
Challenges in Designing Embedded Systems Courses

Tulika Mitra
Department of Computer Science

School of Computing
National University of Singapore

tulika@comp.nus.edu.sg

ABSTRACT
This article describes my experience in designing and teach-
ing both undergraduate and graduate level embedded sys-
tems modules in School of Computing at National University
of Singapore. Designing embedded systems modules for an
audience with pre-dominantly computer science background
poses some unique challenges. However, once the barrier to
entry is crossed, the benefits more than outweigh the diffi-
culties.

1. INTRODUCTION
The Department of Computer Science under the School

of Computing at National University of Singapore offers a
four-year undergraduate degree program called Bachelor of
Computing in Computer Engineering since July 2000 [6].
This program is quite unique in the sense that the focus
is exclusively on graduating students with keen apprecia-
tion and knowledge in designing complex embedded systems.
This program was triggered in response to the growing need
of the embedded systems industry in Singapore for gradu-
ates with an integrated view of hardware-software design.
In addition to the essential computer science related mod-
ules (e.g., algorithms, data structures, software engineering,
operating systems, databases, etc.), the students under the
computer engineering program choose embedded systems re-
lated modules specifically designed for this program.

Figure 1 shows the embedded systems modules currently
offered under this program and their dependencies. The
modules in blue (2000-4000 level) are the undergraduate
level modules and the modules in green (5000-level) are
the graduate level modules. However, our undergraduate
students may choose some graduate level modules to ful-
fill their degree requirements. Similarly, our graduate stu-
dents may choose limited number of 4000-level undergrad-
uate modules. Undergraduate modules are offered on a de-
mand driven (essential) basis whereas graduate module of-
ferings primarily depend on the teaching/research interests
of the faculty members.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2002 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

CS2271
Embedded

Systems

CS4271
Critical Systems

&
Their Verification

CS4272
Hardware-Software

Co-design

CS4274
Mobile Computing

CS4275
Programming

Real-Time Systems

CS5270
Verification of

Real-Time Systems

CS5271
Performance

Analysis of
Embedded Systems

CS5272
Embedded

Software Design

Figure 1: Embedded Systems related modules under
the Computer Engineering program.

I designed and taught the undergraduate module CS2271:
Embedded Systems for three consecutive academic years
(2001/2, 2002/3, 2003/4). Then I moved on to design and
teach graduate level module CS5272: Embedded Soft-
ware Design. I have taught CS5272 for two consecutive
years (2004/5, 2005/6) and I am teaching it again this aca-
demic year.

In the rest of the article, I will elaborate on my experience
in designing and teaching these two modules from computer
science perspective.

2. UNDERGRADUATE MODULE
CS2271: Embedded Systems is an essential module for

Computer Engineering (CE) program typically taken by the
second year undergraduate students. This module is a gen-
tle introduction to the embedded systems technology and is
a pre-requisite for the rest of the modules in this area.

The main challenges that I faced in designing this module
was the lack of embedded systems courses to use as a refer-
ence model and the fear of hardware among the computer
science undergraduates.

2.1 Breadth versus Depth
When I started teaching CS2271 back in 2001, there was

only one textbook available on embedded systems: Com-
puters as Components by Wayne Wolf [7]. Very few uni-

versities were offering embedded systems modules at that
point. Moreover, our computer engineering (CE) curriculum
implied that CS2271 should be a foundation module that
would set the stage for more advanced modules. Therefore,
it was difficult to strike the right balance between breadth
and depth in designing the course content for CS2271. Af-
ter careful considerations, we settled for the following major
topics.

• Hardware design with FPGAs

• Processor, Peripherals, and Interfacing

• Programming with ARM

• Real-time systems

• System-level design

• Case study

Real-time systems and system-level design are elaborated
later on in CS4275/CS5270 and CS4272, respectively. Em-
bedded software design aspects are covered in more detail
in CS5272 (which I will describe later).

Most of the students felt (according to formal and infor-
mal student feedback) that they got reasonable exposure
to embedded systems through this module. However, 90%
of the students did not even have clear idea of what is an
embedded system when they started. Therefore, student
feedback is perhaps not that effective a measure to judge
the suitability of the course content. The downside is that
CS2271 is considered as one of the most difficult modules
in the CE program. This is mainly due to the integrated
hardware-software focus (almost all the other CS modules
are completely software based), in particular, for the lab
exercises. I will elaborate more on this point in the next
subsection.

