Real-Time Systems and Programming
Languages

WEB APPENDICES to 4th Edition

Occam 2 and Modula
Alan Burns and Andy Wellings

University of York

Introduction

In moving from the 3rd Edition to the 4th Edition we have remdvthe occam and
Modula-1 languages from our discussions. However, botlotcam and Modula mod-
els are very interesting and do illustrate some importantepts that we are trying to
present in the book. Occam? is also the nearest a geneabgritanguage has got
to embodying the formalisms of CSP. Occam2 is also spedifidalsigned for multi-
computer execution, which is of increasing application mmglortance in the real-time
domain. Historically Modula was the first programming laage to enable the pro-
gramming of device drivers in a high-level language. Hemeeprovide discussion of
these languages as appendices to the book available on the we

APPENDIX A: Occam 2

A.1 An Overview of occam 2

Most imperative languages consists of a sequences of satsiat can be combined
into procedures or threads. The latter executing conctlyrewhat would be a se-
quence of statements in Ada, Java or C is a sequence of pesdessccam?2, all of
which have the potential to be executed in parallel.

The form of a name can also be improved by the use of a sepavatam?2 names
caninclude a ‘.’ (this is a somewhat unfortunate choice, as 6ften used in languages
to indicate a subcomponent, for example a field of a recordk.fdllowing are example
identifiers.

exanpl e. nane. i n. occan®

Occam2 is a fully block structured language. Any processbeapreceded by the
declaration of objects to be used in that process. To swapahéntegers (NTs in
occam?) requires 8EQconstruct that specifies that the assignments that followuit
be executed in sequence:

INT temp: -- A declaration is termnated by a col on.

It should be noted that occam?2 does not use a process segaratmicolon in most

languages). It requires each action (process) to be on aadepiae. Moreover, the use
of indentation, which merely (though importantly) impreveadability in Ada, Java
and C, is syntactically significant in occam?2. The threegassents in the above code
fragment have to start in the column under @ef SEQ

Data types

In common with all high-level languages, occam2 requiregypams to manipulate
objects that have been abstracted away from their actudiMaae implementation.
Programmers need not concern themselves about the refatser location of the
entities that their programs manipulate. Moreover, byipaning these entities into
distinct types, the compiler can check for inconsistengasand thereby increase the
security associated with using the languages.

\Y

Vii

By comparison with many high-level languages languagessm@’'s type model is
restrictive; in particular user-defined types are not afidw
Table 1 compares the predefined discrete types supportbd ikda, Java, C and oc-
cam?2 languages.

Occama2 is strongly typed (that is, assignments and exppressiust involve objects
of the same type), but explicit type conversions are suppofEnumeration types are
not supported.

Many real-time applications (for example, signal procagssimulation and pro-
cess control) require numerical computation facilitiegdrel those provided by integer
arithmetic. There is a general need to be able to maniprdateumbers, although the
sophistication of the arithmetic required varies widelfviisen applications. In essence,
there are two distinct ways of representing real valuesiw#high-level language:

1. floating-point, and
2. scaled integer.

Floating-point numbers are a finite approximation to reahbars and are applicable
to computations in which exact results are not needed. Aifiggioint number is
represented by three values: a mantigda,an exponentfy, and a radix,R. It has a
value of the form\/ x RE. The radix is (implicitly) implementation-defined and uiyia
has the value 2. As the mantissa is limited in length, theesgmtation has limited
precision. The divergence between a floating-point numieita corresponding ‘real’
value is related to the size of the number (it is said to hrelative error).

The use of scaled integers is intended for exact numeric atatipn. A scaled
integer is a product of an integer and a scale. With the apjatechoice of scale, any
value can be catered for. Scaled integers offer an alteetifloating-point numbers
when non-integer calculations are required. The scalegeherw must be known at
compile time; if the scale of a value is not available untiéeution, a floating-point
representation must be used. Although scaled integersder@xact values, not all
numbers in the mathematical domain can be representedyex&ar example, 1/3
cannot be viewed as a finite scaled decimal integer. Therdiffe between a scaled
integer and its ‘real’ value is itabsolute error.

Ada Java C Occam?2
I nt eger i nt i nt | NT
short short | NT16
| ong | ong | NT32
| NT64
byt e BYTE
Bool ean bool ean BOOL
Char acter char
W de_Character char wchar _t

Table 1: Discrete types.

viii

Scaled integers have the advantage (over floating-poirdgaling with exact nu-
merical values and of making use of integer arithmetic. filgapoint operations re-
quire either special hardware (a floating-point unit) or ptexr software that will result
in numerical operations being many times slower than tregigtequivalent. Scaled in-
tegers are, however, more difficult to use, especially ifegpions need to be evaluated
that contain values with different scales.

Traditionally, languages have supported a single flogpioigt type (usually known
asreal) which has an implementation-dependent precision. Useadéd integers has
normally been left to the user (that is, the programmer hashpbement scaled integer
arithmetic using the system-defined integer type).

The designers of occam?2 took the view that the need for anaaitiseal type is not
as great as the need for the programmer to be aware of theipreof the operations
being carried out. The occam?2 ‘reals’ ®EAL16, REAL32 andREAL64.

Structured data types

Occam?2 only supports arrays, it does not support recordamiale include:

INT Max |'S 10: -- definition of a constant in occanR
[Max] REAL32 Readi ng: -- Reading is an array with ten

- elements Reading[0] .. Reading[9]
[Max] [Max] BOOL Swi t ches: -- 2 dinensional array

All arrays in occam? start at element zero. Note that occase? the conventional
square brackets.

Dynamic data types and pointers

The implementation of dynamic data types can representssiderable overhead to
the run-time support system for a language. For this reasmam2 does not have any
dynamic structures.

Control structures

There is now common agreement on the control abstractietankdn a sequential pro-
gramming language. These abstractions can be groupeth¢ogeto three categories:
sequences, decisions and loops. Each will be considerednin t

The sequential execution of statements is the normal gctifia (non-concurrent)
programming language. In occam2, the normal executionatéstents (called pro-
cesses in occam?2) could quite reasonably be concurrentt enitherefore necessary
to state explicitly that a collection of actions must follewdefined sequence. This is
achieved by using thBEQconstruct that was illustrated earlier. For example:

SEQ
action 1
action 2

If a sequence is, in a particular circumstance, empty, o2aases &5KI P process to
imply no action:

SEQ
SKI P

or just:

SKI P

At the other extreme from a null action is one that causes ¢la@ence to make
no further progress. The occarBZOP process has the effect of terminating the entire
program.

Decision structures

A decision structure provides a choice as to the route thedtwgion takes from some
point in a program sequence to a later point in that sequdreedecision as to which
route is taken will depend upon the current values of reledata objects. The im-
portant property of a decision control structure is thatalites eventually come back
together. With such abstract control structures there rseal to use got o statement,
which often leads to programs that are difficult to test, r@ad maintain. Occam2 does
not possess @ot o statement.

The most common form of decision structure isittiestatement. Occam?2 has clear
unambiguous structures. To illustrate, consider a simplblpm; find outifB/A > 10
— checking first to make sure thdtis not equal to zero!

