
Real-Time Systems and Programming
Languages

WEB APPENDICES to 4th Edition

Occam 2 and Modula

Alan Burns and Andy Wellings

University of York



Introduction

In moving from the 3rd Edition to the 4th Edition we have removed the occam and
Modula-1 languages from our discussions. However, both theoccam and Modula mod-
els are very interesting and do illustrate some important concepts that we are trying to
present in the book. Occam2 is also the nearest a general-purpose language has got
to embodying the formalisms of CSP. Occam2 is also specifically designed for multi-
computer execution, which is of increasing application andimportance in the real-time
domain. Historically Modula was the first programming language to enable the pro-
gramming of device drivers in a high-level language. Hence,we provide discussion of
these languages as appendices to the book available on the web.

v



APPENDIX A: Occam 2

A.1 An Overview of occam 2

Most imperative languages consists of a sequences of statements that can be combined
into procedures or threads. The latter executing concurrently. What would be a se-
quence of statements in Ada, Java or C is a sequence of processes in occam2, all of
which have the potential to be executed in parallel.

The form of a name can also be improved by the use of a separator. occam2 names
can include a ‘.’ (this is a somewhat unfortunate choice, as ‘.’ is often used in languages
to indicate a subcomponent, for example a field of a record). The following are example
identifiers.

example.name.in.occam2

Occam2 is a fully block structured language. Any process canbe preceded by the
declaration of objects to be used in that process. To swap thetwo integers (INTs in
occam2) requires aSEQ construct that specifies that the assignments that follow itmust
be executed in sequence:

INT temp: -- A declaration is terminated by a colon.
SEQ
temp := A
A := B
B := temp

It should be noted that occam2 does not use a process separator (a semicolon in most
languages). It requires each action (process) to be on a separate line. Moreover, the use
of indentation, which merely (though importantly) improves readability in Ada, Java
and C, is syntactically significant in occam2. The three assignments in the above code
fragment have to start in the column under theQ of SEQ.

Data types

In common with all high-level languages, occam2 requires programs to manipulate
objects that have been abstracted away from their actual hardware implementation.
Programmers need not concern themselves about the representation or location of the
entities that their programs manipulate. Moreover, by partitioning these entities into
distinct types, the compiler can check for inconsistent usage, and thereby increase the
security associated with using the languages.

vi



vii

By comparison with many high-level languages languages, occam2’s type model is
restrictive; in particular user-defined types are not allowed.
Table 1 compares the predefined discrete types supported in the Ada, Java, C and oc-
cam2 languages.

Occam2 is strongly typed (that is, assignments and expressions must involve objects
of the same type), but explicit type conversions are supported. Enumeration types are
not supported.

Many real-time applications (for example, signal processing, simulation and pro-
cess control) require numerical computation facilities beyond those provided by integer
arithmetic. There is a general need to be able to manipulatereal numbers, although the
sophistication of the arithmetic required varies widely between applications. In essence,
there are two distinct ways of representing real values within a high-level language:

1. floating-point, and

2. scaled integer.

Floating-point numbers are a finite approximation to real numbers and are applicable
to computations in which exact results are not needed. A floating-point number is
represented by three values: a mantissa,M , an exponent,E, and a radix,R. It has a
value of the formM×RE. The radix is (implicitly) implementation-defined and usually
has the value 2. As the mantissa is limited in length, the representation has limited
precision. The divergence between a floating-point number and its corresponding ‘real’
value is related to the size of the number (it is said to haverelative error ).

The use of scaled integers is intended for exact numeric computation. A scaled
integer is a product of an integer and a scale. With the appropriate choice of scale, any
value can be catered for. Scaled integers offer an alternative to floating-point numbers
when non-integer calculations are required. The scale, however, must be known at
compile time; if the scale of a value is not available until execution, a floating-point
representation must be used. Although scaled integers provide exact values, not all
numbers in the mathematical domain can be represented exactly. For example, 1/3
cannot be viewed as a finite scaled decimal integer. The difference between a scaled
integer and its ‘real’ value is itsabsolute error.

Ada Java C Occam2
Integer int int INT

short short INT16
long long INT32

INT64
byte BYTE

Boolean boolean BOOL
Character char
Wide_Character char wchar_t

Table 1: Discrete types.



viii

Scaled integers have the advantage (over floating-point) ofdealing with exact nu-
merical values and of making use of integer arithmetic. Floating-point operations re-
quire either special hardware (a floating-point unit) or complex software that will result
in numerical operations being many times slower than the integer equivalent. Scaled in-
tegers are, however, more difficult to use, especially if expressions need to be evaluated
that contain values with different scales.

Traditionally, languages have supported a single floating-point type (usually known
asreal) which has an implementation-dependent precision. Use of scaled integers has
normally been left to the user (that is, the programmer had toimplement scaled integer
arithmetic using the system-defined integer type).

The designers of occam2 took the view that the need for an abstractreal type is not
as great as the need for the programmer to be aware of the precision of the operations
being carried out. The occam2 ‘reals’ areREAL16, REAL32 andREAL64.

Structured data types

Occam2 only supports arrays, it does not support records.; Example include:

INT Max IS 10: -- definition of a constant in occam2
[Max]REAL32 Reading: -- Reading is an array with ten

-- elements Reading[0] .. Reading[9]
[Max][Max]BOOL Switches: -- 2 dimensional array

All arrays in occam2 start at element zero. Note that occam2 uses the conventional
square brackets.

Dynamic data types and pointers

The implementation of dynamic data types can represents a considerable overhead to
the run-time support system for a language. For this reason,occam2 does not have any
dynamic structures.

Control structures

There is now common agreement on the control abstractions needed in a sequential pro-
gramming language. These abstractions can be grouped together into three categories:
sequences, decisions and loops. Each will be considered in turn.

The sequential execution of statements is the normal activity of a (non-concurrent)
programming language. In occam2, the normal execution of statements (called pro-
cesses in occam2) could quite reasonably be concurrent, andit is therefore necessary
to state explicitly that a collection of actions must followa defined sequence. This is
achieved by using theSEQ construct that was illustrated earlier. For example:

SEQ
action 1
action 2
.
.
.



ix

If a sequence is, in a particular circumstance, empty, occam2 uses aSKIP process to
imply no action:

SEQ
SKIP

or just:

SKIP

At the other extreme from a null action is one that causes the sequence to make
no further progress. The occam2STOP process has the effect of terminating the entire
program.

Decision structures

A decision structure provides a choice as to the route that execution takes from some
point in a program sequence to a later point in that sequence.The decision as to which
route is taken will depend upon the current values of relevant data objects. The im-
portant property of a decision control structure is that allroutes eventually come back
together. With such abstract control structures there is noneed to use agoto statement,
which often leads to programs that are difficult to test, readand maintain. Occam2 does
not possess agoto statement.