2.2 Overcoming Steep Learning Curve
The primary challenge in designing an introductory course

in embedded systems such as CS2271 is to bridge the lack
of background knowledge. Notice that we are offering this
module to primarily computer science audience, albeit in
computer engineering program. These students are quite
comfortable with software programming (in C/Java) but
have very little background in digital design. Due to various
constraints in our curriculum, the students only go through
a quick introduction to digital design and computer organi-
zation through a semester-long module before they take up
CS2271. I believe this problem is not unique to our school.
Any computer science department that wants to offer under-
graduate modules with specific focus on embedded systems
will face this dilemma.

A quick fix might be to offer CS2271 in senior years. This
is an acceptable solution if this is the only module offered
in embedded systems. In our case, we would like to develop
a curriculum that graduates students with comprehensive
background in embedded systems. Therefore, a series of
other modules (see Figure 1) has CS2271 as a pre-requisite.
Pushing CS2271 to senior years will adversely affect all these
other modules. So how do we go about solving this problem?

Fortunately for us, software accounts for 80% of the de-
velopment cost for embedded systems. Even though our
graduates are expected to have solid background in under-
standing hardware aspects, they may never design an ASIC.

Indeed, their proficiency in software programming is the key
asset, which should be harnessed with the knowledge and ap-
preciation of the hardware interface. Keeping this in mind,
we expose the students to hardware aspects with the help
of (a) Field Programmable Gate Arrays (FPGAs) and (b)
Handel-C behavioral language for FPGA design [3].

FPGAs are ideal for introducing hardware design aspects
due to various reasons. First, it is exciting for students
to experiment with their design in real silicon rather than
through simulation. This excitement is important to hold
their interest in the subject throughout the module. Sec-
ond, the major aspects in which hardware design differs
from software programming — parallelism, communication,
clock cycle delay, and resource/area requirements — can
all be easily explained with the help of FPGAs. Finally,
many FPGA vendors provide access to low-cost develop-
ment boards through university program making it easy to
set up the lab infrastructure.

For the hardware description language, we could not af-
ford to use Verilog or VHDL due to the time constraints.
Introducing these languages would have constituted a mod-
ule by itself. Instead, we decided to use Handel-C — a fully
synthesizable, behavioral description language from Celox-
ica for FPGA design. Handel-C uses much of the conven-
tional syntax of ANSI-C with the addition of inherent paral-
lelism. Therefore, we simply had to introduce the additional
constructs (parallelism, communication, clock cycles), which
are anyway essential in understanding the tradeoff between
implementing the same algorithm in hardware or software.
These aspects could be covered in a single two-hour long
lecture and the students typically took two weeks to get
familiar with the language and the design environment.

The shorter learning curve also implied that we could de-
velop comparatively complex and interesting lab exercises
such as designing stack-based processor and simple video
games. We used the DK Design Suite from Celoxica [2] to
compile and synthesize Handel-C descriptions to RC100 de-
velopment boards containing 200K-gate Xilinx Spartan II
FPGA. The RC100 I/O includes 24bit DAC VGA output
and video decoder, two seven-segment LED displays, PS2
mouse and PS2 keyboard.

2.3 Inclusion in CS Curriculum
Currently, we offer CS2271 exclusively to the undergrad-

uate students in the computer engineering (CE) program
as a compulsory module. In general, it provides a satisfac-
tory learning experience for these students. However, I feel
that an introductory module on embedded systems, such as
CS2271, as an elective can be quite exciting, interesting, and
beneficial for any computer science (CS) graduate due to the
following reasons.

• First, embedded systems represent 95-98% of the total
market share for computing devices. Therefore, any-
one with a CS degree may end up programming for
these devices at some point in their career.

• Second, current CS curriculum covers various aspects
of computer systems as independent stand alone mod-
ules (e.g., computer organization, computer architec-
ture, operating systems, compiler, networking etc.).
An embedded systems module provides a unique op-
portunity to put these concepts together and expose
the big picture.

• Moreover, the hands-on nature of the lab exercises en-
sures that the students will not forget easily what they
learnt.

• Last but not the least, the novelty factor of embed-
ded systems labs (playing around with development
boards as opposed to all software labs) can provide
some fun and excitement in the students’ learning ex-
perience. Given the declining interest in CS programs
worldwide, this factor can be quite important.

3. GRADUATE MODULE
CS5272: Embedded Software Design is a graduate-level

elective module offered for the PhD (degree by research)
as well as the Masters (degree by course work) students.
The Masters students can be either full-time or part-time.
PhD students are typically full-time students. In addition,
a significant number of undergraduate students also opt for
this module. For example, in the 2005/6 offering of the
module, 9 out of 42 students were in the undergraduate
program.