Consider first the general structure. In the following scagleiB1 .. Bn be boolean
expressions andl .. An be actions :

I F
B1
Al
B2
A2

Bn

An

Firstly, it is important to remember that the layout of oc@apmograms is syntac-
tically significant. The boolean expressions are on sepéiras (indented two spaces
from thel F), as are the actions (indented a further two spaces). Lik@Qhen’ token
is used. On execution of thig= construct, the boolean expressi®his evaluated. If it
evaluates td’ RUE thenAl is executed and that completes the action ofltReHow-
ever, ifB1 is FALSE thenB2 is evaluated. All the boolean expressions are evaluated
until one is foundTRUE and then the associated action is undertaken. If no boolean
expression iIFRUE then this is an error condition and th& construct behaves like the
STOP discussed in the last section.

With this form of | F statement, no distindELSE part is required; the boolean
expressiomRUE as the final test is bound to be taken if all other choices haied.
Theb/a > 10 example in occam2, therefore, takes the form:

I F
al=0
I F
b/a > 10
high := TRUE
TRUE
hi gh : = FALSE
TRUE -- These last two |lines are needed so
SKI P -- that the IF does not becone STOP when

-- a has the value 0

To give another illustration of the important ‘if’ constiuconsider a multiway branch.
In occam?2, the code is quite clear:

I F
nunber < 10
digits :=1
nunmber < 100
digits := 2
nunber < 1000
digits := 3
nunber < 10000
digits := 4
TRUE
digits := 5

The above is an example of a multiway branch constructed faseries of binary
choices. In general, a multiway decision can be more exlylisiated and efficiently
implemented using aase (or swi t ch) structure. The occam?2 version of this is
somewhat more restricted. To illustrate, consider a chergoyte) value ‘command’
which is used to decide upon four possible actions:

In occam2, alternative values and ranges are not suppahtedpde is, therefore,
protracted:

CASE conmand
A
actionl
Ca
actionl
"t
action2
e
action3
e
action4
ry .
action4
-
action4
ELSE
SKI P

Loop structures

A loop structure allows the programmer to specify that aest@nt, or collection of
statements, is to be executed more than once. There are $tioctiforms for con-

Xi

structing such loops:
1. iteration, and
2. recursion.

The distinctive characteristic of iteration is that each@xion of the loop is completed
before the next is begun. With a recursive control structinefirst loop is interrupted
to begin a second loop, which may be interrupted to beginrd thop and so on. At
some point, loom will be allowed to complete, this will then allow loop — 1 to
complete, then loop — 2 and so on, until the first loop has also terminated. Recursio
is usually implemented via recursive procedure calls. mtiten here is focused on
iteration.

Iteration comes in two forms: a loop in which the number ofédt®ns is usually
fixed prior to the execution of the loop construct; and a laopvhich a test for com-
pletion is made during each iteration. The former is knowmagally as thé or state-
ment, the latter as thshi | e statement. Most languagdsdr constructs also provide
a counter that can be used to indicate which iteration iseciy being executed.

The following example code illustrates tlfi@r construct in occam2; the code
assigns into the first ten elements of arfathe value of their position in the array:

SEQi = 0 FOR 10 -- i is defined by the construct
Alil:=i -- i isread only in the | oop
- i is out of scope after the |oop
- note that the range of i is 0 to 9,

- as in the Ada and C exanple

Note that occam?2 has restricted the use of the loop varidbkefree use of this variable
can be the cause of many errors.

The main variation wittwhi | e statements concerns the point at which the test for
exit from the loop is made. The most common form involves aupsn entry to the
loop and subsequently before each iteration is made. TBigiport by occam?.

WHI LE <bool ean expressi on>
SEQ
<st at enent s>

Subprograms

Even in the construction of a component or module, furtheodgosition is usually
desirable. This is achieved by the use of procedures andidmsc known collectively
assubprograms

Subprograms not only aid decomposition but also represeimhportant form of
abstraction. They allow arbitrary complex computationsealefined and then invoked
by the use of a simple identifier. This enables such compsrtenbe reused both
within a program and between programs. The generality, laaicttore usefulness, of
subprograms is, of course, increased by the use of paraneter

Xii

Parameter-passing modes and mechanisms

A parameter is a form of communication; it is a data objechgeiansferred between
the subprogram user and the subprogram itself. There anmbanof ways of describ-
ing the mechanisms used for this transfer of data. Firstlg can consider the way
parameters are transferred. From the invoker’s point ofvieere are three distinct
modes of transfer.

1. Data is passed into the subprogram.
2. Data is passed out from the subprogram.

3. Data is passed into the subprogram, is changed and is #eseg out of the
subprogram.

These three modes are often called:out andin out.

The second mechanism of describing the transfer is to censié binding of the
formal parameter of the subprogram and the actual parawigtes call. There are two
general methods of interest here: a parameter may be bouvally or by reference.
A parameter that is bound by value only has the value of tharpater communicated
to the subprogram (often by copying into the subprogram’sory space); no infor-
mation can return to the caller via such a parameter. Whemaaer is bound by
reference, any updates to that parameter from within thpregjpam is defined to have
an effect on the memory location of the actual parameter.

A final way of considering the parameter-passing mechanssto iexamine the
methods used by the implementation. The compiler mustfgdkie semantics of the
language, be these expressed in terms of modes or bindihgs btherwise free to
implement a subprogram call as efficiently as possible. kample, a large array
parameter that is ‘pass by value’ need not be copied if n@gassents are made to
elements of the array in the subprogram. A single pointehéoactual array will be
more efficient but behaviourally equivalent. Similarly, @ldy reference parameter
may be implemented by a copy in and copy out algorithm.

In occam2, parameters by default are passed by refereri¢al dag is used to
imply pass by value. Significantly, within the procedurellétha PROC in occam?2)
a VAL parameter acts as a constant and, therefore, the éhatrgan occur in other
languages by missing out the constant tag are caught by thpiles.

PROC quadratic(VAL REAL32 A, B, C,
REAL32 R1, R2, BOOL K)
-- note, as with C and Java, the paraneter separator
-- is not a sem colon

Procedures

Procedure bodies are illustrated by completing the ‘quadidefinitions given above.
All procedures assume thasgr t function is in scope.

PROC quadratic(VAL REAL32 A, B, C,
REAL32 R1, R2, BOOL CK)
REAL32 Z:

Xiii

SEQ
Z:= (B*B) - (4.0+x(AxQ)) -- brackets are needed
-- to fully specify expression
I F
(Zz<0) OR(A=0.0
SEQ
OK: = FALSE
R1:= 0.0 -- arbitrary val ues
R2:= 0.0
TRUE -- no return statenent in occan®
SEQ
OK: = TRUE
Rl:= (-B + SQRT(Z)) / (2.0+xA)

R2:= (-B - SQRT(2)) / (2.0xA)
-- colon needed to show end of PROC decl aration

The invoking of these procedures merely involves namingptbeedure and giving the
appropriately typed parameters in parenthesis.

Recursive (and mutually recursive) procedure calls aresapported in occam?2
because of the dynamic overhead they create at run-timeeéuoes (and functions)
can also not be nested.

