
Real-time Systems
Specification, Verification and

Analysis

Edited by Mathai Joseph
Tata Research Development & Design Centre

Revised version with corrections
June 2001

Original edition published in 1996 by Prentice Hall International, London,
under
ISBN 0-13-455297-0

This version incorporates corrections to and changes from the original
edition.

This version is made
available for research,
teaching and personal use
only.

Please send a message to the
editor (m.joseph@tcs.com) if
you download a copy;
this is for our records.

Contents

Preface vii

Contributors xii

1 Time and Real-time 1

Mathai Joseph

Introduction 1
1.1 Real-time computing 2
1.2 Requirements, specification and implementation 3
1.3 The mine pump 5
1.4 How to read the book 11
1.5 Historical background 12
1.6 Exercises 14

2 Fixed Priority Scheduling – A Simple Model 15

Mathai Joseph

Introduction 15
2.1 Computational model 16
2.2 Static scheduling 18
2.3 Scheduling with priorities 19
2.4 Simple methods of analysis 20
2.5 Exact analysis 24
2.6 Extending the analysis 29
2.7 Historical background 30
2.8 Exercises 31

iii

iv CONTENTS

3 Advanced Fixed Priority Scheduling 32

Alan Burns and Andy Wellings

Introduction 32
3.1 Computational model 32
3.2 Advanced scheduling analysis 38
3.3 Introduction to Ada 95 50
3.4 The mine pump 53
3.5 Historical background 64
3.6 Further work 64
3.7 Exercises 65

4 Dynamic Priority Scheduling 66

Krithi Ramamritham

Introduction 66
4.1 Programming dynamic real-time systems 69
4.2 Issues in dynamic scheduling 75
4.3 Dynamic priority assignment 76
4.4 Dynamic best-effort approaches 80
4.5 Dynamic planning-based approaches 83
4.6 Practical considerations in dynamic scheduling 90
4.7 Historical background 93
4.8 Further work 94
4.9 Exercises 95

5 Assertional Specification and Verification 97

Jozef Hooman

Introduction 97
5.1 Basic framework 98
5.2 The mine pump 105
5.3 Communication between parallel components 109
5.4 Parallel decomposition of the sump control 114
5.5 Programming language 122
5.6 The mine pump example: final implementation 131
5.7 Further work 136
5.8 Historical background 138
5.9 Exercises 141

CONTENTS v

6 Specification and Verification in Timed CSP 147

Steve Schneider

Introduction 147
6.1 The language of real-time CSP 147
6.2 Observations and processes 156
6.3 Specification 162
6.4 Verification 164
6.5 Case study: the mine pump 169
6.6 Historical background 178
6.7 Exercises 180

7 Specification and Verification in DC 182

Zhiming Liu

Introduction 182
7.1 Modelling real-time systems 182
7.2 Requirements 184
7.3 Assumptions 188
7.4 Design 189
7.5 The basic duration calculus (DC) 191
7.6 The mine pump 198
7.7 Specification of scheduling policies 202
7.8 Probabilistic duration calculus (PDC) 205
7.9 Historical background 224
7.10 Further work 225
7.11 Exercises 227

8 Real-time Systems and Fault-tolerance 229

Henk Schepers

Introduction 229
8.1 Assertions and correctness formulae 230
8.2 Formalizing a failure hypothesis 232
8.3 A proof rule for failure prone processes 234
8.4 Reliability of the mine pump 236
8.5 Soundness and completeness of the new proof rule 250
8.6 Historical background 254
8.7 Exercises 256

References 259

Index 272

Preface

The field of real-time systems has not traditionally been hospitable to newcomers: on the
one hand there are experts who seem to rely on experience and a few specialized docu-
ments and, on the other, there is a vast and growing catalogue of technical papers. There
are very few textbooks and the most successful publications are probably collections of
past papers carefully selected to cover different views of the field. As interest has grown,
so has the community, and the more recent papers are spread over a large range of pub-
lications. This makes it particularly difficult to keep in touch with all the new develop-
ments.

If this is distressing to the newcomer, it is of no less concern to anyone who has to
teach a course on real-time systems: one has only to move a little beyond purely technical
concerns to notice how quickly the teachable material seems to disappear in a cloud of
opinions and a range of possibilities. It is not that the field lacks intellectual challenges
or that there is not enough for a student to learn. On the contrary, the problem seems to be
a question of where to start, how to relate practical techniques with methods of analysis,
analytical results with theories and, more crucially, how to decide on the objectives of a
course.

This book provides a detailed account of three major aspects of real-time systems:
program structures for real-time, timing analysis using scheduling theory and specifica-
tion and verification in different frameworks. Each chapter focuses on a particular tech-
nique: taken together, they give a fairly comprehensive account of the formal study of
real-time systems and demonstrate the effectiveness and applicability of mathematically
based methods for real-time system design. The book should be of interest to computer
scientists, engineers and practical system designers as it demonstrates also how these new
methods can be used to solve real problems.

Chapters have different authors and each focuses on a particular topic, but the material
has been written and edited so that the reader should notice no abrupt changes when mov-
ing from one chapter to another. Chapters are linked with cross-references and through
their description and analysis of a common example: the mine pump (Burns & Lister,
1991; Mahony & Hayes, 1992). This allows the reader to compare the advantages and

vii

viii PREFACE

limitations of different techniques. There are a number of small examples in the text to
illustrate the theory and each chapter ends with a set of exercises.

The idea for the book came originally from material used for the M.Sc. module on
real-time systems at the University of Warwick. This module has now been taught by
several of the authors over the last three years and has been attended by both students
and visiting participants. However, it was planned that the book would contain a more
comprehensive treatment of the material than might be used in a single course. This al-
lows teachers to draw selectively on the material, leaving some parts out and others as
further reading for students. Some possible course selections are outlined in Chapter 1
but many more are possible and the choice will be governed by the nature of the course
and the interests and preparation of the students. Part of the material has been taught by
the authors in advanced undergraduate courses in computer science, computer engineer-
ing and related disciplines; selections have also been used in several different postgrad-
uate courses and in short courses for industrial groups. So the material has been used
successfully for many different audiences.

The book draws heavily on recent research and can also serve as a source book for
those doing research and for professionals in industry who wish to use these techniques
in their work. The authors have many years of research experience in the areas of their
chapters and the book contains material with a maturity and depth that would be difficult
for a single author to achieve, certainly on a short time-scale.

Acknowledgements
Each chapter has been reviewed by another author and then checked and re-drafted by the
editor to make the style of presentation uniform. This procedure has required a great deal
of cooperation and understanding from the authors, for which the editor is most grateful.
Despite careful scrutiny, there will certainly be inexcusable errors lurking in corners and
we would be very glad to be informed of any that are discovered.

We are very grateful to the reviewers for comments on the draft and for providing us
with the initial responses to the book. Anders Ravn read critically through the whole
manuscript and sent many useful and acute observations and corrections. Matthew Wa-
hab pointed out a number of inconsistencies and suggested several improvements. We
are also glad to acknowledge the cooperation of earlier ‘mine pump’ authors, Andrew
Lister, Brendan Mahony and Ian Hayes.

In addition, particular thanks are due to many other people for their comments on dif-
ferent chapters.

Chapters 1, 2: Tomasz Janowski made several useful comments, as did students of
the M.Sc. module on real-time systems and the Warwick undergraduate course, Verifica-
tion and Validation. Steve Schneider’s specification in Z of the mine pump was a useful
template during the development of the specification in Chapter 1.

Chapter 4: Gerhard Fohler, Swamy Kutti and Arcot Sowmya commented on an earlier
draft. Thanks are also due to the present and past members of the real-time group at the
University of Massachusetts.

Chapter 5: Jan Vitt read through the chapter carefully and made several suggestions

PREFACE ix

for improvement.
Chapter 6: Jim Davies, Bruno Dutertre, Gavin Lowe, Paul Mukherjee, Justin Pearson,

Ken Wood and members of the ESPRIT Basic Research Action CONCUR2 provided
comments at various stages of the work.

Chapter 7: Zhou Chaochen was a source of encouragement and advice during the writ-
ing of this chapter.

The book was produced using LATEX2e, aided by the considerable ingenuity, skill and
perseverance of Steven Haeck, with critical tips from Jim Davies and with help at many
stages from Jeff Smith.

Finally, the book owes a great deal to Jackie Harbor of Prentice Hall International, who
piloted the project through from its start, and to Alison Stanford, who was Senior Pro-
duction Editor. Their combined efforts made it possible for the writing, editing and re-
viewing of the book to be interleaved with its production so that the whole process could
be completed in 10 months.

The Series editor, Tony Hoare, encouraged us to start the book and persuaded us not
to be daunted by the task of editing it into a cohesive text. All of us, editor and authors,
owe a great deal for this support.

Department of Computer Science Mathai Joseph
University of Warwick

Preface to Revised Edition

In the five years that have passed since the original edition of the book was published, the field of
real-time systems has grown at a breathtaking rate. Most notably, embedded systems have
become a separate field of study from other real-time control systems and applications of
embedded systems have spread from the original domain of machinery and transportation to hand-
held devices, like organizers, personal digital assistants and mobile telephones. Along with this, the
nature of the problems to be faced has also changed. Reliability, usability and adaptability are now
added to the factors that must be studied and analyzed when designing a real-time embedded
system. And with widespread personal use taking place, it is not just usability but also reliability
under unspecified use (e.g. incorrect operation, environmental change, component and subsystem
failure) that must be demonstrated.