I designed and offered this module for the first time in the
fall of 2004. The motivation was two-fold. First, the em-
bedded systems research group in our school grew consid-
erably to about 20 graduate students in 2004. Most of our
research focuses on software aspects of embedded systems
starting from high-level models of computation to system
level design. An introductory module on the unique aspects
of embedded software design would benefit the students em-
barking on research. Secondly, a significant fraction of our
Masters students (both part-time and full-time) were inter-
ested in picking up the background knowledge about this
exciting area. 45 students registered for CS5272 in its first
offering indicating that there was indeed a need for such a
module.

As opposed to CS2271, which is an introductory mod-
ule on embedded systems, CS5272 is an advanced module
focused on only embedded software aspects. The goal is
to develop a comprehensive understanding of the unique de-
sign issues in building highly optimized and customized soft-
ware for different hardware platforms, satisfying design con-
straints related to size, power, and performance. We expect
the students to have solid background in general software
engineering. Therefore, the focus is more on the distinguish-
ing characteristics of embedded systems that takes software
development beyond traditional programming approaches.
More concretely, the major topics covered in this module
are

• Embedded software development with ARM

• Optimizations to meet area constraints

• Optimizations to meet power constraints

• Compilers for hardware acceleration

• Case study

In an attempt to re-use the lab infrastructure as much as
possible, we use the same ARM-based development boards
for both undergraduate and graduate program. However,
while the undergraduate module focuses more on basic pro-
gramming for embedded systems with ARM (simple device
driver programming), the graduate level module is much

more intensive. The first lab serves as a warm-up exercise
to familiarize the students with the basics of embedded soft-
ware development. The rest of the lab exercises go in sync
with the topics covered such as area and power optimiza-
tions. These lab exercises are quite popular as the students
can apply first-hand the knowledge they acquire in the lec-
tures.

The major difficulty is designing this module stems from
the diverse background of the student population. In the
following, I elaborate on these issues.

3.1 Research versus Industry
As mentioned before, CS5272 caters to research students,

course work students as well as part-time students. This
makes is quite challenging to decide on the course content.
On the one hand, the part-time students coming from the
industry and the course work students planning to join the
industry are more interested in the practical (lab) aspects
of the module. On the other hand, research students are
presumably interested in areas that are still in the realm of
academic research so as to get an exposure to possible fu-
ture thesis topics. Catering to both these group of students
requires a delicate balancing act.

However, research students benefit quite a lot from hands-
on programming for embedded systems that develop aware-
ness about the low-level systems issues. At the same time,
introducing state-of-the-art research ideas to the future in-
dustry folks is a positive means towards technology transfer.
Therefore, I decided to have a mix of both practical and re-
search issues covered in the module. The end of the semester
student feedback suggested that all the students were quite
happy with the syllabus.

3.2 CS versus EE background
The advantage of designing embedded systems courses for

junior undergraduate students is that you expect quite a ho-
mogeneous student body with roughly the same background
knowledge. But given the varied background of graduate
students, it is extremely difficult, if not impossible, to come
up with an appropriate pre-requisite for a graduate-level
module. We expect that the students will have some back-
ground in computer architecture and compiler. However, the
inter-disciplinary nature of embedded systems implies that
both computer science and electrical engineering graduate
enroll for the module.

As mentioned before, compared to the undergraduate-
level module, the focus of the graduate-level module is more
on embedded software. Therefore, we introduce a number
of compiler optimization techniques. Unfortunately, the stu-
dents with electrical engineering background have little or
no knowledge about the compiler issues. So we are faced
with the opposite problem of what we faced in CS2271 while
teaching hardware synthesis. I provide supplementary ma-
terial about the basic concepts of compiler design to bring
these students up to speed. But there is no denying of the
fact that it somewhat slows down the schedule. I am not
aware of any satisfactory strategy to resolve this issue.

3.3 Tradeoff between Projects and Exercises
Ideally, in a graduate level module one would prefer to

have some projects that span across the entire semester. In
the first offering of the module in 2004, I opted for projects.
Keeping in mind the diverse interests of the students, the

suggested project ideas spanned from implementation of com-
plex embedded applications to research-oriented projects.
Given the time constraints, research-oriented projects typ-
ically involved incremental modification and evaluation of
existing research ideas. Unfortunately, the projects were not
as successful as I expected. The main reasons behind this
are (a) the learning curve was too steep for the students to
complete meaningful projects, and (b) grading was difficult
given the wide disparity between the nature of the different
projects (practical versus research-oriented).