Functions

Occam?2 defines the semantics of a function so that no sigetefare possible.
The parameters to an occam2 function are passed by valuéditioa, the body of
a function is defined to be\ALOF. A VALOF is the sequence of statements necessary
to compute the value of an object (which will be returned friva function). The
important property of th&ALOF is that the only other variables whose values can be
changed are those defined locally within ¥&L OF. This prohibits side effects. The
simple minimum function defined earlier would thereforedte form:
I NT FUNCTI ON mi ni mum (VAL INT X, Y)
INT Z: -- Zwll be the value returned
VALOF

I F
X

I <

Y
TRUE

=X
RESULT Z

NENV

In concurrent languages, another form of side effect is dridconcurrency; this can
have a number of unfortunate consequences VRhe€OF of occam?2 is further restricted
to disallow any concurrency within it.

Missing features

Occam?2 does not provided any language support for modutaimagosition such as
modules, packages or classes that are found in modern lgeguk also doesn’t pro-
vide any exception handling facility.

Xiv

A.2 Concurrent execution in occam?2

Occam?2 uses a cobegin structure calR&R. For example, consider the concurrent
execution of two simple assignments €1 andB: =1):

PAR
A
B :

1
1

This PAR structure, which can be nested, can be compared to the dé&dem:

SEQ
A
B :

1
1

Note that a collection of actions must be explicitly definedbe either executing in
sequence or parallel; there is no default. Indeed, it carrdngea thatPAR is the more
general form and should be the natural structure to usesitiiesactual code in question
requires &SEQuence.

If the process designated byPAR is an instance of a parameteriZe@OC (proce-
dure) then data can be passed to the process upon creatiaxdrople, the following
code creates three processes from a siRg@C and passes an element of an array to
each:

PAR
Exanpl eProcess(A[1])
Exanpl eProcess(Al 2])
Exanpl eProcess(A[3])

A greater collection of processes can be created from the B&AC by the use of a
‘replicator’ to increase the power of tHRAR:

PAR i =1 FOR N
Exanpl eProcess(Ali])

Earlier, a replicator was used withSEQto introduce a standard ‘for’ loop. The only
distinction between a replicat&EQand a replicate®ARis that the number of replica-
tions (Nin the above example) must be a constant inRAR; that is, known at compile
time. It follows that occam2 has a static process structure.

The following program fragment in occam? is the robot armnepiz. Note that
occam?2 does not support enumeration types and so the dioneregie represented by
the integers 1, 2 and 3.

PROC control (VAL I NT di m

INT position, -- absolute position
setting: -- relative novenent
SEQ
position : =0 -- rest position
VWH LE TRUE
SEQ

MoveAr n(di m posi tion)
NewSet t i ng(di m setting)
position := position + setting

XV

PAR
control (1)
control (2)
control (3)

Process termination is quite straightforward in occamZ2eréhis no abort facility nor
are there any exceptions. A process must either terminateally or not terminate at
all (as in the above example).

In general, occam2 has a fine grain view of concurrency. Mmst@grrent program-
ming languages have the notion of process added to an edbeséiquential frame-
work. This is not the case with occam2; the concept of proisdsssic to the language.
All activities, including the assignment operations andgadure calls, are considered
to be processes. Indeed, the notion of statement is missingdccam?2. A program
is a single process that is built from a hierarchy of othecpsses. At the lowest level,
all primitive actions are considered to be processes andahstructorsl(F, WHI LE,
CASE and so on) are themselves constructor processes.

A.3 Inter-process communication

Occam?2 only allows communication and synchronization tbdsed on message pass-
ing. It incorporates indirect symmetric synchronous mgeszssing.

The occam?2 model

Occam?2 processes are not named, and therefore it is necdsserg communication

to use indirect naming viaehannel Each channel can only be used by a single writer
and a single reader process. Both processes name the githersintax is somewhat
terse:

ch! X -- wite value of expression X
- onto channel ch

ch ?Y -- read fromchannel ch
- into variable Y

In the above, the variablé and the expressiod will be of the same type. The com-
munication is synchronous; therefore whichever processsses the channel first will
be suspended. When the other process arrives, data wilfieess< to Y (this can be
viewed as the distributed assignmé&ht = X). The two processes will then continue
their executions concurrently and independently. Totithte this communication, con-
sider two processes that are passing 1000 integers betiermn t

CHAN OF I NT ch:
PAR
INT V:
SEQi = 0 FOR 1000 --- process 1
SEQ
-- generate value V
ch! VvV

XVi

INT C
SEQi = 0 FOR 1000 --- process 2
SEQ
ch ? C
-- use C

With each iteration of the two loops, a rendezvous betweenvtlo processes occurs.
Channels in occam? are typed and can be defined to pass atfjectg valid type
including structured types. Arrays of channels can alsodfimeld.
It is important to appreciate that the input and output ofi@na on channels are
considered to be fundamental language primitives. Thetiate two of the five
primitive processes in occam2. The others being SKIP, STr@Raasignment.

The occam?2ALT

Consider a process that reads integers down three chaomdls¢h2 andch3) and
then outputs whatever integers it receives down a furthencél ¢hout). If the
integers arrived in sequence down the three channels thepiedoop construct would
suffice.

VWH LE TRUE
SEQ
chl
chout
ch2
chout
ch3
chout

- for sonme local integer

0 T) T

However, if the order of arrival is unknown then each time pih@cess loops a choice
must be made between the three alternatives:

VWH LE TRUE
ALT

chil ?
chout [

ch2 ?
chout [

ch3 ?
chout [

If there is an integer onh1, ch2 orch3, it will be read and the specified action taken,
which in this case is always to output the newly acquiredgetedown the output
channekhout . In a situation where more than one of the input channelsidyréor
communication, an arbitrary choice is made as to which oresid. Before considering

the behaviour of théL T statement when none of the channels are ready, the general
structure of arALT statement will be outlined. It consists of a collection ohgied
processes:

ALT
Gl
P1
&

XVi

P2
G3
P3

Gn
Pn

The processes themselves are not restricted — they are eapn@d@rocess. The guards
(which are also processes) can have one of three forms.

<bool ean_expressi on> & channel _i nput _operati on
channel _i nput _operati on
<bool ean_expression> & SKI P

The most general form is therefore a boolean expression ahdranel read, for exam-
ple:
NOT BufferFull & ch ? BUFFER TOP]

If the boolean expression is sSimphRUE then it can be omitted altogether (as in the

earlier example). Th&KI P form of guard is used to specify some alternative action to
be taken when other alternatives are precluded; for example

ALT
NOT BufferFull & ch ? BUFFER] TOP]
SEQ
TOP = ...
Buf ferFull & SKIP
SEQ

-- swap buffers

On execution of théAL T statement, the boolean expressions are evaluated. If none
evaluate toTRUE (and there are no defaullRUE alternatives) then thALT process
cannot proceed and it becomes equivalent toSMeP (error) process. Assuming a
correct execution of th<, the channels are examined to see if there are processes
waiting to write to them. One of the following possibilitiesuld then ensue:

1. There is only one ready alternative, that is one booleanession evaluates to
true (with a process waiting to write 0iSKI P guard) — this alternative is chosen,
the rendezvous takes place (if it is noBll P) and the associated subprocess is
executed.

2. There is more than one ready alternative — one is choséreaitiy, this could be
the SKI P alternative if present and ready.