The most common form of decision structure is theif statement. Occam2 has clear
unambiguous structures. To illustrate, consider a simple problem; find out ifB/A > 10

– checking first to make sure thatA is not equal to zero!
Consider first the general structure. In the following schema, letB1 .. Bn be boolean

expressions andA1 .. An be actions :

IF
B1

A1
B2

A2
.
.
Bn

An

Firstly, it is important to remember that the layout of occam2 programs is syntac-
tically significant. The boolean expressions are on separate lines (indented two spaces
from theIF), as are the actions (indented a further two spaces). Like C,no ‘then’ token
is used. On execution of thisIF construct, the boolean expressionB1 is evaluated. If it
evaluates toTRUE thenA1 is executed and that completes the action of theIF. How-
ever, ifB1 is FALSE thenB2 is evaluated. All the boolean expressions are evaluated
until one is foundTRUE and then the associated action is undertaken. If no boolean
expression isTRUE then this is an error condition and theIF construct behaves like the
STOP discussed in the last section.

With this form of IF statement, no distinctELSE part is required; the boolean
expressionTRUE as the final test is bound to be taken if all other choices have failed.
Theb/a > 10 example in occam2, therefore, takes the form:



x

IF
a /= 0

IF
b/a > 10

high := TRUE
TRUE

high := FALSE
TRUE -- These last two lines are needed so

SKIP -- that the IF does not become STOP when
-- a has the value 0

To give another illustration of the important ‘if’ construct, consider a multiway branch.
In occam2, the code is quite clear:

IF
number < 10

digits := 1
number < 100

digits := 2
number < 1000

digits := 3
number < 10000

digits := 4
TRUE

digits := 5

The above is an example of a multiway branch constructed froma series of binary
choices. In general, a multiway decision can be more explicitly stated and efficiently
implemented using acase (or switch) structure. The occam2 version of this is
somewhat more restricted. To illustrate, consider a character (byte) value ‘command’
which is used to decide upon four possible actions:

In occam2, alternative values and ranges are not supported;the code is, therefore,
protracted:

CASE command
’A’

action1
’a’

action1
’t’

action2
’e’

action3
’x’

action4
’y’

action4
’z’

action4
ELSE

SKIP

Loop structures

A loop structure allows the programmer to specify that a statement, or collection of
statements, is to be executed more than once. There are two distinct forms for con-



xi

structing such loops:

1. iteration, and

2. recursion.

The distinctive characteristic of iteration is that each execution of the loop is completed
before the next is begun. With a recursive control structure, the first loop is interrupted
to begin a second loop, which may be interrupted to begin a third loop and so on. At
some point, loopn will be allowed to complete, this will then allow loopn − 1 to
complete, then loopn− 2 and so on, until the first loop has also terminated. Recursion
is usually implemented via recursive procedure calls. Attention here is focused on
iteration.

Iteration comes in two forms: a loop in which the number of iterations is usually
fixed prior to the execution of the loop construct; and a loop in which a test for com-
pletion is made during each iteration. The former is known generally as thefor state-
ment, the latter as thewhile statement. Most languages’for constructs also provide
a counter that can be used to indicate which iteration is currently being executed.

The following example code illustrates thefor construct in occam2; the code
assigns into the first ten elements of arrayA the value of their position in the array:

SEQ i = 0 FOR 10 -- i is defined by the construct
A[i]:= i -- i is read only in the loop

-- i is out of scope after the loop
-- note that the range of i is 0 to 9,
-- as in the Ada and C example

Note that occam2 has restricted the use of the loop variable.The free use of this variable
can be the cause of many errors.

The main variation withwhile statements concerns the point at which the test for
exit from the loop is made. The most common form involves a test upon entry to the
loop and subsequently before each iteration is made. This issupport by occam2.

WHILE <boolean expression>
SEQ

<statements>

Subprograms

Even in the construction of a component or module, further decomposition is usually
desirable. This is achieved by the use of procedures and functions; known collectively
assubprograms.

Subprograms not only aid decomposition but also represent an important form of
abstraction. They allow arbitrary complex computations tobe defined and then invoked
by the use of a simple identifier. This enables such components to be reused both
within a program and between programs. The generality, and therefore usefulness, of
subprograms is, of course, increased by the use of parameters.



xii

Parameter-passing modes and mechanisms

A parameter is a form of communication; it is a data object being transferred between
the subprogram user and the subprogram itself. There are a number of ways of describ-
ing the mechanisms used for this transfer of data. Firstly, one can consider the way
parameters are transferred. From the invoker’s point of view, there are three distinct
modes of transfer.

1. Data is passed into the subprogram.

2. Data is passed out from the subprogram.

3. Data is passed into the subprogram, is changed and is then passed out of the
subprogram.

These three modes are often called:in, out andin out.
The second mechanism of describing the transfer is to consider the binding of the

formal parameter of the subprogram and the actual parameterof the call. There are two
general methods of interest here: a parameter may be bound byvalue or by reference.
A parameter that is bound by value only has the value of the parameter communicated
to the subprogram (often by copying into the subprogram’s memory space); no infor-
mation can return to the caller via such a parameter. When a parameter is bound by
reference, any updates to that parameter from within the subprogram is defined to have
an effect on the memory location of the actual parameter.

A final way of considering the parameter-passing mechanism is to examine the
methods used by the implementation. The compiler must satisfy the semantics of the
language, be these expressed in terms of modes or binding, but is otherwise free to
implement a subprogram call as efficiently as possible. For example, a large array
parameter that is ‘pass by value’ need not be copied if no assignments are made to
elements of the array in the subprogram. A single pointer to the actual array will be
more efficient but behaviourally equivalent. Similarly, a call by reference parameter
may be implemented by a copy in and copy out algorithm.

In occam2, parameters by default are passed by reference; aVAL tag is used to
imply pass by value. Significantly, within the procedure (called aPROC in occam2)
a VAL parameter acts as a constant and, therefore, the errorsthat can occur in other
languages by missing out the constant tag are caught by the compiler.

PROC quadratic(VAL REAL32 A, B, C,
REAL32 R1, R2, BOOL OK)

-- note, as with C and Java, the parameter separator
-- is not a semicolon

Procedures

Procedure bodies are illustrated by completing the ‘quadratic’ definitions given above.
All procedures assume that asqrt function is in scope.

PROC quadratic(VAL REAL32 A, B, C,
REAL32 R1, R2, BOOL OK)

REAL32 Z:



xiii

SEQ
Z:= (B*B) - (4.0*(A*C)) -- brackets are needed

-- to fully specify expression
IF

(Z < 0) OR (A = 0.0)
SEQ
OK:= FALSE
R1:= 0.0 -- arbitrary values
R2:= 0.0

TRUE -- no return statement in occam2
SEQ
OK:= TRUE
R1:= (-B + SQRT(Z)) / (2.0*A)
R2:= (-B - SQRT(Z)) / (2.0*A)

: -- colon needed to show end of PROC declaration

The invoking of these procedures merely involves naming theprocedure and giving the
appropriately typed parameters in parenthesis.

Recursive (and mutually recursive) procedure calls are notsupported in occam2
because of the dynamic overhead they create at run-time. Procedures (and functions)
can also not be nested.