Based on this experience, in the next academic year, I
decided to include lab exercises along with a term paper.
Lab exercises were designed to be more difficult compared to
the previous year. As an example, the students developed a
simple embedded operating system from scratch with real-
time scheduling option. For the term paper, the students
surveyed a topic in detail that was not covered in class.
Overall, this model worked better compared to the project-
based model. However, the ideal option will be to offer
a follow-up module to CS5272 that is completely project
based.

3.4 Labs on Laptops
An important practical issue that I did not consider before

offering CS5272 is the lab hours. For CS5272, I kept the lab
open 24 hours, 7 days a week. Unfortunately, this was not a
satisfactory option for the part-time students. Even though
Singapore is a small country, our students need to commute
on an average 30 minutes to one hour each way. Long com-
mute over the weekend to come to the lab was not feasible
for most part-time students. Most of them preferred to have
some form of evaluation version of the development software
installed on their laptop and complete most of the lab ex-
ercises at home/office. Even though I used ARM ADS [1]
development kit for the undergraduate module, I switched to
GNU development tools [4] for CS5272. The missing piece
was a virtual development platform that simulates all the
peripherals of the real development platform. Then the stu-
dents can test/debug their program on the virtual platform
and only need the real hardware platform in the final stage
of the design. From the next academic year, I am planning
to use the new RealView Microcontroller Development Kit
for ARM-Powered microcontrollers from Keil [5]. Keil offers
a free evaluation version for professors and students. But
more importantly it offers virtual platforms for a range of
ARM-based development boards.

4. CONCLUSIONS
This article summarizes my observations in designing and

teaching embedded systems modules to both undergraduate
and graduate students over the past five years. Establish-
ing the computer engineering curriculum with a focus on
embedded systems was a struggle when we started back in
2001. But it was a worthwhile experience. We have pro-
duced close to 300 graduates armed with the appreciation
and knowledge of unique computing devices that work at
the boundary of hardware and software. This teaching focus
was instrumental in helping us to establish a strong research
group in embedded systems in School of Computing at Na-
tional University of Singapore. We currently have 5 faculty
members, 2 post-doctoral fellows, and 26 graduate students
in the embedded systems research group and a total of about
Singapore 2.5 million dollars in current research funding.

Dedicated embedded systems modules are gaining increas-
ing importance in both computer science and electrical engi-
neering curriculum. However, the inter-disciplinary nature
of embedded systems, which spans across hardware and soft-
ware domain, poses unique challenges in designing the cur-
riculum. Fortunately, these problems are not insurmount-
able. It is essential to exploit the technological advances
(such as C-to-hardware synthesis tools) that raise the design
complexities to the higher abstraction layers. This allows us
to build on the strength of the students’ background rather
than starting from scratch.

It is important, though, to mobilize an effort in stan-
dardizing embedded systems curriculum across universities.
These include textbooks, development platforms as well as
simulators. As an example, educators worldwide benefit
quite a lot from the classic textbooks by David Patterson
and John Hennessy as well as SPIM and SimpleScalar sim-
ulators while teaching computer organization and computer
architecture courses. An equivalent of this effort in embed-
ded systems would make the life much easier for anybody
embarking on an effort to design a new module.

Finally, lab exercises constitute an essential component of
any embedded systems module. In any computer science de-
partment, setting up the lab infrastructure is quite involved
as we need to acquire hardware development platforms that
most system administrators are not familiar with. It is im-
portant to decide on a common platform infrastructure for
all the modules under embedded systems area in order to ex-
ploit the knowledge base and amortize the cost of hardware
acquisition. A common platform also helps the students to
have a smooth transition from one module to another.

5. REFERENCES
[1] ARM. Arm developer suite.

http://www.arm.com/products/DevTools/ADS.html.

[2] Celoxica. Dk design suite.
http://www.celoxica.com/products/dk/default.asp.

[3] Celoxica. Handel-c: C-based design and behavioral
synthesis. http://www.celoxica.com/technology/
c design/handel-c.asp.

[4] CodeSourcery. Gnu toolchain for arm processors.
http://www.codesourcery.com/gnu toolchains/arm/.

[5] KEIL: An ARM Company. Arm evaluation software.
http://www.keil.com/demo/.

[6] National University of Singapore School of Computing.
Bachelor of computing in computer engineering, 2006.
http://www.comp.nus.edu.sg/∼cmcurric/AY2006 7/

soc67 CEprogram.pdf.

[7] Wayne Wolf. Computers as Components: Principles of
Embedded Computing System Design. Morgan
Kaufmann Publishers, 2001.