3. There are no ready alternatives — &€l is suspended until some other process
writes to one of the open channels of theT.

TheALT will, therefore, become 8TOP process if all the boolean expressions evaluate
to FALSE, but will merely be suspended if there are no outstandinig.cBecause of
the non-shared variable model of occamz, it is not possinefy other process to
change the value of any component of the boolean expression.

XViii

TheALT when combined with th8EQ, | F, WHI LE, CASE andPAR furnishes the
complete set of occam2 program constructs. A replicatorbeaattached to aALT
in the same way that it has been used with other constructsexaomple, consider a
concentrator process that can read from 20 processesr(tiadinehree as before); how-
ever, rather than use 20 distinct channels, the server gsacees an array of channels
as follows:

VWH LE TRUE
ALT j = 0 FOR 20
ch(j] 2 |
chout I |

Finally, it should be noted that occam?2 provides a variartheAL T construct which

is not arbitrary in its selection of ready alternatives.hié fprogrammer wishes to give
preference to a particular channel then it should be plasdbefirst component of a
PRI ALT. The semantics d?Rl ALT dictate that the textually first ready alternative
is chosen. The following are examplesRiRl ALT statements.

PRI ALT
Veryl npor t ant Channel ? nessage
-- action
| npor t ant Channel ? nmessage
-- action
Lessl| nport ant Channel ? nessage
-- action

VWH LE TRUE
PRI ALT j = 0 FOR 20 -- ch[0O] is given highest preference
ch[j] 2 |
chout ! |

The bounded buffer

Occam?2 provides no shared variable communication prigstand, therefore, resource
controllers such as buffers have to be implemented as sproeesses. To implement
a single reader and single writer buffer, requires the usevofchannels that link the
buffer process to the client processes (to cater for mordersaand writers would
require arrays of channels):

CHAN OF Data Take, Append:

Unfortunately, the natural form for this buffer would be:

VAL INT Size IS 32:
I NT Top, Base, Nunberl|nBuffer:
[Size] Data Buffer:
SEQ

Nunber I nBuffer := 0

Top := 0

Base := 0

VH LE TRUE

ALT
Nunmber | nBuf fer < Size & Append ? Buffer[Top]

XiX

SEQ
Nunmber I nBuf fer : = NunberlInBuffer + 1
Top := (Top + 1) REM Si ze
Nunber | nBuf fer > 0 & Take ! Buffer[Base] -- not |egal occam
SEQ
Nunber I nBuf fer := NunberlnBuffer - 1
Base := (Base + 1) REM Si ze

Output operations in this context are not allowed in occa®@rdy input operations can
form part of anALT guard. The reason for this restriction is implementatieffidiency
on a distributed system. The essence of the problem is tagirtvision of symmetric
guards could lead to a channel being accessed L dnat both ends. The arbitrary
decision of oneALT would therefore be dependent on the decision of the othet (an
vice versa). If theALTs are on different processors then the agreement on a dadlect
decision would involve the passing of a number of low-leveltpcol messages.

To circumvent the restriction on guards, occam?2 forcesTtiee operation to be
programmed as a double interaction. First the client poeesst indicate that it wishes
to TAKE, and then it musTake; a third channel is thus needed:

CHAN OF Data Take, Append, Request:

The client must make the following calls

SEQ
Request ! ANY -- ANY is an arbitrary token
Take ? D -- Dis of type DATA

The buffer process itself has the form:

VAL I NT size | S 32:
I NT Top, Base, Nunberl|nBuffer:
[Size] Data Buffer:
SEQ
Nunmber I nBuffer := 0
Top := 0
Base := 0
Dat a ANY:
WH LE TRUE
ALT
Nunmber | nBuf fer < Size & Append ? Buffer[Top]
SEQ
Nunber | nBuf fer : = Nunber|InBuffer + 1
Top := (Top + 1) REM Si ze
Nunber | nBuf fer > 0 & Request ? ANY
SEQ
Take ! Buffer[Base]
Nunber | nBuf fer : = NunberInBuffer - 1
Base := (Base + 1) REM Si ze

The correct functioning of the buffer is thus dependent amemt usage by the client
processes. This dependence is a reflection of poor modulatihough the Ada select
is also asymmetric (that is, you cannot select between &ceem entry calls), the
fact that data can pass in the opposite direction to the ealbwes the difficulty that
manifests itself in occam2.

XX

A.4 Real-Time facilities

TIMERS in occam?2

Any occamz2 process can obtain a value of the ‘local’ clockdnding from arl MER
(there is no facility for accessing calendar time). To besistent with the occam?2
model of communication (which is one-to-one), each proaesst use a distinct
Tl MER. Reading from @'l MER follows the syntax of channel read, but the seman-
tics are different in that &1 MER read cannot lead to suspension, that is, the clock is
always ready to output.

TI MER cl ock:
I NT Ti ne:
SEQ
clock ? Tinme -- read tine

The value produced by @l MER is of typel NT, but of implementation-dependent
meaning: it gives a relative, not absolute, clock value. #gk reading of a'l VER
is, therefore, meaningless, but the subtraction of twoirggsdwill give a value for the
passage of time between the two readings:

TI MER cl ock:
INT old, new, interval:
SEQ
clock ? old
-- other conputations
clock ? new
interval := new M NUS ol d

The operato™M NUS is used rather than * to take account of wrap-around. This
occurs because the integer given byllaVER is incremented by one for each unit
of time; eventually the maximum integer is reached, so ferghbsequent ‘tick’ the
integer becomes the most negative one and then continuesitectemented. Users
can be unaware of this action as long as they use the appfaaguage-defined)
arithmetic operators, which afd NUS, PLUS, MULT and Dl VI DE. In effect, each
Tl MERundertakes aPLUS 1’ operation for each increment of the clock.

As the above illustrates, the facilities provided by occam primitive (though
arguably quite adequate). As only one integer is allocatethi clock there is clearly
a trade-off between the granularity of the clock (that isatihterval of time each tick
of the clock represents) and the range of times that can lranodated. With a 32
bit integer, Table 2 gives typical values.

Absolute delays

Occam?2 only supports absolute delays. To emphasize itsepéed semantics, the
keywordAFTER s used. If a process wishes to wait for 10 seconds, it mustréesd
theTl MER clock, add 10 seconds and then delay until this time. Thesvaluseconds

is obtained via the consta@ which is introduced (here) to give a measure of the
granularity of the implementatioi&is the number offl MER updates per second):

XXi

Granularity Range (approximately)

1 microsecond 71.6 minutes
100 microsecond 119 hours
1 millisecond 50 days
1 second 136 years

Table 2:TI MER granularities for a 32-bit integer.

SEQ
clock ? now
clock ? AFTER now PLUS (10 * G

In occam2, the code for avoiding cumulative drift is:

I NT next, now
VAL interval IS 7+xG

SEQ
clock ? now
next := now PLUS interval
WHI LE TRUE
SEQ
ACTI ON
clock ? AFTER next
next := next PLUS interval

Programming timeouts

A timeout facility is common in message-based concurreog@mming languages.
Occam? uses the ‘delay’ primitive as part of a selective waitstruct to indicate a
timeout on a message receive:

VH LE TRUE
SEQ
ALT
call ? new_tenp
-- other actions
clock ? AFTER (10 * Q
-- action for tinmeout

where clock is a'l MER.