Functions

Occam2 defines the semantics of a function so that no side-effects are possible.
The parameters to an occam2 function are passed by value. In addition, the body of

a function is defined to be aVALOF. A VALOF is the sequence of statements necessary
to compute the value of an object (which will be returned fromthe function). The
important property of theVALOF is that the only other variables whose values can be
changed are those defined locally within theVALOF. This prohibits side effects. The
simple minimum function defined earlier would therefore have the form:

INT FUNCTION minimum (VAL INT X, Y)
INT Z: -- Z will be the value returned
VALOF

IF
X > Y

Z:= Y
TRUE

Z:= X
RESULT Z

:

In concurrent languages, another form of side effect is hidden concurrency; this can
have a number of unfortunate consequences. TheVALOF of occam2 is further restricted
to disallow any concurrency within it.

Missing features

Occam2 does not provided any language support for modular decomposition such as
modules, packages or classes that are found in modern languages. It also doesn’t pro-
vide any exception handling facility.



xiv

A.2 Concurrent execution in occam2

Occam2 uses a cobegin structure calledPAR. For example, consider the concurrent
execution of two simple assignments (A:=1 andB:=1):

PAR
A := 1
B := 1

ThisPAR structure, which can be nested, can be compared to the sequential form:

SEQ
A := 1
B := 1

Note that a collection of actions must be explicitly defined to be either executing in
sequence or parallel; there is no default. Indeed, it can be argued thatPAR is the more
general form and should be the natural structure to use unless the actual code in question
requires aSEQuence.

If the process designated by aPAR is an instance of a parameterizedPROC (proce-
dure) then data can be passed to the process upon creation. For example, the following
code creates three processes from a singlePROC and passes an element of an array to
each:

PAR
ExampleProcess(A[1])
ExampleProcess(A[2])
ExampleProcess(A[3])

A greater collection of processes can be created from the samePROC by the use of a
‘replicator’ to increase the power of thePAR:

PAR i=1 FOR N
ExampleProcess(A[i])

Earlier, a replicator was used with aSEQ to introduce a standard ‘for’ loop. The only
distinction between a replicatedSEQ and a replicatedPAR is that the number of replica-
tions (N in the above example) must be a constant in thePAR; that is, known at compile
time. It follows that occam2 has a static process structure.

The following program fragment in occam2 is the robot arm example. Note that
occam2 does not support enumeration types and so the dimensions are represented by
the integers 1, 2 and 3.

PROC control(VAL INT dim)
INT position, -- absolute position

setting: -- relative movement
SEQ

position := 0 -- rest position
WHILE TRUE

SEQ
MoveArm(dim,position)
NewSetting(dim,setting)
position := position + setting

:



xv

PAR
control(1)
control(2)
control(3)

Process termination is quite straightforward in occam2. There is no abort facility nor
are there any exceptions. A process must either terminate normally or not terminate at
all (as in the above example).

In general, occam2 has a fine grain view of concurrency. Most concurrent program-
ming languages have the notion of process added to an essentially sequential frame-
work. This is not the case with occam2; the concept of processis basic to the language.
All activities, including the assignment operations and procedure calls, are considered
to be processes. Indeed, the notion of statement is missing from occam2. A program
is a single process that is built from a hierarchy of other processes. At the lowest level,
all primitive actions are considered to be processes and theconstructors (IF, WHILE,
CASE and so on) are themselves constructor processes.

A.3 Inter-process communication

Occam2 only allows communication and synchronization to bebased on message pass-
ing. It incorporates indirect symmetric synchronous message passing.

The occam2 model

Occam2 processes are not named, and therefore it is necessary during communication
to use indirect naming via achannel. Each channel can only be used by a single writer
and a single reader process. Both processes name the channel; the syntax is somewhat
terse:

ch ! X -- write value of expression X
-- onto channel ch

ch ? Y -- read from channel ch
-- into variable Y

In the above, the variableY and the expressionX will be of the same type. The com-
munication is synchronous; therefore whichever process accesses the channel first will
be suspended. When the other process arrives, data will passfrom X to Y (this can be
viewed as the distributed assignmentY := X). The two processes will then continue
their executions concurrently and independently. To illustrate this communication, con-
sider two processes that are passing 1000 integers between them:

CHAN OF INT ch:
PAR
INT V:
SEQ i = 0 FOR 1000 --- process 1

SEQ
-- generate value V
ch ! V



xvi

INT C:
SEQ i = 0 FOR 1000 --- process 2

SEQ
ch ? C
-- use C

With each iteration of the two loops, a rendezvous between the two processes occurs.
Channels in occam2 are typed and can be defined to pass objectsof any valid type

including structured types. Arrays of channels can also be defined.
It is important to appreciate that the input and output operations on channels are

considered to be fundamental language primitives. They constitute two of the five
primitive processes in occam2. The others being SKIP, STOP and assignment.

The occam2ALT

Consider a process that reads integers down three channels (ch1, ch2 andch3) and
then outputs whatever integers it receives down a further channel (chout). If the
integers arrived in sequence down the three channels then a simple loop construct would
suffice.

WHILE TRUE
SEQ

ch1 ? I -- for some local integer I
chout ! I
ch2 ? I
chout ! I
ch3 ? I
chout ! I

However, if the order of arrival is unknown then each time theprocess loops a choice
must be made between the three alternatives:

WHILE TRUE
ALT

ch1 ? I
chout ! I

ch2 ? I
chout ! I

ch3 ? I
chout ! I

If there is an integer onch1, ch2 orch3, it will be read and the specified action taken,
which in this case is always to output the newly acquired integer down the output
channelchout. In a situation where more than one of the input channels is ready for
communication, an arbitrary choice is made as to which one isread. Before considering
the behaviour of theALT statement when none of the channels are ready, the general
structure of anALT statement will be outlined. It consists of a collection of guarded
processes:

ALT
G1

P1
G2



xvii

P2
G3

P3
:

Gn
Pn

The processes themselves are not restricted – they are any occam2 process. The guards
(which are also processes) can have one of three forms.

<boolean_expression> & channel_input_operation

channel_input_operation

<boolean_expression> & SKIP

The most general form is therefore a boolean expression and achannel read, for exam-
ple:

NOT BufferFull & ch ? BUFFER[TOP]

If the boolean expression is simplyTRUE then it can be omitted altogether (as in the
earlier example). TheSKIP form of guard is used to specify some alternative action to
be taken when other alternatives are precluded; for example:

ALT
NOT BufferFull & ch ? BUFFER[TOP]

SEQ
TOP := ...

BufferFull & SKIP
SEQ

-- swap buffers

On execution of theALT statement, the boolean expressions are evaluated. If none
evaluate toTRUE (and there are no defaultTRUE alternatives) then theALT process
cannot proceed and it becomes equivalent to theSTOP (error) process. Assuming a
correct execution of theALT, the channels are examined to see if there are processes
waiting to write to them. One of the following possibilitiescould then ensue:

1. There is only one ready alternative, that is one boolean expression evaluates to
true (with a process waiting to write or aSKIP guard) – this alternative is chosen,
the rendezvous takes place (if it is not aSKIP) and the associated subprocess is
executed.