Nevertheless, the basic principles for the analysis, specification and verification of real-time
systems remain unchanged. Whether using a design method such as real-time UML, or more
traditional software engineering methods, timing properties must still be determined in conjunction
with functional properties. New methods may further systematize the ways in which real-time
systems are designed but timing analysis will still need to be done using methods such as those
illustrated in this book.

This book has been in use for teaching several courses on real-time systems. With requests for
copies still coming from different parts of the world, for both teaching and personal use, the
contributors quickly decided that there would be a continued readership for some time to come.
The only choice was between producing a revised and corrected edition and collaborating once
again to produce a wholly new book. While the second choice would be closer to ideal, the other
commitments of the authors have led us to choose the first alternative as being both practical and
capable of early completion. Many of the contributors have changed their earlier affiliations and
locations and some even their roles, making collaboration at the same level difficult to contemplate.
We therefore leave the task of producing a new text on the specification, verification and analysis
of real-time systems to other authors, wishing them well and assuring them of our support and of
our belief that such as task is well worth doing.

The original edition of this book was published by Prentice-Hall International, London, in 1996. A
revised edition with corrections and some changes was planned but, as the title was discontinued
by the publishers in 1998, never saw light of day. This revised edition incorporating the corrections
and changes is now being made available free of cost for research, teaching and personal use.

Tata Research Development & Design Centre
54B Hadapsar Industrial Estate
Pune 411 013, India

x

Mathai Joseph
June 2001

Contributors
Professor Alan Burns burns@cs.york.ac.uk
Department of Computer Science
University of York,
Heslington
York YO10 5DD, UK

Dr. Jozef Hooman hooman@cs.kun.nl
Computing Science Institute
University of Nijmegen
P.O. Box 9010
6500 GL Nijmegen, The Netherlands

Professor Mathai Joseph m.joseph@tcs.com
Tata Research Development & Design Centre
54B Hadapsar Industrial Estate
Pune 411 013, India

Dr. Zhiming Liu zl2@mcs.le.ac.uk
Department of Mathematics and Computer Science
University of Leicester
Leicester LE1 7RH, UK

Professor Krithi Ramamritham krithi@cse.iitb.ernet.in
Department of Computer Science and Engineering
Indian Institute of Technology
Powai
Mumbai 400 076, India

Dr. Ir. Henk Schepers henk.schepers@philips.com
Philips Research Laboratories
Information & Software Technology
Prof. Holstlaan 4
5656 AA Eindhoven, The Netherlands

Dr. Steve Schneider S.Schneider@cs.rhul.ac.uk
Department of Computer Science
Royal Holloway, University of London
Egham, Surrey TW20 0EX, UK

Professor A.J. Wellings andy@cs.york.ac.uk
Department of Computer Science
University of York
Heslington
York YO10 5DD, UK

Xii

Chapter 1

Time and Real-time

Mathai Joseph

Introduction

There are many ways in which we alter the disposition of the physical world. There are
obvious ways, such as when a car moves people from one place to another. There are
less obvious ways, such as a pipeline carrying oil from a well to a refinery. In each case,
the purpose of the ‘system’ is to have a physical effect within a chosen time-frame. But
we do not talk about a car as being a real-time system because a moving car is a closed
system consisting of the car, the driver and the other passengers, and it is controlled from
within by the driver (and, of course, by the laws of physics).

Now consider how an external observer would record the movement of a car using a
pair of binoculars and a stopwatch. With a fast moving car, the observer must move the
binoculars at sufficient speed to keep the car within sight. If the binoculars are moved
too fast, the observer will view an area before the car has reached there; too slow, and
the car will be out of sight because it is ahead of the viewed area. If the car changes
speed or direction, the observer must adjust the movement of the binoculars to keep the
car in view; if the car disappears behind a hill, the observer must use the car’s recorded
time and speed to predict when and where it will re-emerge.

Suppose the observer replaces the binoculars by an electronic camera which requires
n seconds to process each frame and determine the position of the car. As when the car is
behind a hill, the observer must predict the position of the car and point the camera so that
it keeps the car in the frame even though it is ‘seen’ only at intervals of n seconds. To do
this, the observer must model the movement of the car and, based on its past behaviour,
predict its future movement. The observer may not have an explicit ‘model’ of the car
and may not even be conscious of doing the modelling; nevertheless, the accuracy of the
prediction will depend on how faithfully the observer models the actual movement of the
car.

Finally, assume that the car has no driver and is controlled by commands radioed by the
observer. Being a physical system, the car will have some inertia and a reaction time, and
the observer must use an even more precise model if the car is to be controlled success-

1

2 CHAPTER 1. TIME AND REAL-TIME

fully. Using information obtained every n seconds, the observer must send commands
to adjust throttle settings and brake positions, and initiate changes of gear when needed.
The difference between a driver in the car and the external observer, or remote controller,
is that the driver has a continuous view of the terrain in front of the car and can adjust the
controls continuously during its movement. The remote controller gets snapshots of the
car every n seconds and must use these to plan changes of control.

1.1 Real-time computing

A real-time computer controlling a physical device or process has functions very similar
to those of the observer controlling the car. Typically, sensors will provide readings at
periodic intervals and the computer must respond by sending signals to actuators. There
may be unexpected or irregular events and these must also receive a response. In all
cases, there will be a time-bound within which the response should be delivered. The
ability of the computer to meet these demands depends on its capacity to perform the
necessary computations in the given time. If a number of events occur close together,
the computer will need to schedule the computations so that each response is provided
within the required time-bounds. It may be that, even so, the system is unable to meet all
the possible unexpected demands and in this case we say that the system lacks sufficient
resources (since a system with unlimited resources and capable of processing at infinite
speed could satisfy any such timing constraint). Failure to meet the timing constraint for
a response can have different consequences: in some cases, there may be no effect at all;
in other cases, the effects may be minor and correctable; in yet other cases, the results
may be catastrophic.

Looking at the behaviour required of the observer allows us to define some of the prop-
erties needed for successful real-time control. A real-time program must

� interact with an environment which has time-varying properties,
� exhibit predictable time-dependent behaviour, and
� execute on a system with limited resources.

Let us compare this description with that of the observer and the car. The movement of
the car through the terrain certainly has time-varying properties (as must any movement).
The observer must control this movement using information gathered by the electronic
camera; if the car is to be steered safely through the terrain, responses must be sent to
the car in time to alter the setting of its controls correctly. During normal operation, the
observer can compute the position of the car and send control signals to the car at regu-
lar intervals. If the terrain contains hazardous conditions, such as a flooded road or icy
patches, the car may behave unexpectedly, e.g. skidding across the road in an arbitrary
direction. If the observer is required to control the car under all conditions, it must be
possible to react in time to such unexpected occurrences. When this is not possible, we
can conclude that the real-time demands placed on the observer may, under some condi-
tions, make it impossible to react in time to control the car safely. In order for a real-time

1.2. REQUIREMENTS, SPECIFICATION AND IMPLEMENTATION 3

system to manifest predictable time-dependent behaviour it is thus necessary for the en-
vironment to make predictable demands.

With a human observer, the ability to react in time can be the result of skill, training,
experience or just luck. How do we assess the real-time demands placed on a computer
system and determine whether they will be met? If there is just one task and a single
processor computer, calculating the real-time processing load may not be very difficult.
As the number of tasks increases, it becomes more difficult to make precise predictions;
if there is more than one processor, it is once again more difficult to obtain a definite
prediction.

There may be a number of factors that make it difficult to predict the timing of re-
sponses.

� A task may take different times under different conditions. For example, predicting
the speed of a vehicle when it is moving on level ground can be expected to take
less time than if the terrain has a rough and irregular surface. If the system has
many such tasks, the total load on the system at any time can be very difficult to
calculate accurately.

� Tasks may have dependencies: Task A may need information from Task B before
it can complete its calculation, and the time for completion of Task B may itself be
variable. Under these conditions, it is only possible to set minimum and maximum
bounds within which Task A will finish.

� With large and variable processing loads, it may be necessary to have more than
one processor in the system. If tasks have dependencies, calculating task comple-
tion times on a multi-processor system is inherently more difficult than on a single-
processor system.

� The nature of the application may require distributed computing, with nodes con-
nected by communication lines. The problem of finding completion times is then
even more difficult, as communication between tasks can now take varying times.

1.2 Requirements, specification and implementation

The demands placed on a real-time system arise from the needs of the application and
are often called the requirements. Deciding on the precise requirements is a skilled task
and can be carried out only with very good knowledge and experience of the application.
Failures of large systems are often due to errors in defining the requirements. For a safety-
related real-time system, the operational requirements must then go through a hazard and
risk analysis to determine the safety requirements.

Requirements are often divided into two classes: functional requirements, which de-
fine the operations of the system and their effects, and non-functional requirements, such
as timing properties. A system which produces a correctly calculated response but fails to
meet its timing-bounds can have as dangerous an effect as one which produces a spurious
result on time. So, for a real-time system, the functional and non-functional requirements
must be precisely defined and together used to construct the specification of the system.