Priority

Occam has only a rudimentary priority model. It has a vasiatf thePAR construct
that indicates that static priorities should be assignetaalesignated processes:

PRI PAR

XXi

P4
P5

Here, relative priorities are used, with the textual ordethe processes in theRl
PAR being significant. HencB1 has the highest priority?2 the second highesB3
andP4 share the next priority level ariéb has the lowest priority. No minimum range
of priorities need be supported by an implementation. Then® support for priority
inheritance.

A.5 Distributed Systems

Occam?2 has been specifically designed so that programs exebgted in a distributed

environment, that of a multi-transputer network. In geherecam?2’s processes do not
share variables so the unit of partitioning is the procesdfitConfiguration is achieved

by thePLACED PAR construct. A program constructed as a top-l&&R, such as:

can be distributed, for example as follows:

PLACED PAR
PROCESSOR 1

pl
PROCESSOR 2
PAR

It is important to note that the transformation of the pragfaom one that has a sim-
ple PAR to one that uses BLACED PAR will not invalidate the program. However,
occam?2 does allow variables to be read by more than one grocethe same proces-
sor. Therefore, a transformation may not be possible if log@ammer has used this
facility.

For the transputers, it is also necessary to associate gsima& channel with an
appropriate transputer link. This is achieved by usingRh&CE AT construct. For
example, consider the above example with the followinggatechannels shown in
Figure 1.

The program for execution on a single transputer is:

CHAN OF INT c1, c2, c3, c4, cb5:
PAR

pl

p2

XXxiii

y

c4
k.

Figure 1: Five occam?2 processes connected by five channels.

If the program is configured to three transputers, as ihistt in Figure 2, the occam2
program becomes:

CHAN OF I NT cl1, c3, cb:
PLACED PAR
PROCESSOR 1
PLACE c1 at O:
PLACE c5 at 1:
pl
PROCESSOR 2
PLACE c1 at 2:
PLACE c3 at 1:
CHAN OF I NT c2:
PAR
p2
p3
PROCESSOR 3
PLACE c3 at O:
PLACE c5 at 2:

XXIV

Processor 1 Processor 2

LO L2
e i C1 :
————————— > - = - =

,,,,,,

L2

Figure 2: Five occam?2 processes configured for three tra@spu

CHAN OF | NT c4:
PAR

p4

p5

The ease with which occam?2 programs can be configured fouggamn a dis-
tributed system is one of the main attractions of occam2.

Allocation is not defined by the occam?2 language nor are theyefacilities for
reconfiguration. Further, access to resources is not teaesp

A.6 Low-level programming

Occam?2 is a language that supports a message-based modetrtal devices.

Although occam2 was designed for the transputer, in thewatg discussion it is
considered as a machine-independent language. The mgutebisnted first, and then
consideration is given to its implementation on memory-pegpand special-instruction
machines. The three issues of device encapsulation,eegistnipulation and interrupt
handling must be considered.

Modularity and encapsulation facility

The only encapsulation facility provided by occam?2 is thegedure, and it is this that
must, therefore, be used to encapsulate device drivers.

XXV

Addressing and manipulating device registers

Device registers are mapped oRORTS, which are conceptually similar to occam?2
channels. For instance, if a 16-bit register is at addxaben aPORT P is defined by:

PORT OF I NT16 P:
PLACE P AT X

Note that this address can be interpreted as either a memdrgss or a device address
depending on the implementation. Interaction with the devegister is obtained by
reading or writing to this port:

P! A -- wite value of Ato the port

P ? B -- read value of port into B

A port cannot be defined as read or write only.

The distinction between ports and channels in occam?2, whkialsignificant one,
is that there is no synchronization associated with the iptetaction. Neither reads
nor writes can lead to the executing process being suspgadetlie is always written
to the address specified and, similarly, a value is always. ragort is thus a channel
in which the partner is always ready to communicate.

Occam?2 provides facilities for manipulating device registusing shift operations
and bitwise logical expressions. There is, however, novadgnt to Modula-1's bit
type or Ada representation specifications.

Interrupt handling

An interruptis handled in occam?2 as a rendezvous with theviee process. Associ-
ated with the interrupt, there must be an implementatiqgreddent address which, in
the simple input/output system described in this chapte¢he address of the interrupt
vector; a channel is then mapped onto this addréBBR):

CHAN OF ANY Interrupt:
PLACE I nterrupt AT ADDR

Note that this is a channel and not a port. This is because ikesynchronization

associated with an interrupt where there is none assocwitbdaccess to a device

register. The data protocol for this channel will also belengentation-dependent.
The interrupt handler can wait for an input from the desigdathannel thus:

INT ANY: -- define ANY to be of the protocol type
SEQ

-- using ports enable interrupt

Interrupt ? ANY

-- actions necessary when interrupt has occurred.

The run-time support system must, therefore, synchronittette designated channel
when an external interrupt occurs. To obtain responsivgttlies process handling the
interrupt will usually be given a high priority. Therefor@monly will it be made

XXVi

executable by the interrupt event, but it will, within a shperiod of time, actually be
executing (assuming that no other high-priority procesansing).

To cater for interrupts which are lost if not handled withis@ecified period, it
is necessary to view the hardware as issuing a timeout ondimencinication. The
hardware must therefore conceptually issue:

ALT
Interrupt ? ANY
SKI P
CLOCK ? AFTER Tine PLUS Ti neout
SKI P

and the handler must execute:

Interrupt !I' ANY

This is because only an input request can have a timeoutiasswuvith it.

Implementation on memory-mapped and special-instructionma-
chines

To map the occam2 model of device driving to memory-mappechinas simply re-
quires that input and output requests on ports be mappeadoared write operations
on the device registers. To map the model to special-instmumachines requires the
following:

e an occamZPORT to be associated with an 1/0 port using PIEACE statement;

¢ the data which is sent to an occafA@RT to be placed in an appropriate accu-
mulator for use with the output machine instruction;

e the data which is received from an occafP@RT to become available, via an
appropriate accumulator, after the execution of the inpstruction.

An example device driver

To illustrate the use of the low-level input/output faddit that occam?2 provides, a
process will be developed that controls an analogue toaligitnverter (ADC) for a
memory-mapped machine. The converter is the same as theespghd in the main
book and implemented in Ada and Java. In order to read a pkatianalogue input,
a channel address (not to be confused with an occam?2 chasigéhen in bits 8 to 13
and then bit O is set to start the converter. When a value haslbaded into the results
register, the device will interrupt the processor. The reflag will then be checked
before the results register is read. During this interadtionay be desirable to disable
the interrupt.

The device driver will loop round receiving requests andving results; it is
programmed as BROC with a two-channel interface. When an address (for one of the
eight analogue input channels) is passed dowput , a 16-bit result will be returned
via channebut put .

XXVii

CHAN OF I NT16 request:
CHAN OF | NT16 return:
PROC ADC(CHAN OF | NT16 input, output)
-- body of PROC, see bel ow
PRI PAR
ADC(request, return)
PAR
-- rest of program

A PRI PARis desirable as the ADC must handle an interrupt each tinsaugéd, and
therefore should run at the highest priority.