2. There is more than one ready alternative – one is chosen arbitrarily, this could be
theSKIP alternative if present and ready.

3. There are no ready alternatives – theALT is suspended until some other process
writes to one of the open channels of theALT.

TheALTwill, therefore, become aSTOP process if all the boolean expressions evaluate
to FALSE, but will merely be suspended if there are no outstanding calls. Because of
the non-shared variable model of occam2, it is not possible for any other process to
change the value of any component of the boolean expression.



xviii

TheALT when combined with theSEQ, IF, WHILE, CASE andPAR furnishes the
complete set of occam2 program constructs. A replicator canbe attached to anALT
in the same way that it has been used with other constructs. For example, consider a
concentrator process that can read from 20 processes (rather than three as before); how-
ever, rather than use 20 distinct channels, the server process uses an array of channels
as follows:

WHILE TRUE
ALT j = 0 FOR 20

ch[j] ? I
chout ! I

Finally, it should be noted that occam2 provides a variant oftheALT construct which
is not arbitrary in its selection of ready alternatives. If the programmer wishes to give
preference to a particular channel then it should be placed as the first component of a
PRI ALT. The semantics ofPRI ALT dictate that the textually first ready alternative
is chosen. The following are examples ofPRI ALT statements.

PRI ALT
VeryImportantChannel ? message

-- action
ImportantChannel ? message

-- action
LessImportantChannel ? message

-- action

WHILE TRUE
PRI ALT j = 0 FOR 20 -- ch[0] is given highest preference

ch[j] ? I
chout ! I

The bounded buffer

Occam2 provides no shared variable communication primitives and, therefore, resource
controllers such as buffers have to be implemented as serverprocesses. To implement
a single reader and single writer buffer, requires the use oftwo channels that link the
buffer process to the client processes (to cater for more readers and writers would
require arrays of channels):

CHAN OF Data Take, Append:

Unfortunately, the natural form for this buffer would be:

VAL INT Size IS 32:
INT Top, Base, NumberInBuffer:
[Size]Data Buffer:
SEQ
NumberInBuffer := 0
Top := 0
Base := 0
WHILE TRUE

ALT
NumberInBuffer < Size & Append ? Buffer[Top]



xix

SEQ
NumberInBuffer := NumberInBuffer + 1
Top := (Top + 1) REM Size

NumberInBuffer > 0 & Take ! Buffer[Base] -- not legal occam
SEQ
NumberInBuffer := NumberInBuffer - 1
Base := (Base + 1) REM Size

Output operations in this context are not allowed in occam2.Only input operations can
form part of anALT guard. The reason for this restriction is implementationalefficiency
on a distributed system. The essence of the problem is that the provision of symmetric
guards could lead to a channel being accessed by anALT at both ends. The arbitrary
decision of oneALT would therefore be dependent on the decision of the other (and
vice versa). If theALTs are on different processors then the agreement on a collective
decision would involve the passing of a number of low-level protocol messages.

To circumvent the restriction on guards, occam2 forces theTake operation to be
programmed as a double interaction. First the client process must indicate that it wishes
to TAKE, and then it mustTake; a third channel is thus needed:

CHAN OF Data Take, Append, Request:

The client must make the following calls

SEQ
Request ! ANY -- ANY is an arbitrary token
Take ? D -- D is of type DATA

The buffer process itself has the form:

VAL INT size IS 32:
INT Top, Base, NumberInBuffer:
[Size]Data Buffer:
SEQ
NumberInBuffer := 0
Top := 0
Base := 0
Data ANY:
WHILE TRUE

ALT
NumberInBuffer < Size & Append ? Buffer[Top]

SEQ
NumberInBuffer := NumberInBuffer + 1
Top := (Top + 1) REM Size

NumberInBuffer > 0 & Request ? ANY
SEQ
Take ! Buffer[Base]
NumberInBuffer := NumberInBuffer - 1
Base := (Base + 1) REM Size

The correct functioning of the buffer is thus dependent on correct usage by the client
processes. This dependence is a reflection of poor modularity. Although the Ada select
is also asymmetric (that is, you cannot select between accepts and entry calls), the
fact that data can pass in the opposite direction to the call removes the difficulty that
manifests itself in occam2.



xx

A.4 Real-Time facilities

TIMERs in occam2

Any occam2 process can obtain a value of the ‘local’ clock by reading from aTIMER
(there is no facility for accessing calendar time). To be consistent with the occam2
model of communication (which is one-to-one), each processmust use a distinct
TIMER. Reading from aTIMER follows the syntax of channel read, but the seman-
tics are different in that aTIMER read cannot lead to suspension, that is, the clock is
always ready to output.

TIMER clock:
INT Time:
SEQ
clock ? Time -- read time

The value produced by aTIMER is of typeINT, but of implementation-dependent
meaning: it gives a relative, not absolute, clock value. A single reading of aTIMER
is, therefore, meaningless, but the subtraction of two readings will give a value for the
passage of time between the two readings:

TIMER clock:
INT old, new, interval:
SEQ
clock ? old
-- other computations
clock ? new
interval := new MINUS old

The operatorMINUS is used rather than ‘-’ to take account of wrap-around. This
occurs because the integer given by aTIMER is incremented by one for each unit
of time; eventually the maximum integer is reached, so for the subsequent ‘tick’ the
integer becomes the most negative one and then continues to be incremented. Users
can be unaware of this action as long as they use the appropriate (language-defined)
arithmetic operators, which areMINUS, PLUS, MULT andDIVIDE. In effect, each
TIMER undertakes a ‘PLUS 1’ operation for each increment of the clock.

As the above illustrates, the facilities provided by occam2are primitive (though
arguably quite adequate). As only one integer is allocated for the clock there is clearly
a trade-off between the granularity of the clock (that is, what interval of time each tick
of the clock represents) and the range of times that can be accommodated. With a 32
bit integer, Table 2 gives typical values.

Absolute delays

Occam2 only supports absolute delays. To emphasize its open-ended semantics, the
keywordAFTER is used. If a process wishes to wait for 10 seconds, it must first read
theTIMER clock, add 10 seconds and then delay until this time. The value 10 seconds
is obtained via the constantG which is introduced (here) to give a measure of the
granularity of the implementation (G is the number ofTIMER updates per second):



xxi

Granularity Range (approximately)
1 microsecond 71.6 minutes

100 microsecond 119 hours
1 millisecond 50 days

1 second 136 years

Table 2:TIMER granularities for a 32-bit integer.

SEQ
clock ? now
clock ? AFTER now PLUS (10 * G)

In occam2, the code for avoiding cumulative drift is:

INT next, now:
VAL interval IS 7*G:
SEQ
clock ? now
next := now PLUS interval
WHILE TRUE

SEQ
ACTION
clock ? AFTER next
next := next PLUS interval

Programming timeouts

A timeout facility is common in message-based concurrent programming languages.
Occam2 uses the ‘delay’ primitive as part of a selective waitconstruct to indicate a
timeout on a message receive:

WHILE TRUE
SEQ

ALT
call ? new_temp

-- other actions
clock ? AFTER (10 * G)

-- action for timeout

where clock is aTIMER.