4 CHAPTER 1. TIME AND REAL-TIME

Requirements

Application
Real-time

Program
Specification

Program
Design

Program
Implementation

Hardware System

Application

Mathematical

dependent

definition

Formal or

rules
semi-formal

language
Programming

Figure 1.1 Requirements, specification and implementation

A specification is a mathematical statement of the properties to be exhibited by a sys-
tem. A specification should be abstract so that

� it can be checked for conformity against the requirement, and
� its properties can be examined independently of the way in which it will be imple-

mented, i.e. as a program executing on a particular system.

This means that a specification should not enforce any decisions about the structure of the
software, the programming language to be used or the kind of system on which the pro-
gram is to be executed: these are properly implementation decisions. A specification is
transformed into an application by taking design decisions, using formal or semi-formal
rules, and converted into a program in some language (see Figure 1.1).

In the next section, and in later chapters of this book, we shall study a simple but real-
istic problem and consider how a real-time system can be specified and implemented to
meet the requirements. Different notations will be used for the specification and it will
be shown how the properties of the implementation can be checked. This serves two pur-
poses: first, using a common example allows us to compare different specification meth-
ods and see where they are most effective; second, it will be noticed as the specifications
unfold that there are many hidden complexities in even apparently simple real-time prob-
lems. This is why mathematical description and analysis have an important role to play,
as they help to deal with this complexity.

1.3. THE MINE PUMP 5

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�

�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

A
B

C

E
D

Pump Controller

Pump

Sump

Log

Operator

Highwatersensor
Airflowsensor
Methanesensor

Lowwatersensor

CarbonMonoxidesensorA
B
C
D
E

Figure 1.2 Mine pump and control system (adapted from Burns and Lister, 1991)

1.3 The mine pump

Water percolating into a mine is collected in a sump to be pumped out of the mine (see
Figure 1.2). The water level sensors D and E detect when water is above a high and a
low level respectively. A pump controller switches the pump on when the water reaches
the high water level and off when it goes below the low water level. If, due to a failure of
the pump, the water cannot be pumped out, the mine must be evacuated within one hour.

The mine has other sensors (A, B, C) to monitor the carbon monoxide, methane and
airflow levels. An alarm must be raised and the operator informed within one second of
any of these levels becoming critical so that the mine can be evacuated within one hour.
To avoid the risk of explosion, the pump must be operated only when the methane level
is below a critical level.

Human operators can also control the operation of the pump, but within limits. An
operator can switch the pump on or off if the water is between the low and high water
levels. A special operator, the supervisor, can switch the pump on or off without this
restriction. In all cases, the methane level must be below its critical level if the pump is
to be operated.

Readings from all sensors, and a record of the operation of the pump, must be logged
for later analysis.

6 CHAPTER 1. TIME AND REAL-TIME

Safety requirements
From the informal description of the mine pump and its operations we obtain the follow-
ing safety requirements:

1. The pump must not be operated if the methane level is critical.
2. The mine must be evacuated within one hour of the pump failing.
3. Alarms must be raised if the methane level, the carbon monoxide level or the air-

flow level is critical.

Operational requirement
The mine is normally operated for three shifts a day, and the objective is for no more than
one shift in 1000 to be lost due to high water levels.

Problem
Write and verify a specification for the mine pump controller under which it can be shown
that the mine is operated whenever possible without violating the safety requirements.

Comments
The specification is to be the conjunction of two conditions: the mine must be operated
when possible, and the safety requirements must not be violated. If the specification read
‘The mine must not be operated when the safety requirements are violated’, then it could
be trivially satisfied by not operating the mine at all! The specification must obviate this
easy solution by requiring the mine to be operated when it is safely possible.

Note that the situation may not always be clearly defined and there may be times when
it is difficult to determine whether operating the mine would violate the safety require-
ments. For example, the pump may fail when the water is at any level; does the time
of one hour for the evacuation of the mine apply to all possible water levels? More cru-
cially, how is pump failure detected? Is pump failure always complete or can a pump fail
partially and be able to displace only part of its normal output?

It is also important to consider under what conditions such a specification will be valid.
If the methane or carbon monoxide levels can rise at an arbitrarily fast rate, there may not
be time to evacuate the mine, or to switch off the pump. Unless there are bounds on the
rate of change of different conditions, it will not be possible for the mine to be operated
and meet the safety requirements. Sensors operate by sampling at periodic intervals and
the pump will take some time to start and to stop. So the rate of change of a level must
be small enough for conditions not to become dangerous during the reaction time of the
equipment.

The control system obtains information about the level of water from the Highwater
and Lowwater sensors and of methane from the Methane sensor. Detailed data is needed
about the rate at which water can enter the mine, and the frequency and duration of met-
hane leaks; the correctness of the control software is predicated on the accuracy of this
information. Can it also be assumed that the sensors always work correctly?

The description explains conditions under which the mine must be evacuated but does
not indicate how often this may occur or how normal operation is resumed after an evac-

1.3. THE MINE PUMP 7

uation. For example, can a mine be evacuated more than once in a shift or, following an
evacuation, is the shift considered to be lost? If the mine is evacuated, it would be normal
for a safety procedure to come into effect and for automatic and manual clearance to be
needed before operation of the mine can resume. This information will make it possible
to decide on how and when an alarm is reset once it has been raised.

1.3.1 Developing a specification

The first task in developing a specification is to make the informal description more pre-
cise. Some requirements may be very well defined but it is quite common for many re-
quirements to be stated incompletely or with inconsistencies between requirements. For
example, we have seen that there may be conditions under which it is not possible to meet
both the safety requirements and the operational requirement; unfortunately, the descrip-
tion gives us no guidance about what should be done in this case. In practice, it is then
necessary to go back to the user or the application engineer to ask for a more precise def-
inition of the needs and to resolve inconsistencies. The process of converting informally
stated requirements into a more precise form helps to uncover inconsistencies and inad-
equacies in the description, and developing a specification often needs many iterations.

We shall start by trying to describe the requirements in terms of some properties, using
a simple mathematical notation. This is a first step towards making a formal specification
and we shall see various different, more complete, specifications of the problem in later
chapters.

Properties will be defined with simple predicate calculus expressions using the logical
operators ^ (and), _ (or),) (implies) and , (iff), and the universal quantifier 8 (for
all). The usual mathematical relational operators will be used and functions, constants
and variables will be typed. We use

F : T1! T2

for a function F from type T1 (the domain of the function) to type T2 (the range of the
function) and a variable V of type T will be defined as V : T. An interval from C1 to
C2 will be represented as [C1;C2] if the interval is closed and includes both C1 and C2,
as (C1;C2] if the interval is half-open and includes C2 and not C1 and as [C1;C2) if the
interval is half-open and includes C1 and not C2.

Assume that time is measured in seconds and recorded as a value in the set Time and
the depth of the water is measured in metres and is a value in the set Depth; Time and
Depth are the set of real numbers.

S1: Water level
The depth of the water in the sump depends on the rate at which water enters and leaves
the sump and this will change over time. Let us define the water level Water at any time
to be a function from Time to Depth:

Water : Time! Depth

8 CHAPTER 1. TIME AND REAL-TIME

Let Flow be the rate of change of the depth of water measured in metres per second and
be represented by the real numbers; WaterIn and WaterOut are the rates at which water
enters and leaves the sump and, since these rates can change, they are functions from
Time to Flow:

WaterIn;WaterOut : Time! Flow

The depth of water in the sump at time t2 is the sum of the depth of water at an earlier
time t1 and the difference between the amount of water that flows in and out in the time
interval [t1; t2]. Thus 8t1; t2 : Time �

Water(t2) = Water(t1)+
Z t2

t1
(WaterIn(t)�WaterOut(t)) dt

HighWater and LowWater are constants representing the positions of the high and low
water level sensors. For safe operation, the pump should be switched on when the water
reaches the level HighWater and the level of water should always be kept below the level
DangerWater:

DangerWater > HighWater > LowWater

If HighWater = LowWater, the high and low water sensors would effectively be reduced
to one sensor.

S2: Methane level
The presence of methane is measured in units of pascals and recorded as a value of type
Pressure (a real number). There is a critical level, DangerMethane, above which the
presence of methane is dangerous.

The methane level is related to the flow of methane in and out of the mine. As for
the water level, we define a function Methane for the methane level at any time and the
functions MethaneIn and MethaneOut for the flow of methane in and out of the mine:

Methane : Time! Pressure
MethaneIn;MethaneOut : Time! Pressure

and 8 t1; t2 : Time �

Methane(t2) = Methane(t1)+
Z t2

t1
(MethaneIn(t)�MethaneOut(t))dt

S3: Assumptions
1. There is a maximum rate MaxWaterIn : Flow at which the water level in the sump

can increase and at any time t, WaterIn(t) �MaxWaterIn.
2. The pump can remove water with a rate of at least PumpRating : Flow, and this

must be greater than the maximum rate at which water can build up: MaxWaterIn
< PumpRating.