Within the body of thePRCC, the interrupt channel and the tiRORTS must first
be declared:

PORT OF I NT16 Control . Register:

PLACE Control . Regi ster AT #AAl12#:

PORT OF I NT16 Buffer. Register:

PLACE Buffer. Regi ster AT #AAl44#:

CHAN OF ANY Interrupt:

PLACE I nterrupt AT #40#:

INT16 Control.R -- variable representing control register

Where#AA12# and#AAl4+# are the defined hexadecimal addresses for the two regis-
ters and#40# is the interrupt vector address.

To instruct the hardware to undertake an operation reghite® and 6 to be set on
the control register; at the same time all other bits aparhfthose between 8 and 13
(inclusive) must be set to zero. This is achieved by usinddhewing constants;

VAL INT16 zero IS O:
VAL INT16 Go | S 65:

Having received an address from channel ‘input’, its valussinibe assigned to bits 8
through 10 in the control register. This is accomplished §éipg a shift operation. The
actions that must be taken in order to start a conversioriteassfore:

I NT16 Address:

SEQ
i nput ? Address
I F
(Address < 0) OR (Address > 63)
output ! MOSTNEG INT16 -- error condition
TRUE
SEQ
Control .R := zero
Control . R : = Address << 8

Control.R := Control.R BITOR Go
Control . Register ! Control.R

Once an interrupt has arrived, the control register is reaktlae error flag and ‘Done’
checked. To do this, the control register must be maskechsiggdpropriate constants:

VAL I NT16 Done IS 128:
VAL I NT16 Error |I'S MOSTNEG | NT16:

MOSTNEG has the representation 1 000 000 000 000 000.
The checks are thus:

XXViii

SEQ
Control . Register ? Control.R
I F
((Done BI TAND Control.R) = 0) OR
((Error BITAND Control.R) <> zero)
-- error
TRUE
-- appropriate value is in buffer register

Although the device driver will be run at a high priority, tbiéeent process in general
will not, and hence the driver would be delayed if it attendttecall the client directly
and the client was not ready. With input devices that gepetata asynchronously, this
delay could lead to the driver missing an interrupt. To owere this, the input data
must be buffered. A suitable circular buffer is given beldlate that because the client
wishes to read from the buffer and becauseAh#& in the buffer cannot have output
guards, another single buffer item is needed. To ensurdhikadevice driver is not
delayed by the scheduling algorithm, the two buffer proesgas well as the driver)
must execute at high priority.

PROC buffer(CHAN OF I NT put, get)
CHAN OF | NT Request, Reply:
PAR
VAL | NT Buf.Size IS 32:
INT top, base, contents:
[Buf. Si ze] buffer:

SEQ
contents := 0
top :=0
base := 0
I NT ANY:
VWH LE TRUE
ALT
contents < Buf.Size & put ? buffer [top]
SEQ
contents := contents + 1
top := (top + 1) REM Buf. Si ze
contents > 0 & Request ? ANY
SEQ
Reply ! buffer[base]
contents := contents - 1
base := (base + 1) REM Buf. Si ze
I NT Tenp: -- single buffer process
VAL | NT ANY | S O: -- dummy val ue
VWH LE TRUE
SEQ

Request ! ANY
Reply ? Tenp
get I Tenp

The full code for thdPROC can now be given. The device driver is again structured so
that three attempts are made to get a correct reading.

PROC ADC(CHAN OF | NT16 i nput, output)
PORT OF I NT16 Control . Register:
PLACE Control . Regi ster AT #AAl12#:

XXIX

PORT OF | NT16 Buffer. Register:
PLACE Buf fer. Regi ster AT #AAl4#:

CHAN OF ANY Interrupt:
PLACE I nterrupt AT #40#:

TI MER CLOCK:

INT16 Control.R -- variable representing control buffer
INT16 Buffer.R -- variable representing results buffer
INT Tine:

VAL I NT16 zero IS O:

VAL INT16 Go IS 65:

VAL | NT16 Done 1S 128:

VAL I NT16 Error IS MOSTNEG | NT16:

VAL | NT Tinmeout IS 600000: -- or sone other appropriate val ue
I NT ANY:

I NT16 Address:

BOOL Found, Error:

CHAN OF I NT16 Buff.In:

PAR
buffer(Buff.ln, output)
INT16 Try:
VH LE TRUE
SEQ
input ? Address
IF

(Address < 0) OR (Address > 63)
Buff.In ! MOSTNEG | NT16
-- error condition

TRUE
SEQ
Try :=0
Error := FALSE
Found : = FALSE

WHI LE (Try < 3) AND ((NOT Found) AND (NOT Error))
-- Three attenpts are nade to get a reading from
-- the ADC. This reading may be either correct or
-- is flagged as being an error.

SEQ
Control .R : = zero
Control . R : = Address << 8
Control.R := Control .R BITOR Go
Control . Register ! Control.R
CLOCK ? Tinme
ALT
Interrupt ? ANY
SEQ
Control . Register ? Control.R
I F

((Done BI TAND Control.R) = 0) OR
((Error BITAND Control.R) <> zero)
SEQ
Error := TRUE
Buf f.In ! MOSTNEG I NT16 -- error condition
TRUE

XXX

SEQ
Found : = TRUE
Buf fer. Regi ster ? Buffer.R
Buff.In ! Buffer.R
CLOCK ? AFTER Ti me PLUS Ti neout
- The device is not responding
Try :=Try + 1
I F
(NOT Found) AND (NOT Error)
Buf f.In ! MOSTNEG | NT16
TRUE
SKI P

Difficulties with device driving in occam2

The above example illustrates some of the difficulties intimgi device drivers and
interrupt handlers in occam2. In particular, there is nedlirelationship between the
hardware priority of the device and the priority assignetthéodriver process. To ensure
that high-priority devices are given preference, it is ssegy to order all the device
drivers appropriately at the outer level of the program PRh PAR construct.

The other main difficulty stems from the lack of data struesior representing de-
vice registers. This results in the programmer having tdasdevel bit manipulation
techniques, which can be error-prone.

APPENDIX B: Modula-1

Modula-1 (as it must now be known) is the forerunner to Mod2iknd Modula-3. It
has a Pascal like syntax.

B.1 Concurrency model

Modula employs explicit process declaration and monitdrktvare termechterface
modules

The following example is in Modula-1. It presents a simptesture for a robotarm
controller. A distinct process is used to control each disi@mof movement. These
processes loop around, each reading a new setting for iesndilon and then calling a
low-level procedureove_ar mto cause the arm to move.

MODULE nai n;
TYPE di mensi on = (xpl ane, yplane, zplane);

PROCESS control (dim: dinmension);

VAR position : integer; (» absolute position x)
setting : integer; (* relative novenent x)
BEG N
position := 0; (* rest position *)
LooP

nmove_arm(dim position);
new setting(dim setting);
position := position + setting
END
END control ;

BEG N
control (xpl ane);
control (ypl ane);
control (zpl ane)
END mai n.

In the above, the proces®nt r ol is declared with a parameter to be passed on cre-
ation. The example then creates three instances of thiggsppassing each a distinct
parameter.

Modula supports Hoare’s monitors via interface modulesn&shat confusingly,
condition variables are called signals and are acted upahrbg procedures.