Priority

Occam has only a rudimentary priority model. It has a variation of thePAR construct
that indicates that static priorities should be assigned tothe designated processes:

PRI PAR
P1
P2
PAR
P3



xxii

P4
P5

Here, relative priorities are used, with the textual order of the processes in thePRI
PAR being significant. HenceP1 has the highest priority,P2 the second highest;P3
andP4 share the next priority level andP5 has the lowest priority. No minimum range
of priorities need be supported by an implementation. Thereis no support for priority
inheritance.

A.5 Distributed Systems

Occam2 has been specifically designed so that programs can beexecuted in a distributed
environment, that of a multi-transputer network. In general, occam2’s processes do not
share variables so the unit of partitioning is the process itself. Configuration is achieved
by thePLACED PAR construct. A program constructed as a top-levelPAR, such as:

PAR
p1
p2
p3
p4
p5

can be distributed, for example as follows:

PLACED PAR
PROCESSOR 1

p1
PROCESSOR 2

PAR
p2
p3

PROCESSOR 3
PAR

p4
p5

It is important to note that the transformation of the program from one that has a sim-
ple PAR to one that uses aPLACED PAR will not invalidate the program. However,
occam2 does allow variables to be read by more than one process on the same proces-
sor. Therefore, a transformation may not be possible if the programmer has used this
facility.

For the transputers, it is also necessary to associate each external channel with an
appropriate transputer link. This is achieved by using thePLACE AT construct. For
example, consider the above example with the following integer channels shown in
Figure 1.

The program for execution on a single transputer is:

CHAN OF INT c1, c2, c3, c4, c5:
PAR
p1
p2



xxiii

C4

C3

P3

C5

C1

P4

P1

P2

P5

C2

Figure 1: Five occam2 processes connected by five channels.

p3
p4
p5

If the program is configured to three transputers, as illustrated in Figure 2, the occam2
program becomes:

CHAN OF INT c1, c3, c5:
PLACED PAR
PROCESSOR 1

PLACE c1 at 0:
PLACE c5 at 1:
p1

PROCESSOR 2
PLACE c1 at 2:
PLACE c3 at 1:
CHAN OF INT c2:
PAR

p2
p3

PROCESSOR 3
PLACE c3 at 0:
PLACE c5 at 2:



xxiv

L2

L0

L0

L1

c4

c3

c1 c2

c5

Processor 3

c3c5 p5

Processor 2

L1

L0

L2

Processor 1

c1

p4

p2 p3p1

Figure 2: Five occam2 processes configured for three transputers.

CHAN OF INT c4:
PAR

p4
p5

The ease with which occam2 programs can be configured for execution on a dis-
tributed system is one of the main attractions of occam2.

Allocation is not defined by the occam2 language nor are thereany facilities for
reconfiguration. Further, access to resources is not transparent.

A.6 Low-level programming

Occam2 is a language that supports a message-based model to control devices.
Although occam2 was designed for the transputer, in the following discussion it is

considered as a machine-independent language. The model ispresented first, and then
consideration is given to its implementation on memory-mapped and special-instruction
machines. The three issues of device encapsulation, register manipulation and interrupt
handling must be considered.

Modularity and encapsulation facility

The only encapsulation facility provided by occam2 is the procedure, and it is this that
must, therefore, be used to encapsulate device drivers.



xxv

Addressing and manipulating device registers

Device registers are mapped ontoPORTs, which are conceptually similar to occam2
channels. For instance, if a 16-bit register is at addressX then aPORT P is defined by:

PORT OF INT16 P:
PLACE P AT X:

Note that this address can be interpreted as either a memory address or a device address
depending on the implementation. Interaction with the device register is obtained by
reading or writing to this port:

P ! A -- write value of A to the port

P ? B -- read value of port into B

A port cannot be defined as read or write only.
The distinction between ports and channels in occam2, whichis a significant one,

is that there is no synchronization associated with the portinteraction. Neither reads
nor writes can lead to the executing process being suspended; a value is always written
to the address specified and, similarly, a value is always read. A port is thus a channel
in which the partner is always ready to communicate.

Occam2 provides facilities for manipulating device registers using shift operations
and bitwise logical expressions. There is, however, no equivalent to Modula-1’s bit
type or Ada representation specifications.

Interrupt handling

An interrupt is handled in occam2 as a rendezvous with the hardware process. Associ-
ated with the interrupt, there must be an implementation-dependent address which, in
the simple input/output system described in this chapter, is the address of the interrupt
vector; a channel is then mapped onto this address (ADDR):

CHAN OF ANY Interrupt:
PLACE Interrupt AT ADDR:

Note that this is a channel and not a port. This is because there is synchronization
associated with an interrupt where there is none associatedwith access to a device
register. The data protocol for this channel will also be implementation-dependent.

The interrupt handler can wait for an input from the designated channel thus:

INT ANY: -- define ANY to be of the protocol type
SEQ
-- using ports enable interrupt
Interrupt ? ANY
-- actions necessary when interrupt has occurred.

The run-time support system must, therefore, synchronize with the designated channel
when an external interrupt occurs. To obtain responsiveness, the process handling the
interrupt will usually be given a high priority. Therefore not only will it be made



xxvi

executable by the interrupt event, but it will, within a short period of time, actually be
executing (assuming that no other high-priority process isrunning).

To cater for interrupts which are lost if not handled within aspecified period, it
is necessary to view the hardware as issuing a timeout on the communication. The
hardware must therefore conceptually issue:

ALT
Interrupt ? ANY

SKIP
CLOCK ? AFTER Time PLUS Timeout

SKIP

and the handler must execute:

Interrupt ! ANY

This is because only an input request can have a timeout associated with it.

Implementation on memory-mapped and special-instructionma-
chines

To map the occam2 model of device driving to memory-mapped machines simply re-
quires that input and output requests on ports be mapped to read and write operations
on the device registers. To map the model to special-instruction machines requires the
following:

• an occam2PORT to be associated with an I/O port using thePLACE statement;

• the data which is sent to an occam2PORT to be placed in an appropriate accu-
mulator for use with the output machine instruction;

• the data which is received from an occam2PORT to become available, via an
appropriate accumulator, after the execution of the input instruction.

An example device driver

To illustrate the use of the low-level input/output facilities that occam2 provides, a
process will be developed that controls an analogue to digital converter (ADC) for a
memory-mapped machine. The converter is the same as the one described in the main
book and implemented in Ada and Java. In order to read a particular analogue input,
a channel address (not to be confused with an occam2 channel)is given in bits 8 to 13
and then bit 0 is set to start the converter. When a value has been loaded into the results
register, the device will interrupt the processor. The error flag will then be checked
before the results register is read. During this interaction it may be desirable to disable
the interrupt.