1.3. THE MINE PUMP 9

3. The operation of the pump is represented by a predicate on Time which indicates
when the pump is operating:

Pumping : Time! Bool

and at any time t if the pump is operating it will produce an outflow of water of at
least PumpRating:

(Pumping(t)^Water(t) > 0))WaterOut(t) > PumpRating

4. The maximum rate at which methane can enter the mine is MaxMethaneRate. If
the methane sensor measures the methane level periodically every tM units of time,
and if the time for the pump to switch on or off is tP, then the reaction time tM+ tP
must be such that normally, at any time t,

(Methane(t)+MaxMethaneRate � (tM + tP)+MethaneMargin)
6DangerMethane

where MethaneMargin is a safety limit.
5. The methane level does not reach DangerMethane more than once in 1000 shifts;

without this limit, it is not possible to meet the operational requirement. Methane
is generated naturally during mining and is removed by ensuring a sufficient flow
of fresh air, so this limit has some implications for the air circulation system.

S4: Pump controller
The pump controller must ensure that, under the assumptions, the operation of the pump
will keep the water level within limits. At all times when the water level is high and the
methane level is not critical, the pump is switched on, and if the methane level is critical
the pump is switched off. Ignoring the reaction times, this can be specified as follows:

8t 2 Time � (Water(t) > HighWater^Methane(t) < DangerMethane)) Pumping(t)
^ (Methane(t) �DangerMethane)):Pumping(t)

Now let us see how reaction times can be taken into account. Since tP is the time taken
to switch the pump on, a properly operating controller must ensure that

8t 2 Time �Methane(t) <DangerMethane^:Pumping(t)^Water(t) > HighWater
) Pumping(t+ tP)

So if the operator has not already switched the pump on, the pump controller must do so
when the water level reaches HighWater.

Similarly, the methane sensor may take tM units of time to detect a methane level and
the pump controller must ensure that

8t 2 Time �Pumping(t)^ (Methane(t)+MethaneMargin) =DangerMethane
):Pumping(t+ tM + tP)

10 CHAPTER 1. TIME AND REAL-TIME

S5: Sensors
The high water sensor provides information about the height of the water at time t in
the form of predicates HW(t) and LW(t) which are true when the water level is above
HighWater and LowWater respectively. We assume that at all times a correctly working
sensor gives some reading (i.e. HW(t) _:HW(t)) and, since HighWater > LowWater,
HW(t)) LW(t).

The readings provided by the sensors are related to the actual water level in the sump:

8t 2 Time � Water(t) > HighWater,HW(t)
^ Water(t) > LowWater , LW(t)

Similarly, the methane level sensor reads either DML(t) or :DML(t):

8t 2 Time � Methane(t) > DangerMethane, DML(t)
^Methane(t) < DangerMethane,:DML(t)

S6: Actuators
The pump is switched on and off by an actuator which receives signals from the pump
controller. Once these signals are sent, the pump controller assumes that the pump acts
accordingly. To validate this assumption, another condition is set by the operation of the
pump. The outflow of water from the pump sets the condition PumpOn; similarly, when
there is no outflow, the condition is PumpOff .

The assumption that the pump really is pumping when it is on and is not pumping when
it is off is specified below:

8t 2 Time � PumpOn(t)) Pumping(t)
^PumpOff (t)):Pumping(t)

The condition PumpOn is set by the actual outflow and there may be a delay before the
outflow changes when the pump is switched on or off. If there were no delay, the impli-
cation) could be replaced by the two-way implication iff, represented by ,, and the
two conditions PumpOn and PumpOff could be replaced by a single condition.

1.3.2 Constructing the specification

The simple mathematical notation used so far provides a more abstract and a more precise
description of the requirements than does the textual description. Having come so far,
the next step should be to combine the definitions given in S1–S6 and use this to prove
the safety properties of the system. The combined definition should also be suitable for
transformation into a program specification which can be used to develop a program.

Unfortunately, this is where the simplicity of the notation is a limitation. The defini-
tions S1–S6 can of course be made more detailed and perhaps taken a little further to-
wards what could be a program specification. But the mathematical set theory used for
the specification is both too rich and too complex to be useful in supporting program de-
velopment. To develop a program, we need to consider several levels of specification

1.4. HOW TO READ THE BOOK 11

(and so far we have just outlined the beginnings of one level) and each level must be
shown to preserve the properties of the previous levels. The later levels must lead di-
rectly to a program and an implementation and there is nothing so far in the notation to
suggest how this can be done.

What we need is a specification notation that has an underlying computational model
which holds for all levels of specification. The notation must have a calculus or a proof
system for reasoning about specifications and a method for transforming specifications to
programs. That is what we shall seek to accomplish in the rest of the book. Chapters 5–7
contain different formal notations for specifying and reasoning about real-time programs;
in Chapter 8 this is extended to consider the requirements of fault-tolerance in the mine
pump system. Each notation has a precisely defined computational model, or semantics,
and rules for transforming specifications into programs.

1.3.3 Analysis and implementation

The development of a real-time program takes us part of the way towards an implemen-
tation. The next step is to analyze the timing properties of the program and, given the
timing characteristics of the hardware system, to show that the implementation of the
program will meet the timing constraints. It is not difficult to understand that for most
time-critical systems, the speed of the processor is of great importance. But how exactly
is processing speed related to the statements of the program and to timing deadlines?

A real-time system will usually have to meet many demands within limited time. The
importance of the demands may vary with their nature (e.g. a safety-related demand may
be more important than a simple data-logging demand) or with the time available for a
response. So the allocation of the resources of the system needs to be planned so that
all demands are met by the time of their deadlines. This is usually done using a sched-
uler which implements a scheduling policy that determines how the resources of the sys-
tem are allocated to the program. Scheduling policies can be analyzed mathematically
so the precision of the formal specification and program development stages can be com-
plemented by a mathematical timing analysis of the program properties. Taken together,
specification, verification and timing analysis can provide accurate timing predictions for
a real-time system.

Scheduling analysis is described in Chapters 2–4; in Chapter 3 it is used to analyze an
Ada 95 program for the mine pump controller.

1.4 How to read the book

The remaining chapters of this book are broadly divided into two areas: (a) scheduling
theory and (b) the specification and verification of real-time and fault-tolerant properties
of systems. The book is organized so that an interested reader can read chapters in the
order in which they appear and obtain a good understanding of the different methods. The

12 CHAPTER 1. TIME AND REAL-TIME

fact that each chapter has a different author should not cause any difficulties as chapters
have a very similar structure, follow a common style and have cross-references.

Readers with more specialized interests may wish to focus attention on just some of
the chapters and there are different ways in which this may be done:

� Scheduling theory: Chapters 2, 3 and 4 describe different aspects of the applica-
tion of scheduling theory to real-time systems. Chapter 2 has introductory ma-
terial which should be readily accessible to all readers and Chapter 3 follows on
with more advanced material and shows how a mine pump controller can be pro-
grammed in Ada 95; these chapters are concerned with methods of analysis for
fixed priority scheduling. Chapter 4 introduces dynamic priority scheduling and
shows how this method can be used effectively when the future load of the system
cannot be calculated in advance.

� Scheduling and specification: Chapters 2, 3 and 4 provide a compact overview of
fixed and dynamic priority scheduling. Chapters 5, 6 and 7 are devoted to specifi-
cation and verification using assertional methods, a real-time process calculus and
the duration calculus respectively; one or more of these chapters can therefore be
studied to understand the role of specification in dealing with complex real-time
problems.

� Specification and verification: any or all of Chapters 5, 6 and 7 can be used; if a
choice must be made, then using either Chapters 5 and 6, or Chapters 5 and 7, will
give a good indication of the range of methods available.

� Timing and fault-tolerance: Chapter 8 shows how reasoning about fault-tolerance
can be done at the specification level; it assumes that the reader has understood
Chapter 5 as it uses very similar methods.

� The mine pump: Different treatments of the mine pump problem can be found in
Chapters 1, 3, 5, 6, 7 and 8; though they are based on the description in this chap-
ter, subtle differences may arise from the nature of the method used, and these are
pointed out.

Each chapter has a section describing the historical background to the work and an
extensive bibliography is provided at the end of the book to allow the interested reader
to refer to the original sources and obtain more detail.

Examples are included in most chapters, as well as a set of exercises at the end of each
chapter. The exercises are all drawn from the material contained in the chapter and range
from easy to relatively hard.

1.5 Historical background

Operations research has been concerned with problems of job sequencing, timing, sched-
uling and optimization for many decades. Techniques from operations research provided

1.5. HISTORICAL BACKGROUND 13

the basis for the scheduling analysis of real-time systems and the paper by Liu and Lay-
land (1973) remained influential for well over a decade. This was also the time of the de-
velopment of axiomatic proof techniques for programming languages, starting with the
classic paper by Hoare (1969). But the early methods for proving the correctness of pro-
grams were concerned only with their ‘functional’ properties and Wirth (1977) pointed
out the need to distinguish between this kind of program correctness and the satisfac-
tion of timing requirements; axiomatic proof methods were forerunners of the assertional
method described and used in Chapters 5 and 8. Mok (1983) pointed out the difficulties in
relating work in scheduling theory with assertional methods and with the needs of prac-
tical, multi-process programming; it is only recently that some progress has been made
in this direction: e.g. see Section 5.7.1 and Liu et al. (1995).

There are many ways in which the timing properties of programs can be specified and
verified. The methods can be broadly divided into three classes.