XXXi

XXXii

1. The procedureai t (s, r) delays the calling process until it receives the signal
s. The process, when delayed, is given a priority (or delal rgrwherer must
be a positive valued integer expression whose default is 1.

2. The procedursend(s) sends the signa to that process with the highest
priority which has been waiting fas. If several waiting processes all have the
same priority then the one which has been waiting the lonmgesives the signal.
The process executing the send is suspended. If no proceatiizg the call has
no effect.

3. The boolean functioawai t ed(s) yields the value true if there is at least one
process blocked os); false otherwise.

The following is a simple resource controller monitor:
| NTERFACE MODULE resource_control;
DEFI NE al | ocate, deallocate; (* export list x)

VAR busy : BOCLEAN;
free : SIGNAL;

PROCEDURE al | ocat e;

BEG N
I F busy THEN WAI T(free) END;
busy := TRUE;

END;

PROCEDURE deal | ocat €;

BEG N
busy : = FALSE;
SEND(f r ee)
END;

BEG N (* initialization of nodule *)
busy := FALSE
END.

Note that indeal | ocat e:

if AWAITED(free) then SEND(free)

could have been inserted, but as the effect SEND(free) is null, when
AWAI TED(f r ee) is false, there is nothing to be gained by doing the test.

B.2 Modula-1 device driving

Modula-1 was one of the first high-level programming langsaghich had facilities
for programming device drivers.

In Modula-1, the unit of modularity and encapsulation is thedule. A special
type of module, called aimterface module, which has the properties of a monitor,
is used to control access to shared resources. Processexintia signals (condition

XXXili

variables) using the operatov#\l T, SEND and AWAI TED (see Chapter 8). A third
type of module, called device moduleis a special type of interface module used to
encapsulate the interaction with a device. It is only frorthwi a device module that
the facilities for handling interrupts can be used.

Addressing and manipulating device registers

Associating a variable with a register is fairly straightiard. In Modula-1, this is

expressed by an octal address following the name in a déolar&or example, a data
buffer register for the simple 1/0 architecture describedhe main Book would be
defined as:

var rdbr[177562B] char;

wherel77562B denotes an octal address which is the location of the registeem-
ory.

The mapping of a character into a character buffer registaisp a straightforward
activity, since the type has no internal structure. A cdrdral status register is more
interesting. In Modula-1, only scalar data types can be redgmto a device regis-
ter; consequently registers which have internal strustare considered to be of the
predefined typéits whose definition is:

TYPE BI TS = ARRAY 0: no_of _bits_in_word OF BOOLEAN,

Variables of this type are packed into a single word. A cdrdaral status register at
octal addres477560B can, therefore, be defined by the following Modula-1 code:

VAR rcsr[177560B] : BITS;

To access the various fields in the register, an index intathay is supplied by the
programmer. For example, the following code will enabledbeice:

rcsr[0] := TRUE
and the following turns off interrupts:
rcsr[6] := FALSE;

In general, these facilities are not powerful enough to keall types of register con-
veniently. The general structure of the control and steggsster was given earlier:

bits
15 - 12 : Errors
11 : Busy
10 - 8 : Unit select
7 : Donel/ ready
6 I nterrupt enable
5- 3 reserved
2 - 1 Devi ce function
0 Devi ce enabl e

To set the selected unit (bits 8—10) using boolean valuesrisalumsy. For example,
the following statements set the device unit to the value 5.

XXXV

rcsr[10] := TRUE;
rcsr[9] = FALSE;
rcsr[8] = TRUE;

It is worth noting that on many machines more than one deegister can be mapped
to the same physical address. Consequently, several \exiatay be mapped to the
same location in memory. Furthermore, these registersfgea cead or write only.
Care, therefore, must be taken when manipulating devidstezg. In the above ex-
ample, if the control and status register was a pair of registnapped to the same
location, the code presented will probably not have therddsffect. This is because
to set a particular bit may require code to be generated wieiatis the current value
into the machine accumulator. As the control register isasoinly, this would produce
the value of the status register. It is advisable, thereforbave other variables in a
program which represent device registers. These can bguoiatéd in the normal way.
When the required register format has been constructeayitthen be assigned to the
actual device register. Such variables are often caltediow device registers

Interrupt handling

The facilities for handling interrupts in Modula-1 are béggound the concept of an
ideal hardware device. This device has the following proggr

e For each device operation, it is known how many interrupggoeoduced.

e After an interrupt has occurred, the device status ind&atesther or not another
associated interrupt will occur.

e No interrupt arrives unexpectedly.
e Each device has a unique interrupt location.

The facilities provided by Modula-1 may be summarized byftlewing points.
e Each device has an associated device module.

e Each device module has a hardware priority specified in ésléefollowing the
module name.

¢ All code within the module executes at the specified hardpaaeity.

e Each interrupt to be handled within a device module requarpsocess called a
device process

e When the device process is executing, it has sole access todtule (that is, it
holds the monitor lock using the ceiling priority specifiedthe device module
header).

e Adevice process is not allowed to call any non-local procesland cannot send
signals to other device processes. This is to ensure thatederocesses will not
be inadvertently blocked.

XXXV

e When a device process sends a signal, the semantics of ttieperation are
different from those for ordinary Modula-1 processes; iis ttase the receiving
process is not resumed, but the signalling process corgtindgain this is to
ensure that the process is not blocked.

e WAl T statements within device processes may only be of rank hélsigevel).

e An interrupt is considered to be a form of signal. The deviazpss, however,
instead of issuing Al T request issuesO Orequest.

e The address of the vector through which the device intesrigpgpecified in the
header of the process.

e Only device processes can cont@®@ Ostatements.

e DO OandWAI T calls lower the processor priority and, therefore, relehse
monitor lock.

e Only one instance of a device process may be activated.

For example, consider a device module which handles aimaldiock for the simple
machine architecture outlined in the main Book. On recefijpindnterrupt, the handler
sends a signal to a process which is waiting for the clockcta ti

DEVI CE MODULE rtc[6]; (* hardware priority 6 x)

DEFI NE ti ck;
VAR tick : SIGNAL;

PROCESS cl ock[100B] ;
VAR csr[177546B] : BITS;

BEG N
csr[0] := TRUE;, (* enable device x)
csr[6] := TRUE; (* enable interrupts *)
LOOP
DA G
VHI LE AWAI TED(ti ck) DO
SEND(ti ck);
END
END
END;
BEG N
clock; (* create one instance of the clock process *)
END rtc;

The heading of the device module specifies an interruptipriof 6, at which
all code within the module will be executed. The valL@0B on the process header
indicates that the device will interrupt through the veetbaddress (octal)00. After
enabling interrupts, the device process enters a simpfedbwaiting for an interrupt
(theDA O) and then sending sufficient signals (that is, one per wajtiocess). Note
that the device process does not give up its mutually exausccess to the module
when it sends a signal, but continues until it executédlaT or aDO Ostatement.

The following illustrates how Modula-1 deals with the gead@haracteristics of an
interrupt driven device which were outlined in Sectionsl1%and 15.1.3.