The device driver will loop round receiving requests and providing results; it is
programmed as aPROC with a two-channel interface. When an address (for one of the
eight analogue input channels) is passed downinput, a 16-bit result will be returned
via channeloutput.



xxvii

CHAN OF INT16 request:
CHAN OF INT16 return:
PROC ADC(CHAN OF INT16 input, output)
-- body of PROC, see below

PRI PAR
ADC(request, return)
PAR

-- rest of program

A PRI PAR is desirable as the ADC must handle an interrupt each time it is used, and
therefore should run at the highest priority.

Within the body of thePROC, the interrupt channel and the twoPORTs must first
be declared:

PORT OF INT16 Control.Register:
PLACE Control.Register AT #AA12#:
PORT OF INT16 Buffer.Register:
PLACE Buffer.Register AT #AA14#:
CHAN OF ANY Interrupt:
PLACE Interrupt AT #40#:
INT16 Control.R: -- variable representing control register

Where#AA12# and#AA14# are the defined hexadecimal addresses for the two regis-
ters and#40# is the interrupt vector address.

To instruct the hardware to undertake an operation requiresbits 0 and 6 to be set on
the control register; at the same time all other bits apart from those between 8 and 13
(inclusive) must be set to zero. This is achieved by using thefollowing constants;

VAL INT16 zero IS 0:
VAL INT16 Go IS 65:

Having received an address from channel ‘input’, its value must be assigned to bits 8
through 10 in the control register. This is accomplished by using a shift operation. The
actions that must be taken in order to start a conversion are,therefore:

INT16 Address:
SEQ
input ? Address
IF

(Address < 0) OR (Address > 63)
output ! MOSTNEG INT16 -- error condition

TRUE
SEQ

Control.R := zero
Control.R := Address << 8
Control.R := Control.R BITOR Go
Control.Register ! Control.R

Once an interrupt has arrived, the control register is read and the error flag and ‘Done’
checked. To do this, the control register must be masked against appropriate constants:

VAL INT16 Done IS 128:
VAL INT16 Error IS MOSTNEG INT16:

MOSTNEG has the representation 1 000 000 000 000 000.
The checks are thus:



xxviii

SEQ
Control.Register ? Control.R
IF

((Done BITAND Control.R) = 0) OR
((Error BITAND Control.R) <> zero)

-- error
TRUE

-- appropriate value is in buffer register

Although the device driver will be run at a high priority, theclient process in general
will not, and hence the driver would be delayed if it attempted to call the client directly
and the client was not ready. With input devices that generate data asynchronously, this
delay could lead to the driver missing an interrupt. To overcome this, the input data
must be buffered. A suitable circular buffer is given below.Note that because the client
wishes to read from the buffer and because theALT in the buffer cannot have output
guards, another single buffer item is needed. To ensure thatthe device driver is not
delayed by the scheduling algorithm, the two buffer processes (as well as the driver)
must execute at high priority.

PROC buffer(CHAN OF INT put, get)
CHAN OF INT Request, Reply:
PAR

VAL INT Buf.Size IS 32:
INT top, base, contents:
[Buf.Size]buffer:
SEQ

contents := 0
top := 0
base := 0
INT ANY:
WHILE TRUE

ALT
contents < Buf.Size & put ? buffer [top]

SEQ
contents := contents + 1
top := (top + 1) REM Buf.Size

contents > 0 & Request ? ANY
SEQ

Reply ! buffer[base]
contents := contents - 1
base := (base + 1) REM Buf.Size

INT Temp: -- single buffer process
VAL INT ANY IS 0: -- dummy value
WHILE TRUE

SEQ
Request ! ANY
Reply ? Temp
get ! Temp

:

The full code for thePROC can now be given. The device driver is again structured so
that three attempts are made to get a correct reading.

PROC ADC(CHAN OF INT16 input, output)
PORT OF INT16 Control.Register:
PLACE Control.Register AT #AA12#:



xxix

PORT OF INT16 Buffer.Register:
PLACE Buffer.Register AT #AA14#:

CHAN OF ANY Interrupt:
PLACE Interrupt AT #40#:
TIMER CLOCK:

INT16 Control.R: -- variable representing control buffer
INT16 Buffer.R: -- variable representing results buffer
INT Time:

VAL INT16 zero IS 0:
VAL INT16 Go IS 65:
VAL INT16 Done IS 128:
VAL INT16 Error IS MOSTNEG INT16:
VAL INT Timeout IS 600000: -- or some other appropriate value
INT ANY:
INT16 Address:
BOOL Found, Error:
CHAN OF INT16 Buff.In:

PAR
buffer(Buff.In, output)
INT16 Try:
WHILE TRUE

SEQ
input ? Address
IF
(Address < 0) OR (Address > 63)

Buff.In ! MOSTNEG INT16
-- error condition

TRUE
SEQ

Try := 0
Error := FALSE
Found := FALSE
WHILE (Try < 3) AND ((NOT Found) AND (NOT Error))
-- Three attempts are made to get a reading from
-- the ADC. This reading may be either correct or
-- is flagged as being an error.
SEQ

Control.R := zero
Control.R := Address << 8
Control.R := Control.R BITOR Go
Control.Register ! Control.R
CLOCK ? Time
ALT

Interrupt ? ANY
SEQ

Control.Register ? Control.R
IF

((Done BITAND Control.R) = 0) OR
((Error BITAND Control.R) <> zero)

SEQ
Error := TRUE
Buff.In ! MOSTNEG INT16 -- error condition

TRUE



xxx

SEQ
Found := TRUE
Buffer.Register ? Buffer.R
Buff.In ! Buffer.R

CLOCK ? AFTER Time PLUS Timeout
-- The device is not responding
Try := Try + 1

IF
(NOT Found) AND (NOT Error)

Buff.In ! MOSTNEG INT16
TRUE

SKIP
:

Difficulties with device driving in occam2

The above example illustrates some of the difficulties in writing device drivers and
interrupt handlers in occam2. In particular, there is no direct relationship between the
hardware priority of the device and the priority assigned tothe driver process. To ensure
that high-priority devices are given preference, it is necessary to order all the device
drivers appropriately at the outer level of the program in aPRI PAR construct.

The other main difficulty stems from the lack of data structures for representing de-
vice registers. This results in the programmer having to uselow-level bit manipulation
techniques, which can be error-prone.



APPENDIX B: Modula-1

Modula-1 (as it must now be known) is the forerunner to Modula-2 and Modula-3. It
has a Pascal like syntax.

B.1 Concurrency model

Modula employs explicit process declaration and monitors which are termedinterface
modules.

The following example is in Modula-1. It presents a simple structure for a robot arm
controller. A distinct process is used to control each dimension of movement. These
processes loop around, each reading a new setting for its dimension and then calling a
low-level proceduremove_arm to cause the arm to move.

MODULE main;
TYPE dimension = (xplane, yplane, zplane);

PROCESS control(dim : dimension);
VAR position : integer; (* absolute position *)

setting : integer; (* relative movement *)
BEGIN

position := 0; (* rest position *)
LOOP

move_arm(dim, position);
new_setting(dim, setting);
position := position + setting

END
END control;

BEGIN
control(xplane);
control(yplane);
control(zplane)

END main.