1. Real-time without time: Observable time in a program’s execution can differ to an
arbitrary extent from universal or absolute time and Turski (1988) has argued that time
is an issue to be considered at the implementation stage but not in a specification; Hehner
(1989) shows how values of time can be used in assertions and for reasoning about simple
programming constructs, but also recommends that where there are timing constraints it
is better to construct a program with the required timing properties than to try to compute
the timing properties of an arbitrary program. For programs that can be implemented with
fixed schedules on a single processor, or those with very restricted timing requirements,
these restrictions make it possible to reason about real-time programs without reasoning
about time.

2. Synchronous real-time languages: The synchrony hypothesis assumes that external
events are ordered in time and the program responds as if instantaneously to each event.
The synchrony hypothesis has been used in the ESTEREL (Berry & Gonthier, 1992), LUS-
TRE and SIGNAL family of languages, and in Statecharts (Harel, 1987). Treating a re-
sponse as ‘instantaneous’ is an idealization that applies when the time of response is
smaller than the minimum time between external events. External time is given a discrete
representation (e.g. the natural numbers) and internal actions are deterministic and or-
dered. Synchronous systems are most easily implemented on a single processor. Strong
synchrony is a more general form of synchrony applicable to distributed systems where
nondeterminism is permitted but events can be ordered by a global clock.

3. Asynchronous real-time: In an asynchronous system, external events occur at times
that are usually represented by a dense domain (such as the real numbers), and the system
is expected to provide responses within time-bounds. This is the most general model of
real-time systems and is applicable to single-processor, multi-processor and distributed
systems. With some variations, this is the model we shall use for much of this book. As
we shall see, restrictions must be imposed (or further assumptions made) to enable the
timing properties of an asynchronous model to be fully determined: e.g. using discrete
rather than dense time, imposing determinism, and approximating cyclic behaviour and
aperiodicity by periodic behaviours. Few of these restrictions are really compatible with

14 CHAPTER 1. TIME AND REAL-TIME

the asynchrony model but they can be justified because without them analysis of the tim-
ing behaviour may not be possible.

The mine pump problem was first presented by Kramer et al. (1983) and used by Burns
and Lister (1991) as part of the description of a framework for developing safety-critical
systems. A more formal account of the mine pump problem was given by Mahony and
Hayes (1992) using an extension of the Z notation. The description of the mine pump in
this chapter has made extensive use of the last two papers, though the alert reader will no-
tice some changes. The first descriptions of the mine pump problem, and the description
given here, assume that the requirements are correct and that the only safety considera-
tions are those that follow from the stated requirements. The requirements for a practical
mine pump system would need far more rigorous analysis to identify hazards and check
on safety conditions under all possible operating conditions (see e.g. Leveson, 1995).
Use of the methods described in this book would then complement this analysis by pro-
viding ways of checking the specification, the program and the timing of the system.

1.6 Exercises

Exercise 1.1 Define the condition Alarm which must be set when the water, methane or
airflow levels are critical. Recall that, according to the requirements, Alarm must be set
within one second of a level becoming critical. Choose an appropriate condition under
which Alarm can be reset to permit safe operation of the mine to be resumed.

Exercise 1.2 Define the condition Operator under which the human operator can switch
the pump on or off. Define a similar condition Supervisor for the supervisor and describe
where the two conditions differ.

Exercise 1.3 In S4, separate definitions are given for the operation of the pump con-
troller and for the delays, tP to switch the pump on and tM for the methane detector. Con-
struct a single definition for the operation of the pump taking both these delays into ac-
count.

Exercise 1.4 Suppose there is just one water level sensor SW. What changes will need
to be made in the definitions in S1 and S5? (N.B.: in Chapter 7 it is assumed that there
is one water level sensor.)

Exercise 1.5 Suppose a methane sensor can fail and that following a failure, a sensor
does not resume normal operation. Assume that it is possible to detect this failure. To
continue to detect methane levels reliably, let three sensors DML1, DML2 and DML3 be
used and assume that at most one sensor can fail. If the predicate MOKi is true when the
ith methane sensor is correct, i.e. operating according to the definition in S6, and false
if the sensor has failed, define a condition which guarantees that the methane level sen-
sor reading DML is always correct. (Hint: Since at most one sensor can fail, the correct
reading is the same as the reading of any two equal sensor readings. N.B.: Chapter 8
examines the reliability of the mine pump controller in greater detail.)

Chapter 2

Fixed Priority Scheduling – A Simple
Model

Mathai Joseph

Introduction

Consider a simple, real-time program which periodically receives inputs from a device
every T units of time, computes a result and sends it to another device. Assume that there
is a deadline of D time units between the arrival of an input and the despatch of the cor-
responding output.

For the program to meet this deadline, the computation of the result must take always
place in less than D time units: in other words, for every possible execution path through
the program, the time taken for the execution of the section of code between the input
and output statements must be less than D time units.

If that section of the program consists solely of assignment statements, it would be
possible to obtain a very accurate estimate of its execution time as there will be just one
path between the statements. In general, however, a program will have a control structure
with several possible execution paths.

For example, consider the following structured if statement:

1 Sensor_Input.Read(Reading);
2 if Reading = 5 then Sensor_Output.Write(20)
3 elseif Reading < 10 then Sensor_Output.Write(25)
4 else ...
5 Sensor_Output.Write(...)
6 end if;

There are a number of possible execution paths through this statement: e.g. there is
one path through lines 1, 2 and 6 and another through lines 1, 2, 3 and 6. Paths will
generally differ in the number of boolean tests and assignment statements executed and
so, on most computers, will take different execution times.

In some cases, as in the previous example, the execution time of each path can be com-
puted statically, possibly even by a compiler. But there are statements where this is not

15

16 CHAPTER 2. FIXED PRIORITY SCHEDULING – A SIMPLE MODEL

possible:

Sensor_Input.Read(Reading);
while X > Reading + Y loop

...
end

Finding all the possible paths through this statement may not be easy: even if it is
known that there are m different paths for any one iteration of this while loop, the ac-
tual number of iterations will depend on the input value in Reading. But if the range of
possible input values is known, it may then be possible to find the total number of paths
through the loop. Since we are concerned with real-time programs, let us assume that the
program has been constructed so that all such loops will terminate and therefore that the
number of paths is finite.

So, after a simple examination of alternative and iterative statements, we can conclude
that:

� it is not possible to know in advance exactly how long a program execution will
take, but

� it may be possible to find the range of possible values of the execution time.

Rather than deal with all possible execution times, one solution is to use just the longest
possible, or worst-case, execution time for the program. If the program will meet its
deadline for this worst-case execution, it will meet the deadline for any execution.

Worst-case
Assume that the worst-case upper bound to the execution time can be computed for any
real-time program.

2.1 Computational model

We can now redefine the simple real-time program as follows: program P receives an
event from a sensor every T units of time (i.e. the inter-arrival time is T) and in the worst
case an event requires C units of computation time (Figure 2.1).

Assume that the processing of each event must always be completed before the arrival
of the next event (i.e. there is no buffering). Let the deadline for completing the compu-
tation be D (Figure 2.2).

computer sensor

Figure 2.1 Computer and one sensor

2.1. COMPUTATIONAL MODEL 17

TT

C

inputs

time

Figure 2.2 Timing diagram 1

If D < C, the deadline cannot be met. If T < D, the program must still process each
event in a time � T if no events are to be lost. Thus the deadline is effectively bounded
by T and we need to handle only those cases where

C � D � T

Now consider a program which receives events from two sensors (Figure 2.3). Inputs
from Sensor 1 come every T1 time units and each needs C1 time units for computation;
events from Sensor 2 come every T2 time units and each needs C2 time units. Assume
the deadlines are the same as the periods, i.e. T1 time units for Sensor 1 and T2 time units
for Sensor 2. Under what conditions will these deadlines be met?

More generally, if a program receives events from n such devices, how can it be de-
termined if the deadline for each device will be satisfied?

Before we begin to analyze this problem, we first define a program model and a sys-
tem model. This allows us to study the problem of timing analysis in a limited context.
We consider simple models in this chapter; more elaborate models will be considered in
Chapters 3 and 4.

Program model
Assume that a real-time program consists of a number of independent tasks that do not
share data or communicate with each other. A task is periodically invoked by the occur-
rence of a particular event.

�� ��

4T13T12T1

T2 2T2

sensor 1

sensor 2

T1

Figure 2.3 Timing diagram 2

18 CHAPTER 2. FIXED PRIORITY SCHEDULING – A SIMPLE MODEL

System model
Assume that the system has one processor; the system periodically receives events from
the external environment and these are not buffered. Each event is an invocation for a
particular task. Note that events may be periodically produced by the environment or
the system may have a timer that periodically creates the events.

Let the tasks of program P be τ1; τ2; : : : ; τn. Let the inter-arrival time, or period, for
invocations to task τi be Ti and let the computation time for each such invocation be Ci.

We shall use the following terminology:

� A task is released when it has a waiting invocation.

� A task is ready as long as the processing associated with an invocation has not been
completed.

� A processor is idle when it is not executing a task.

2.2 Static scheduling

One way to schedule the program is to analyze its tasks statically and determine their
timing properties. These times can be used to create a fixed scheduling table according
to which tasks will be despatched for execution at run-time. Thus, the order of execution
of tasks is fixed and it is assumed that their execution times are also fixed.