XXXVi

e Device control— I/O registers are represented by variables.

e Context switching — The interrupt causes an immediate context switch to the
interrupt-handling process, which waits using O

e Interrupt device identification — The address of the interrupt vector is given
with the device process’s header.

e Interrupt identification — In the above example, only one interrupt was pos-
sible. In other cases, however, the device status registarnd be checked to
identify the cause of the interrupt.

e Interrupt control — The interrupt control is status driven and provided by a flag
in the device register.

e Priority control — The priority of the device is given in the device module
header.All code in the module runs at this priority (that is, the deviadole
has a hardware ceiling priority and executes with the ImitedPriority Ceiling
Protocol.

An example terminal driver

To illustrate further the Modula-1 approach to device driyia simple terminal device
module is presented. The terminal has two components: #aglisgmd a keyboard.
Each component has an associated control and status regibtéfer register and an
interrupt.

Two procedures are provided to allow other processes inrthgram to read and
write characters. These procedures access a bounded fouéfidow characters to be
typed ahead for input and buffered for output. These buffeust be included in the
device module because device processamotcall non-local procedures. Although
separate modules for the display and keyboard could have U, they have been
combined to illustrate that a device module can handle niare bne interrupt.

DEVI CE MODULE termi nal [4];
DEFI NE readch, witech;
CONST n=64; (* buffer size x)

VAR KBS[177560B]: BITS;
KBB[177562B] : CHAR;
DPS[177564B]: BITS; di splay status)
DPB[177566B] : CHAR; di splay buffer)
inl, in2, outl, out2 : | NTEGER,
nl, n2 : | NTECER,
nonfull 1, nonfull 2,
nonenptyl, nonenpty2 : S| GNAL;
buf1, buf2 : ARRAY 1:n OF CHAR

keyboard status *)

(*
(* keyboard buffer =*)
(*
(*

XXXVii

PROCEDURE r eadch(VAR ch : CHAR);
BEG N
IF nl =0 THEN WAI T(nonenptyl) END;
ch := buf1[out1];
outl := (outl MOD n)+1;
DEC(n1);
SEND(nonf ul | 1)
END readch;

PROCEDURE writech(ch : CHAR);
BEG N
I'F n2 = n THEN WAl T(nonful | 2) END;
buf2[in2] := ch;
in2 := (in2 MOD n)+1;
I NC(n2);
SEND(nonenpt y2)
END writech;

PROCESS keyboar ddri ver[60B] ;

BEG N
KBS[0] := TRUE; (* enable device *)
LooP
IF nl = n THEN WAl T(nonful | 1) END;
KBS[6] := TRUE;
DA G
KBS[6] := FALSE;

buf 1[i nl1] := KBB;
inl := (inl MOD n)+1;
INC(nl);
SEND(nonenpt y1)
END
END keyboarddri ver;

PROCESS di spl aydri ver [64B];
BEG N
DPS[0] := TRUE, (* enable device *)
LOOP
IF n2 = 0 THEN WAI T(nonenpty2) END,
DPB : = buf 2[out 2] ;
out2 := (out2 MDD n)+1;
DPS[6] : = TRUE;

DA G,

DPS[6] := FALSE;

DEC(n2) ;

SEND(nonf ul | 2)
END

END di spl aydri ver;

BEG N
inl :=1; in2 :=1;
outl :=1; out2 :=1;
nl :=0; n2 := 0;
keyboar ddri ver;
di spl aydri ver

END t erm nal ;

XXXViii

Timing facilities

Modula-1 provides no direct facilities for manipulatinmg; these have to be provided
by the application. This requires a device module which kemthe clock interrupt
and then issues a regular signal, say, every second. Thislen@dnow presented; it
is a modified version of the one previously defined. The hardwkck is assumed to
tick every fiftieth of a second.

DEVI CE MODULE har dwar ecl ock[6] ;
DEFI NE ti ck;
VAR tick : SIGNAL;

PROCESS handl er [1008B] ;
VAR count : | NTECER;
statusreg[177546B] : BITS;

BEG N
count := O;
statusreg[0] := TRUE;
statusreg[6] := TRUE
LOOP
DA O

count := (count+1) MOD 50;
I F count = 0 THEN
VWHI LE AWAI TED(t i ck) DO
SEND(ti ck)
END
END
END
END handl er;
BEG N
handl er
END har dwar ecl ock;

An interface module which maintains the time of day can nowé&sly provided.

| NTERFACE MODULE Syst enCl ock;
(* defines procedures for getting and setting the tinme of day =*)
DEFI NE Get Ti ne, Set Ti ne;

(* inport the abstract data type tine, and the tick signal x)
USE tine, initialise, add, tick;

VAR Ti meOf Day, onesec : tineg;
PROCEDURE Set Ti ne(t: tine);
BEG N

TimeOfDay :=t
END Set Ti ne;

PROCEDURE Cet Tinme(VAR t: tine);

BEG N
t = Ti neOf Day
END Get Ti ne;

PROCESS cl ock;
BEA N
LOOP

XXXIX

VWAl T(tick);
addti me(Ti meOr Day, onesec)
END
END cl ock;
BEG N
inittime(Ti neOf Day, 0, 0, 0);
inittimee(onesec, 0, 0, 1);
cl ock;
END Syst enC ock;

Note that the clock process is logically redundant. Theaeprocess could increment
syst ent i e directly, thereby saving a context switch. However, it i$ aldowed in
Modula-1 for a device process to call a non-local procedure.

Delaying a process

In real-time systems, it is often necessary to delay a peoftgsa period. Although
Modula-1 has no direct facilities for achieving this, thende programmed.

Problems with the Modula-1 approach to device driving

Modula-1 was designed to attack the stronghold of asserablyuage programming
— that of interfacing to devices. In general, it has beenidened a success; however,
there are a few criticisms that have been levelled at itditi@si

e Modula-1 does not allow a device process to call a non-locaigrdure because
device processes must be kept as small as possible and must tlhie hard-
ware priority of the device. To call procedures defined ireotinodules, whose
implementation is hidden from the process, might lead tacoeptable delays.
Furthermore, it would require these procedures to exedutieeadevice’s pri-
ority. Unfortunately, as a result of this restriction, pragmers either have to
incorporate extra functionality into a device module whighotdirectly associ-
ated with driving the device (as in the terminal driver exéanwhere a bounded
buffer was included in the device module), or they have tmihice extra pro-
cesses to wait for a signal sent by a device process. In theefocase, this can
lead to very large device modules and in the latter, unnacggsefficiency.

e Modula-1 only allows a single instance of a device processbge the process
header contains the information necessary to associafgrtloess with the in-
terrupt. This makes the sharing of code between similarcgsuinore difficult;
the problem is compounded by not being able to call non-lpadedures.

e Modula-1 was designed for memory-mapped machines and goesdy it is
difficult to use its facilities for programming devices whiare controlled by
special instructions. However, it is easy to imagine a samgxtension to solve
this problem. One suggestion is the possibility of usingftilewing notation:

VAR x AT PORT 46B : | NTEGER,

x|

The compiler is then able to recognize when a port is beingesdeéd and can
generate the correct instructions.

e |thas already been pointed out that many device registengad- or write-only.
It is not possible to define variables that are read- or woith-in Modula-1.
Furthermore, there is an implicit assumption that a compiié not optimize
access to device registers and cache them in local registers