In the above, the processcontrol is declared with a parameter to be passed on cre-
ation. The example then creates three instances of this process, passing each a distinct
parameter.

Modula supports Hoare’s monitors via interface modules. Somewhat confusingly,
condition variables are called signals and are acted upon bythree procedures.

xxxi



xxxii

1. The procedurewait(s,r) delays the calling process until it receives the signal
s. The process, when delayed, is given a priority (or delay rank r) wherer must
be a positive valued integer expression whose default is 1.

2. The proceduresend(s) sends the signals to that process with the highest
priority which has been waiting fors. If several waiting processes all have the
same priority then the one which has been waiting the longestreceives the signal.
The process executing the send is suspended. If no process iswaiting the call has
no effect.

3. The boolean functionawaited(s) yields the value true if there is at least one
process blocked ons; false otherwise.

The following is a simple resource controller monitor:

INTERFACE MODULE resource_control;

DEFINE allocate, deallocate; (* export list *)

VAR busy : BOOLEAN;
free : SIGNAL;

PROCEDURE allocate;
BEGIN

IF busy THEN WAIT(free) END;
busy := TRUE;

END;

PROCEDURE deallocate;
BEGIN

busy := FALSE;
SEND(free)

END;

BEGIN (* initialization of module *)
busy := FALSE

END.

Note that indeallocate:

if AWAITED(free) then SEND(free)

could have been inserted, but as the effect ofSEND(free) is null, when
AWAITED(free) is false, there is nothing to be gained by doing the test.

B.2 Modula-1 device driving

Modula-1 was one of the first high-level programming languages which had facilities
for programming device drivers.

In Modula-1, the unit of modularity and encapsulation is themodule. A special
type of module, called aninterface module, which has the properties of a monitor,
is used to control access to shared resources. Processes interact via signals (condition



xxxiii

variables) using the operatorsWAIT, SEND andAWAITED (see Chapter 8). A third
type of module, called adevice moduleis a special type of interface module used to
encapsulate the interaction with a device. It is only from within a device module that
the facilities for handling interrupts can be used.

Addressing and manipulating device registers

Associating a variable with a register is fairly straightforward. In Modula-1, this is
expressed by an octal address following the name in a declaration. For example, a data
buffer register for the simple I/O architecture described in the main Book would be
defined as:

var rdbr[177562B] char;

where177562B denotes an octal address which is the location of the register in mem-
ory.

The mapping of a character into a character buffer register is also a straightforward
activity, since the type has no internal structure. A control and status register is more
interesting. In Modula-1, only scalar data types can be mapped onto a device regis-
ter; consequently registers which have internal structures are considered to be of the
predefined typebitswhose definition is:

TYPE BITS = ARRAY 0:no_of_bits_in_word OF BOOLEAN;

Variables of this type are packed into a single word. A control and status register at
octal address177560B can, therefore, be defined by the following Modula-1 code:

VAR rcsr[177560B] : BITS;

To access the various fields in the register, an index into thearray is supplied by the
programmer. For example, the following code will enable thedevice:

rcsr[0] := TRUE;

and the following turns off interrupts:

rcsr[6] := FALSE;

In general, these facilities are not powerful enough to handle all types of register con-
veniently. The general structure of the control and status register was given earlier:

bits
15 - 12 : Errors
11 : Busy
10 - 8 : Unit select
7 : Done/ready
6 : Interrupt enable
5 - 3 : reserved
2 - 1 : Device function
0 : Device enable

To set the selected unit (bits 8–10) using boolean values is very clumsy. For example,
the following statements set the device unit to the value 5.



xxxiv

rcsr[10] := TRUE;
rcsr[9] := FALSE;
rcsr[8] := TRUE;

It is worth noting that on many machines more than one device register can be mapped
to the same physical address. Consequently, several variables may be mapped to the
same location in memory. Furthermore, these registers are often read or write only.
Care, therefore, must be taken when manipulating device registers. In the above ex-
ample, if the control and status register was a pair of registers mapped to the same
location, the code presented will probably not have the desired effect. This is because
to set a particular bit may require code to be generated whichreads the current value
into the machine accumulator. As the control register is write-only, this would produce
the value of the status register. It is advisable, therefore, to have other variables in a
program which represent device registers. These can be manipulated in the normal way.
When the required register format has been constructed, it may then be assigned to the
actual device register. Such variables are often calledshadow device registers.

Interrupt handling

The facilities for handling interrupts in Modula-1 are based around the concept of an
ideal hardware device. This device has the following properties:

• For each device operation, it is known how many interrupts are produced.

• After an interrupt has occurred, the device status indicates whether or not another
associated interrupt will occur.

• No interrupt arrives unexpectedly.

• Each device has a unique interrupt location.

The facilities provided by Modula-1 may be summarized by thefollowing points.

• Each device has an associated device module.

• Each device module has a hardware priority specified in its header following the
module name.

• All code within the module executes at the specified hardwarepriority.

• Each interrupt to be handled within a device module requiresa process called a
device process.

• When the device process is executing, it has sole access to the module (that is, it
holds the monitor lock using the ceiling priority specified in the device module
header).

• A device process is not allowed to call any non-local procedures and cannot send
signals to other device processes. This is to ensure that device processes will not
be inadvertently blocked.



xxxv

• When a device process sends a signal, the semantics of the send operation are
different from those for ordinary Modula-1 processes; in this case the receiving
process is not resumed, but the signalling process continues. Again this is to
ensure that the process is not blocked.

• WAIT statements within device processes may only be of rank 1 (highest level).

• An interrupt is considered to be a form of signal. The device process, however,
instead of issuing aWAIT request issues aDOIO request.

• The address of the vector through which the device interrupts is specified in the
header of the process.

• Only device processes can containDOIO statements.

• DOIO andWAIT calls lower the processor priority and, therefore, releasethe
monitor lock.

• Only one instance of a device process may be activated.

For example, consider a device module which handles a real-time clock for the simple
machine architecture outlined in the main Book. On receipt of an interrupt, the handler
sends a signal to a process which is waiting for the clock to tick.

DEVICE MODULE rtc[6]; (* hardware priority 6 *)

DEFINE tick;
VAR tick : SIGNAL;

PROCESS clock[100B];
VAR csr[177546B] : BITS;

BEGIN
csr[0] := TRUE; (* enable device *)
csr[6] := TRUE; (* enable interrupts *)
LOOP

DOIO;
WHILE AWAITED(tick) DO

SEND(tick);
END

END
END;

BEGIN
clock; (* create one instance of the clock process *)

END rtc;

The heading of the device module specifies an interrupt priority of 6, at which
all code within the module will be executed. The value100B on the process header
indicates that the device will interrupt through the vectorat address (octal)100. After
enabling interrupts, the device process enters a simple loop of waiting for an interrupt
(theDOIO) and then sending sufficient signals (that is, one per waiting process). Note
that the device process does not give up its mutually exclusive access to the module
when it sends a signal, but continues until it executes aWAIT or aDOIO statement.