Typically, if tasks τ1; τ2; : : : ; τn have periods of T1; T2; : : : ; Tn, the table must cover
scheduling for a length of time equal to the least common multiple of the periods, i.e.
LCM(fT1; T2; : : : ; Tng), as that is the time in which each task will have an integral num-
ber of invocations. If any of the Ti are co-primes, this length of time can be extremely
large so where possible it is advisable to choose values of Ti that are small multiples of
a common value.

Static scheduling has the significant advantage that the order of execution of tasks is
determined ‘off-line’, before the execution of the program, so the run-time scheduling
overheads can be very small. But it has some major disadvantages:

� There is no flexibility at run-time as all choices must be made in advance and must
therefore be made conservatively to cater for every possible demand for computa-
tion.

� It is difficult to cater for sporadic tasks which may occur occasionally, if ever, but
which have high urgency when they do occur.

For example, an alarm condition which requires a system to be shut down within a short
interval of time may not occur very often but its task must still be accommodated in the
scheduling table so that its deadline will be met if the alarm condition does occur.

2.3. SCHEDULING WITH PRIORITIES 19

��

overrun
here

τ1

τ2

τ3

2 7 14

6 16

0 13
time

Figure 2.4 Priorities without pre-emption

2.3 Scheduling with priorities

In scheduling terms, a priority is usually a positive integer representing the urgency or
importance assigned to an activity. By convention, the urgency is in inverse order to
the numeric value of the priority and priority 1 is the highest level of priority. We shall
assume here that a task has a single, fixed priority. Consider the following two simple
scheduling disciplines:

Priority-based execution
When the processor is idle, the ready task with the highest priority is chosen for execu-
tion; once chosen, a task is run to completion.

Pre-emptive priority-based execution
When the processor is idle, the ready task with the highest priority is chosen for execu-
tion; at any time execution of a task can be pre-empted if a task of higher priority becomes
ready. Thus, at all times the processor is either idle or executing the ready task with the
highest priority.

Example 2.1 Consider a program with 3 tasks, τ1, τ2 and τ3, that have the priorities,
repetition periods and computation times defined in Figure 2.4. Let the deadline Di for
each task τi be Ti. Assume that the tasks are scheduled according to priorities, with no
pre-emption.

Priority Period Comp.time
τ1 1 7 2
τ2 2 16 4
τ3 3 31 7

If all three tasks have invocations and are ready at time=0, task τ1 will be chosen for
execution as it has the highest priority. When it has completed its execution, task τ2 will
be executed until its completion at time=6.

20 CHAPTER 2. FIXED PRIORITY SCHEDULING – A SIMPLE MODEL

��

9

τ1

τ2

τ3

2 7 14

6 20

0 21
time

Figure 2.5 Priorities with pre-emption

At that time, only task τ3 is ready for execution and it will execute from time=6 to
time=13, even though an invocation comes for task τ1 at time=7. So there is just one
unit of time for task τ1 to complete its computation requirement of two units and its next
invocation will arrive before processing of the previous invocation is complete.

In some cases, the priorities allotted to tasks can be used to solve such problems; in
this case, there is no allocation of priorities to tasks under which task τ1 will meet its
deadlines. But a simple examination of the timing diagram shows that between time=15
and time=31 (at which the next invocation for task τ3 will arrive) the processor is not
always busy and task τ3 does not need to complete its execution until time=31. If there
were some way of making the processor available to tasks τ1 and τ2 when needed and
then returning it to task τ3, they could all meet their deadlines.

This can be done using priorities with pre-emption: execution of task τ3 will then be
pre-empted at time=7, allowing task τ1 to complete its execution at time=9 (Figure 2.5).
Process τ3 is pre-empted once more by task τ1 at time=14 and this is followed by the
next execution of task τ2 from time=16 to time=20 before task τ3 completes the rest of
its execution at time=21.

2.4 Simple methods of analysis

Timing diagrams provide a good way to visualize and even to calculate the timing prop-
erties of simple programs. But they have obvious limits, not least of which is that a very
long sheet of paper might be needed to draw some timing diagrams! A better method of
analysis would be to derive conditions to be satisfied by the timing properties of a pro-
gram for it to meet its deadlines.

Let an implementation consist of a hardware platform and the scheduler under which
the program is executed. An implementation is called feasible if every execution of the
program will meet all its deadlines.

2.4. SIMPLE METHODS OF ANALYSIS 21

Using the notation of the previous section, in the following sections we shall consider
a number of conditions that might be applied. We shall first examine conditions that are
necessary to ensure that an implementation is feasible. The aim is to find necessary con-
ditions that are also sufficient, so that if they are satisfied an implementation is guaranteed
to be feasible.

2.4.1 Necessary conditions

Condition C1
8i �Ci < Ti

It is obviously necessary that the computation time for a task is smaller than its period,
as, without this condition, its implementation can be trivially shown to be infeasible.

However, this condition is not sufficient, as can be seen from the following example.

Example 2.2

Priority Period Comp.time
τ1 1 10 8
τ2 2 5 3

At time=0, execution of task τ1 begins (since it has the higher priority) and this will
continue for eight time units before the processor is relinquished; task τ2 will therefore
miss its first deadline at time=5.

Thus, under Condition C1, it is possible that the total time needed for computation in
an interval of time is larger than the length of the interval. The next condition seeks to
remove this weakness.

Condition C2
i

∑
j=1

�
Cj=Tj

� � 1

Ci=Ti is the utilization of the processor in unit time at level i. Condition C2 improves on
Condition C1 in an important way: not only is the utilization Ci=Ti required to be less
than 1 but the sum of this ratio over all tasks is also required not to exceed 1. Thus, taken
over a sufficiently long interval, the total time needed for computation must lie within
that interval.

This condition is necessary but it is not sufficient. The following example shows an
implementation which satisfies Condition C2 but is infeasible.

22 CHAPTER 2. FIXED PRIORITY SCHEDULING – A SIMPLE MODEL

Example 2.3

Priority Period Comp.time
τ1 1 6 3
τ2 1 9 2
τ3 2 11 2

Exercise 2.4.1 Draw a timing diagram for Example 2.3 and show that the deadline for
τ3 is not met.

Condition C2 checks that over an interval of time the arithmetic sum of the utilizations
Ci=Ti is � 1. But that is not sufficient to ensure that the total computation time needed
for each task, and for all those of higher priority, is also smaller than the period of each
task.

Condition C3

8i �
i�1

∑
j=1

�
Ti

Tj
�Cj

�
� Ti�Ci

Here, Condition C2 has been strengthened so that, for each task, account is taken of
the computation needs of all higher priority tasks. Assume that Ti=Tj represents integer
division:

� Processing of all invocations at priority levels 1 : : : i�1 must be completed in the
time Ti�Ci, as this is the ‘free’ time available at that level.

� At each level j, 1� j� i�1, there will be Ti=Tj invocations in the time Ti and each
invocation will need a computation time of Cj.

Hence, at level j the total computation time needed is

Ti

Tj
�Cj

and summing this over all values of j < i will give the total computation needed at level
i. Condition C3 says that this must be true for all values of i.

This is another necessary condition. But, once again, it is not sufficient: if Tj > Ti,
Condition C3 reduces to Condition C1 which has already been shown to be not sufficient.

There is another problem with Condition C3. It assumes that there are Ti=Tj invoca-
tions at level j in the time Ti. If Ti is not exactly divisible by Tj, then either dTi=Tje is an
overestimate of the number of invocations or bTi=Tjc is an underestimate. In both cases,
an exact condition will be hard to define.

To avoid the approximation resulting from integer division, consider an interval Mi
which is the least common multiple of all periods up to Ti:

Mi = LCM(fT1;T2; : : : ;Tig)
Since Mi is exactly divisible by all Tj; j< i, the number of invocations at any level j within
Mi is exactly Mi=Mj.

This leads to the next condition.

2.4. SIMPLE METHODS OF ANALYSIS 23

Condition C4
i

∑
j=1

�
Cj�

Mi=Tj

Mi

�
� 1

Condition C4 is the Load Relation and must be satisfied by any feasible implementa-
tion. However, this condition averages the computational requirements over each LCM
period and can easily be shown to be not sufficient.

Example 2.4

Priority Period Comp.time
τ1 1 12 5
τ2 2 4 2

Since the computation time of task τ1 exceeds the period of task τ2, the implementation
is infeasible, though it does satisfy Condition C4.

Condition C4 can, moreover, be simplified to

i

∑
j=1

�
Cj=Tj

� � 1

which is Condition 2 and thus is necessary but not sufficient.
Condition C2 fails to take account of an important requirement of any feasible imple-

mentation. Not only must the average load be smaller than 1 over the interval Mi, but the
load must at all times be sufficiently small for the deadlines to be met. More precisely,
if at any time T there are t time units left for the next deadline at priority level i, the total
computation requirement at time T for level i and all higher levels must be smaller than
t. Since it averages over the whole of the interval Mi, Condition C2 is unable to take
account of peaks in the computational requirements.

