience illustrated to them that a whole new arena of small
device programming was easily accessible to them and provided
them with alternate avenues for future career, compared to the
traditional data processing field which is often the biggest
employer of CS students in Hong Kong.

4. STUDENTS
As already mentioned the course was designed as a senior
undergraduate course. In the second offering of the course, most
of the students were in their third year (final year) of their
undergraduate education at the university with a small number of
students from the second year of study. It must be noted that the
Hong Kong higher education system is based on a three year
bachelor’s degree program. Students entering the university are at

the sophomore level of a typical US university. Thus students in
the second and third year at the university here are equivalent to
students in their junior and senior year of a 4-year bachelor’s
degree at a typical US university.

4.1 Background
Unlike the first offering of the course in Spring 2005 where most
of the students taking the course (almost 99%) were doing their
bachelor’s degree in computer engineering, the second offering of
the course in Spring 2006 attracted a balanced mix of students
both from the Computer Science and the Computer Engineering
stream. This was more heartening to note because the course was
designed to attract students with both computer science and
computer engineering background. Almost all the students were
in their final year of study.

Two undergraduate courses were listed as prerequisites for our
course, viz., Computer Architecture, and Principles of Systems
Software (Operating Systems). Most students enrolled in the
bachelor’s programs in computer science or computer engineering
at our university typically take these two courses by the time they
have completed the first semester of the second year of their
study. Since these two courses provide the necessary background
required for introducing embedded systems, we had to devote
only a short time at the beginning of our course to review the
relevant materials before delving into the topics of our course.

4.2 Student Feedback
The course was very well received by the students in the second
offering, surpassing the evaluations from the first offering of the
course. At the end of the semester, a comprehensive survey of the
students’ opinions was carried out in order to assess how well the
course met the students’ expectations. The results of the survey
indicated that the students were satisfied with the course. Some
suggestions for improvement were given which are noted below:

1. Most students expressed interest in having more hands-on
labs that currently available. The students expressed a desire
to see at least some of the labs organized in a step-by-step
manner to illustrate the development of an example
embedded system from conception to completion. Currently
the labs are more focused on providing the students the skills
in illustrating the RTOS concepts and illustrating the
capabilities of Windows CE.

2. The topics that attracted the most interest among the students
were embedded development, and RTOS. The least popular
topic was software engineering, perhaps because of lack of
demonstrative case studies. This was similar to the opinions
expressed by the students in the first offering of the course.

3. In the earlier offering, the students expressed the opinion that
the coverage of the RTOS should be limited to an in-depth
coverage of only two or three major ones, rather than an
overview of several RTOS. Thus in the second offering we
restricted ourselves to only Windows CE and Embedded
Linux. This was much better received by the students.

4. Some students expressed the opinion that some of the topics
had overlap with other related courses that they had taken,
and hence suggested that the overlap should be minimized.
This was especially true for software engineering which is
covered in detail in another course dedicated to the topic. We

http://www.cse.ust.hk/%7Emuppala/comp355/project/reports.html

tried to address this problem to some extent in the second
offering of the course, but could not completely avoid the
overlap.

5. CONCLUSIONS
In this paper we discussed our effort at introducing an embedded
software course, with the principal aim of bring embedded
systems closer to computer science students. We described the
structure of the course, the list of topics, the labs and the course
projects implemented by the students. We also discussed some of
the findings of the survey on students’ opinions of the course.
Through this effort we wished to illustrate that it is feasible to
introduce computer science students to this exciting new field
without getting trapped into the intricacies of the underlying
hardware.

6. ACKNOWLEDGMENTS
The authors wishes to thank the Department of Computer Science
and Engineering, The Hong Kong University of Science and
Technology for providing him the opportunity to explore the
issues presented in this paper.

7. REFERENCES
[1] Burns, A., and Sangiovanni-Vincentelli, A. Editorial for the

Special Issue on Embedded Systems Education, ACM Trans.
Embedded Computing Systems, 4, 3 (Aug. 2005), 469-471.

[2] Caspi, P. et al. Guidelines for a Graduate Curriculum on
Embedded Software and Systems. ACM Trans. Embedded
Computing Systems, 4, 3 (Aug. 2005), 587-611.

[3] Emdoor Inc. http://www.emdoor.com.
[4] Grimheden, M. and Törngren, M. What is Embedded

Systems and How Should It Be Taught? – Results from a
Didactic Analysis. ACM Trans. Embedded Computing
Systems, 4, 3 (Aug. 2005), 633-651.

[5] ICOP Technology Inc., http://www.icop.com.tw.

[6] Koopman, P., et al. Undergraduate Embedded System
Education at Carnegie Mellon. ACM Trans. Embedded
Computing Systems, 4, 3 (Aug. 2005), 500-528.

[7] Jackson, D. J. and Caspi, P. Embedded Systems Education:
Future Directions, Initiatives, and Cooperation. ACM
SIGBED Review Special Issue on the First Workshop on
Embedded Systems Education (WESE 2005), 2, 5 (Oct.
2005), 1-4.

[8] Josefsson, M., Ed. 2003. Industriell Programvaruutveckling.
ITQ Nordic Institute.

[9] Lee, E. A. The Problem with Threads. IEEE Computer, 39, 5
(May 2006), 33-42.

[10] Lee, E. A. Absolutely Positively On Time: What Would It
Take? IEEE Computer, 38, 7 (July 2005), 85-87.

[11] Lee, E. A. What's Ahead for Embedded Software?
IEEE Computer, 33, 9 (Sep 2000), 18-26.

[12] Muppala, J. K. Experience with an Embedded Systems
Software Course, ACM SIGBED Review Special Issue on the
First Workshop on Embedded Systems Education (WESE
2005), 2, 5 (Oct. 2005), 29-33.

[13] Nutt, G. An OS Course for Small Computer Systems,
submitted for publication,
http://www.cs.colorado.edu/~nutt/SCC-OS-paper.pdf.

[14] Phidgets, Inc. http://www.phidgets.com/.
[15] Sangiovanni-Vincentelli, A. L., and Pinto, A. An Overview

of Embedded System Design Education at Berkeley. ACM
Trans. Embedded Computing Systems, 4, 3 (Aug. 2005), 472-
499.

[16] Sztipanovits, J. et al. Introducing Embedded Software and
Systems Education and Advanced Learning Technology in
an Engineering Curriculum. ACM Trans. Embedded
Computing Systems, 4, 3 (Aug. 2005), 549-568.

http://www.cs.colorado.edu/%7Enutt/SCC-OS-paper.pdf
http://www.phidgets.com/

	1. INTRODUCTION
	2. BACKGROUND
	3. OUR COURSE
	3.1 What Should Be Taught?
	3.2 Course Topics and Structure
	3.3 Hands-on Laboratory Exercises
	3.4 Course Projects

	4. STUDENTS
	4.1 Background
	4.2 Student Feedback

	5. CONCLUSIONS
	6. ACKNOWLEDGMENTS
	7. REFERENCES