The following illustrates how Modula-1 deals with the general characteristics of an
interrupt driven device which were outlined in Sections 15.1.2 and 15.1.3.



xxxvi

• Device control– I/O registers are represented by variables.

• Context switching – The interrupt causes an immediate context switch to the
interrupt-handling process, which waits using theDOIO.

• Interrupt device identification – The address of the interrupt vector is given
with the device process’s header.

• Interrupt identification – In the above example, only one interrupt was pos-
sible. In other cases, however, the device status register should be checked to
identify the cause of the interrupt.

• Interrupt control – The interrupt control is status driven and provided by a flag
in the device register.

• Priority control – The priority of the device is given in the device module
header.All code in the module runs at this priority (that is, the device module
has a hardware ceiling priority and executes with the Immediate Priority Ceiling
Protocol.

An example terminal driver

To illustrate further the Modula-1 approach to device driving, a simple terminal device
module is presented. The terminal has two components: a display and a keyboard.
Each component has an associated control and status register, a buffer register and an
interrupt.

Two procedures are provided to allow other processes in the program to read and
write characters. These procedures access a bounded bufferto allow characters to be
typed ahead for input and buffered for output. These buffersmust be included in the
device module because device processescannotcall non-local procedures. Although
separate modules for the display and keyboard could have been used, they have been
combined to illustrate that a device module can handle more than one interrupt.

DEVICE MODULE terminal[4];

DEFINE readch, writech;

CONST n=64; (* buffer size *)

VAR KBS[177560B]: BITS; (* keyboard status *)
KBB[177562B]: CHAR; (* keyboard buffer *)
DPS[177564B]: BITS; (* display status *)
DPB[177566B]: CHAR; (* display buffer *)
in1, in2, out1, out2 : INTEGER;
n1, n2 : INTEGER;
nonfull1, nonfull2,
nonempty1, nonempty2 : SIGNAL;
buf1, buf2 : ARRAY 1:n OF CHAR;



xxxvii

PROCEDURE readch(VAR ch : CHAR);
BEGIN

IF n1 = 0 THEN WAIT(nonempty1) END;
ch := buf1[out1];
out1 := (out1 MOD n)+1;
DEC(n1);
SEND(nonfull1)

END readch;

PROCEDURE writech(ch : CHAR);
BEGIN

IF n2 = n THEN WAIT(nonfull2) END;
buf2[in2] := ch;
in2 := (in2 MOD n)+1;
INC(n2);
SEND(nonempty2)

END writech;

PROCESS keyboarddriver[60B];
BEGIN

KBS[0] := TRUE; (* enable device *)
LOOP

IF n1 = n THEN WAIT(nonfull1) END;
KBS[6] := TRUE;
DOIO;
KBS[6] := FALSE;
buf1[in1] := KBB;
in1 := (in1 MOD n)+1;
INC(n1);
SEND(nonempty1)

END
END keyboarddriver;

PROCESS displaydriver[64B];
BEGIN

DPS[0] := TRUE; (* enable device *)
LOOP

IF n2 = 0 THEN WAIT(nonempty2) END;
DPB := buf2[out2];
out2 := (out2 MOD n)+1;
DPS[6] := TRUE;
DOIO;
DPS[6] := FALSE;
DEC(n2);
SEND(nonfull2)

END
END displaydriver;

BEGIN
in1 :=1; in2 := 1;
out1 := 1; out2 :=1;
n1 :=0; n2 := 0;
keyboarddriver;
displaydriver

END terminal;



xxxviii

Timing facilities

Modula-1 provides no direct facilities for manipulating time; these have to be provided
by the application. This requires a device module which handles the clock interrupt
and then issues a regular signal, say, every second. This module is now presented; it
is a modified version of the one previously defined. The hardware clock is assumed to
tick every fiftieth of a second.

DEVICE MODULE hardwareclock[6];
DEFINE tick;
VAR tick : SIGNAL;

PROCESS handler[100B];
VAR count : INTEGER;

statusreg[177546B] : BITS;
BEGIN

count := 0;
statusreg[0] := TRUE;
statusreg[6] := TRUE;
LOOP

DOIO;
count := (count+1) MOD 50;
IF count = 0 THEN

WHILE AWAITED(tick) DO
SEND(tick)

END
END

END
END handler;

BEGIN
handler

END hardwareclock;

An interface module which maintains the time of day can now beeasily provided.

INTERFACE MODULE SystemClock;
(* defines procedures for getting and setting the time of day *)
DEFINE GetTime, SetTime;

(* import the abstract data type time, and the tick signal *)
USE time, initialise, add, tick;

VAR TimeOfDay, onesec : time;

PROCEDURE SetTime(t: time);
BEGIN

TimeOfDay := t
END SetTime;

PROCEDURE GetTime(VAR t: time);
BEGIN

t := TimeOfDay
END GetTime;

PROCESS clock;
BEGIN

LOOP



xxxix

WAIT(tick);
addtime(TimeOfDay, onesec)

END
END clock;

BEGIN
inittime(TimeOfDay, 0, 0, 0);
inittime(onesec, 0, 0, 1);
clock;

END SystemClock;

Note that the clock process is logically redundant. The device process could increment
systemtime directly, thereby saving a context switch. However, it is not allowed in
Modula-1 for a device process to call a non-local procedure.

Delaying a process

In real-time systems, it is often necessary to delay a process for a period. Although
Modula-1 has no direct facilities for achieving this, they can be programmed.

Problems with the Modula-1 approach to device driving

Modula-1 was designed to attack the stronghold of assembly language programming
– that of interfacing to devices. In general, it has been considered a success; however,
there are a few criticisms that have been levelled at its facilities.

• Modula-1 does not allow a device process to call a non-local procedure because
device processes must be kept as small as possible and must run at the hard-
ware priority of the device. To call procedures defined in other modules, whose
implementation is hidden from the process, might lead to unacceptable delays.
Furthermore, it would require these procedures to execute at the device’s pri-
ority. Unfortunately, as a result of this restriction, programmers either have to
incorporate extra functionality into a device module whichis notdirectly associ-
ated with driving the device (as in the terminal driver example, where a bounded
buffer was included in the device module), or they have to introduce extra pro-
cesses to wait for a signal sent by a device process. In the former case, this can
lead to very large device modules and in the latter, unnecessary inefficiency.

• Modula-1 only allows a single instance of a device process because the process
header contains the information necessary to associate theprocess with the in-
terrupt. This makes the sharing of code between similar devices more difficult;
the problem is compounded by not being able to call non-localprocedures.

• Modula-1 was designed for memory-mapped machines and consequently it is
difficult to use its facilities for programming devices which are controlled by
special instructions. However, it is easy to imagine a simple extension to solve
this problem. One suggestion is the possibility of using thefollowing notation:

VAR x AT PORT 46B : INTEGER;



xl

The compiler is then able to recognize when a port is being addressed and can
generate the correct instructions.

• It has already been pointed out that many device registers are read- or write-only.
It is not possible to define variables that are read- or write-only in Modula-1.
Furthermore, there is an implicit assumption that a compiler will not optimize
access to device registers and cache them in local registers.