But while on the one hand it is necessary that at every instant there is sufficient com-
putation time remaining for all deadlines to be met, it is important to remember that once
a deadline at level i has been met there is no further need to make provision for compu-
tation at that level up to the end of the current period. Conditions which average over a
long interval may take account of computations over the whole of that interval, includ-
ing the time after a deadline has been met. For example, in Figure 2.5, task τ2 has met its
first deadline at time=6 and the computations at level 1 from time=7 to time=9 and from
time=14 to time=16 cannot affect τ2’s response time, even though they occur before the
end of τ2’s period at time=16.

2.4.2 A sufficient condition

So far, we have assumed that priorities are assigned to tasks in some way that character-
izes their urgency, but not necessarily in relation to their repetition periods (or deadlines).

24 CHAPTER 2. FIXED PRIORITY SCHEDULING – A SIMPLE MODEL

18

τ1

τ2

6 12

time

Figure 2.6 Timing diagram for Example 2.5

Consider, instead, assigning priorities to tasks in rate-monotonic order, i.e. in the inverse
order to their repetition periods. Assume that task deadlines are the same as their peri-
ods. It can then be shown that if under a rate-monotonic allocation an implementation is
infeasible then it will be infeasible under all other similar allocations.

Let time=0 be a critical instant, when invocations to all tasks arrive simultaneously.
For an implementation to be feasible, the following condition must hold.

Condition C5
� The first deadline for every task must be met.
� This will occur if the following relation is satisfied:

n
�

21=n�1
�
�

n

∑
i=1

Ci=Ti

For n = 2, the upper bound to the utilization ∑n
i=1 Ci=Ti is 82:84%; for large values of n

the limit is 69:31%.
This bound is conservative: it is sufficient but not necessary. Consider the following

example.

Example 2.5

Priority Period Comp.time
τ1 1 6 4
τ2 2 12 4

In this case (Figure 2.6), the utilisation is 100% and thus fails the test. On the other
hand, it is quite clear from the graphical analysis that the implementation is feasible as
all deadlines are met.

2.5 Exact analysis

Let the worst-case response time be the maximum time between the arrival of an invo-
cation and the completion of computation for that invocation. Then an implementation

2.5. EXACT ANALYSIS 25

time

Tj

t0t

j

Figure 2.7 Inputs([t; t0); j) = 5

is feasible if at each priority level i, the worst-case response time ri is less than or equal
to the deadline Di. As before, we assume that the critical instant is at time=0.

If every task τj, j < i, has higher priority than τi, the worst-case response time Ri is

Ri = Ci +
i�1

∑
j=1
d Ri

Tj
e�Cj

In this form, the equation is hard to solve (since Ri appears on both sides).

2.5.1 Necessary and sufficient conditions

In this section, we show how response times can be calculated in a constructive way
which illustrates how they are related to the number of invocations in an interval and
the computation time needed for each invocation.

For the calculation, we shall make use of half-open intervals of the form [t; t0), t < t0,
which contain all values from t up to, but not including, t0.

We first define a function Inputs([t; t0); j), whose value is the number of events at pri-
ority level j arriving in the half-open interval of time [t; t0) (see Figure 2.7):

Inputs([t; t0); j) = dt0=Tje�dt=Tje
The computation time needed for these invocations is

Inputs([t; t0); j)�Cj

So, at level i the computation time needed for all invocations at levels higher than i
can be defined by the function Comp([t; t0); i):

Comp([t; t0); i) =
i�1

∑
j=1

Inputs([t; t0); j)�Cj

26 CHAPTER 2. FIXED PRIORITY SCHEDULING – A SIMPLE MODEL

Let the response time at level i in the interval [t; t0) be the value of the function R(t; t0; i).
Let the computation time needed at level i in the interval [t; t0) be t0� t. The total compu-
tation time needed in this interval for all higher levels 0 : : :i�1 is Comp([t; t0); i); if this
is zero, the processor will not be pre-empted in the interval and the whole of the time will
be available for use at level i. Now suppose that the total computation time needed in the
interval for the higher levels is not zero, i.e. Comp([t; t0); i)> 0. Then the response time
at level i cannot be less than t0+Comp([t; t0); i). This can be generalized to the following
recursive definition of the function R(t; t0; i):

R(t; t0; i) = if Comp([t; t0); i) = 0 then t0

else R(t0; t0+Comp([t; t0); i); i)

Another way to explain this is to note that in the interval [t; t0), the computation still to
be completed at time t0 (which is just outside the interval) is

(t0� t)� ((t0� t)�Comp([t; t0); i)) = Comp([t; t0); i)

The value of the function R at level i is the time when there is no computation pending
at level i or any higher level, i.e. Comp([t; t0); i) = 0, and the whole of the interval [t; t0)
has been used for computation.

The worst-case response time at level i can then be defined as

Ri = R(0;Ci; i)

If no computation is needed at levels 0 : : :i� 1, then the response time at level i is
the computation time Ci; otherwise, add to Ci the amount of time needed at the higher
levels. The object is to ‘push’ the estimated response time forward in decreasing jumps
until eventually Comp([t; t0); i) = 0. Computation of Ri will terminate, i.e. the jumps are
guaranteed to be diminishing, if the average load relation (Condition C4) is satisfied, i.e.

i

∑
j=1

�
Cj�

Mi=Tj

Mi

�
� 1

2.5.2 Proof of correctness

We now show that the solution to the equation

Ri = Ci +
i�1

∑
j=1
d Ri

Tj
e�Cj

given in terms of the function R is correct.
First observe that since the function Comp has been defined over intervals, there is

some t2 such that

Comp([t1; t3); i) = Comp([t1; t2); i)+Comp([t2; t3); i); t1 � t2 � t3

2.5. EXACT ANALYSIS 27

Proof: Let the sum of the computation time needed in the interval [0; t) at the levels
0 : : :i� 1 plus the time needed at level i be t0. Then an invariant INV for the recursive
equation R is

INV : Comp([0; t); i)+Ci = t0

Step 1: the initial condition R(0;Ci; i) satisfies the invariant.
Step 2: by the induction hypothesis, R(t0; t0 + Comp([0; t); i); i) satisfies the invariant.
Further,

Comp([0; t0); i)+Ci = t0+Comp([t; t0); i)

Since for 0� t � t0, using interval arithmetic,

Comp([0; t0); i) = Comp([0; t); i)+Comp([t; t0); i)

we can substitute and simplify this to

Comp([0; t); i)+Ci = t0

This proves the induction step.
Step 3: on termination, Ri = t0 and

INV ^ Comp([t; t0); i) = 0

Substituting for INV gives

Comp([0; t0); i)+Ci = t0 ^ Ri = t0

and substituting for Comp gives
i�1

∑
j=1
d Ri

Tj
e�Cj

!
+Ci = t0 ^ Ri = t0

2

A necessary and sufficient condition for feasibility for a system with n priority levels
can now be defined.

Condition 6
8 i � 1� i� n; Ri � Ti

Note that unlike the sufficient Condition C5, this condition does not only apply to a rate-
monotonic order of task priorities; it can be used to check all deadlines Di where Ci �
Di � Ti.

The last two formulae can be shown to give Condition C4 by substituting Mi for t0:

i�1

∑
j=1

(Mi=Tj)�Cj +(Mi=Ti)�Ci < Mi

or
i

∑
j=1

�
Cj=Tj

� � 1

28 CHAPTER 2. FIXED PRIORITY SCHEDULING – A SIMPLE MODEL

2.5.3 Calculating response times

The function R can also be evaluated by rewriting it as a recurrence relation:

Rn+1
i = Ci +

i�1

∑
j=1
d Rn

i

Tj
e�Cj

where Rn
i is the response time in the nth iteration and the required response time is the

smallest value of Rn+1
i to solve this equation. In Chapter 3, the tasks τj of higher priority

than i will be collectively described by defining them as members of the set hp(i) and the
equation becomes

Rn+1
i = Ci + ∑

j2hp(i)

d Rn
i

Tj
e�Cj

To use the recurrence relation to find response times, it is necessary to compute Rn+1
i

iteratively until the first value m is found such that Rm+1
i = Rm

i ; then the response time is
Rm

i .
Programs can be written to use either the recursive or iterative way to find response

times. In the following examples we show how response times can be found by hand
calculation using the recursive definition.

Example 2.6 For the following task set, find the response time for task τ4.

Priority Period Comp.time
τ1 1 10 1
τ2 2 12 2
τ3 3 30 8
τ4 4 600 20

Substitution shows that the task set satisfies Condition C4:

i

∑
j=1

�
Cj�

600=Tj

600

�
� 1

The response time R4 is therefore

R(0;20;4) = if Comp([0;20);4) = 0 then20
elseR(20;20+Comp([0;20);4))

Comp([0;20);4) = Inputs([0;20);1)� 1
+Inputs([0;20);2)� 2
+Inputs([0;20);3)� 8

=2�1+2�2+1�8
=14

Repeat this calculation for R(20;34;4) by first computing

2.6. EXTENDING THE ANALYSIS 29

Comp([20;34);4)= Inputs([20;34);1)�1
+Inputs([20;34);2)�2
+Inputs([20;34);3)�8

=2�1+1�2+1�8
=12

Calculation of the function Comp must be therefore be repeated to obtain R(34;46;4):

Comp([34;46);4)= Inputs([34;46);1)�1
+Inputs([34;46);2)�2
+Inputs([34;46);3)�8

=1�1+1�2
=3

Comp([46;49);4)=2
Comp([49;51);4)=1
Comp([51;52);4)=0

Thus the response time R(0;20;4) = R(0;52;4) for task τ4 is 52.

2.6 Extending the analysis

The rate-monotonic order provides one way of assigning priorities to tasks. It is easy
to think of other ways: e.g. in deadline-monotonic order (if deadlines are smaller than
periods). Priorities can also be assigned to tasks in increasing order of slack time, where
the slack time for task τi is the difference Ti�Ci between its period and its computation
time. All these methods of assignment are static as the priority of a task is never changed
during execution. The method of analysis described in this chapter can be used for any
static assignment of priorities, but it does not provide a way of choosing between them.

So far, we have considered a very simple program model with independent tasks that
do not inter-communicate. This has made it possible to schedule tasks without regard to
any dependencies between them: any task with some incomplete computation is ready
and it can be scheduled whenever it is ready and the processor is free. This type of model
can be used for simple data-logging programs but most real-time programs have a more
complex structure. If tasks can communicate with each other, using shared memory or by
message passing, scheduling becomes far more complicated as it is not only time-driven.
A task can receive a message only after the message has been sent, so a receiving task
τ2 will not be ready to be scheduled until the corresponding sending task τ1 has been
scheduled, even if τ1 is of lower priority than τ2.

When analysis shows that no allocation of priorities to tasks is feasible, it may mean
that the single available processor is not sufficient to meet the processing load. Solutions
are then either to obtain a faster processor (thereby effectively reducing the computation
time for each task) or to add one or more processors. With multiple processors, there is
the question of exactly how the processing load is divided between the processors. When
tasks are statically assigned to processors, the analysis described here can be used for

30 CHAPTER 2. FIXED PRIORITY SCHEDULING – A SIMPLE MODEL

each processor. But two difficult problems are introduced: first, to find a good assignment
of tasks to processors so that response time requirements are met, noting that finding the
‘best’ assignment of tasks to processors is in general an NP-complete problem; second,
to account for communication between tasks over multiple processors, and without some
constraints this can make the analysis very difficult.

In Chapter 3, we shall consider a more elaborate program model which takes task com-
munication into account. And in Chapter 4, dynamic task priorities are introduced and it
is seen that their use permits more flexibility and better utilization of resources.

2.7 Historical background

The problem of assigning resources to tasks is old and has been studied using the tech-
niques of operations research (e.g. linear programming, dynamic programming). In this
context, its best-known form is job-shop scheduling, where components are processed
through a factory floor consisting of a number of machines. Effective job-shop schedul-
ing requires generating schedules to meet hard deadlines using some form of priorities.

The first important results in the scheduling of hard-real-time systems are usually at-
tributed to the classic paper by Liu and Layland (1973), which considered the question
of determining feasibility for a fixed set of independent, periodic tasks and identified the
critical instant at which all tasks are ready to start computation. Their method of analysis
and their proof of the optimality of the rate-monotonic order resulted in much subsequent
work being focussed on rate-monotonic scheduling (though, as we have seen here, other
fixed priority scheduling methods are also of importance).

Necessary tests (e.g. Joseph, 1985) for feasibility were replaced by necessary and suf-
ficient tests, together with a proof of correctness, in Joseph and Pandya (1986) where
response time analysis was used to determine the feasibility of any fixed priority order
with task deadlines Ci � Di � Ti. Harter (1987), working with a simple temporal logic
proof system, studied response time analysis for a program model that allowed procedure
calls between tasks at different priority levels. Lehoczky et al. (1989) studied systems
where Di = Ti (i.e. the Liu and Layland model) and developed a necessary and suffi-
cient condition for feasibility using workloads, in terms of processor utilization; Nassor
and Bres (1991) extended this to allow Di � Ti. Audsley et al. (1991) defined response
times using a recurrence relation, in which form it was used in other work (e.g. Audsley
et al. 1993a) and also in what is now commonly called the Rate Monotonic Book (Klein
et al., 1993). Lehoczky (1990) used workload analysis to provide two ways to deal with
cases where Di > Ti, and Tindell (1993) provided a more general analysis using response
times.

An excellent survey of work on fixed priority scheduling appeared in Audsley et al.
(1995).

2.8. EXERCISES 31

2.8 Exercises

Exercise 2.1 A real-time program has four tasks with the following characteristics:

Priority Period Comp.time
τ1 1 5 1
τ2 2 15 2
τ3 3 60 3
τ4 4 200 7

(a) Determine using a graphical method whether the program will meet its deadlines if
scheduled according to priorities but with no pre-emption.
(b) If scheduled with priorities and pre-emption, what is the response time for task τ2?

Exercise 2.2 Given the following task set with priorities assigned in rate-monotonic or-
der, check that task τ3 meets its deadline of 36.

Priority Period Comp.time
τ1 1 6 2
τ2 2 18 4
τ3 3 36 6

Exercise 2.3 In the following task set, the response time for task τ4 is smaller than for
task τ3:

Period Comp.time Resp. limit
τ1 10 1 10
τ2 12 2 12
τ3 40 8 40
τ4 600 20 30

Choose a suitable allocation of priorities to the tasks and show that the response time
limits for all tasks can be met.

Exercise 2.4 For the following task set:

Period Comp.time
τ1 100 1
τ2 10 4
τ3 14 6
τ4 50 8

check whether there is an assignment of priorities to tasks under which each task will
meet its deadlines.

Chapter 3

Advanced Fixed Priority Scheduling

Alan Burns and Andy Wellings

Introduction

In this chapter, we consider an extended computational model and describe some of the
more advanced methods of analysis that can be used. The features of the extended model
permit efficient resource sharing at run-time and the methods of analysis allow effective
prediction of the worst-case timing behaviour of an application.

The resources of a system include processors and communication media; on some sys-
tems there will also be disks and specialized hardware devices. Chapter 2 considered
ways in which a single processor could be shared between simple processes using dif-
ferent scheduling techniques. In a similar way, run-time scheduling can be used to share
other resources. There are two aspects to the use of any scheduling technique: the run-
time behaviour it produces, and the methods of analysis available for predicting tim-
ing properties. As before, the computational model will be defined independently of
the scheduling technique. The model defines the real-time software structure while the
scheduling technique defines how this is mapped onto the system at run-time. Not all
scheduling techniques can be used if accurate predictions of the resulting timing proper-
ties are needed.

3.1 Computational model

Most embedded real-time systems are inherently parallel in nature and the extended com-
putational model allows the definition of concurrent tasks, each of which can be invoked
repeatedly. Tasks may be periodic or sporadic. A periodic task is released by a timer
event and a sporadic task by an event originating either from another task or from the en-
vironment of the system (typically as an interrupt). In Chapter 2, we considered events
to be unbuffered and to be lost if they were not processed in time. Here we assume in-
vocation events to be persistent: a periodic task that overruns into its next release period
can continue directly with its next invocation.

32

3.1. COMPUTATIONAL MODEL 33

Periodic and sporadic tasks have a minimal inter-arrival time T. Sporadic tasks may
also have global constraints, such as the maximum number of invocations in a period. For
example, a sporadic task may have an inter-arrival time of 1 ms and the restriction that no
more than four invocation events occur in any 10 ms interval. As before, we shall be con-
cerned with the worst-case response time R of a task. For a given scheduling technique,
R represents the predicted latest possible task completion time, relative to its invocation
event. We shall assume that the number N of tasks is fixed. In a distributed system with
many processing nodes, each task is statically allocated to one node. Tasks may commu-
nicate with each other asynchronously through a protected shared object (PSO) which
ensures mutual exclusion over the shared data. Tasks effectively perform atomic read
and write operations on the shared object; we shall see later how this can be assured by
a scheduling technique. This form of asynchronous communication ensures that a task’s
behaviour is simple (and hence predictable). Apart from waiting for access to PSOs,
a task will proceed from its invocation event to the completion of that invocation in a
straightforward way. The scheduling technique will ensure that tasks are blocked for the
minimum time when attempting to access PSOs. A task execution must not voluntarily
suspend itself during an invocation. For example, a task which sets up an input opera-
tion from an external device, and which must wait for a minimum time before reading the
input value, cannot delay itself. Instead, the operation must be implemented using two
tasks with the delay represented by setting a time offset between their executions. An
alternative to asynchronous communication would be to allow tasks to exchange data di-
rectly, e.g. using an Ada rendezvous so that a PSO would then not be needed. As a task
can always be used to implement a PSO, it is clear that there is no fundamental distinc-
tion between the two approaches. But we shall show that asynchronous communication
allows enough flexibility in program design and permits efficient scheduling.

A software system therefore consists primarily of tasks and PSOs; like tasks, PSOs
may be distributed over the nodes of a distributed system. To deal with the typical timing
requirements of real-time systems we add the mechanism of a transaction to link input
and output activities that have associated deadlines. A transaction may be periodic, with
a deadline relative to some initial timing event, or sporadic, with a deadline relative to
an input event. Transactions will be used to reflect end-to-end properties, i.e. from an
input event to an output response. In a distributed system, input and output may be on
different nodes and an end-to-end property may therefore cross node boundaries.

3.1.1 Example of transactions

Transactions are implemented using tasks and PSOs. A simple (non-distributed) transac-
tion may be implemented as a single task but, more typically, a transaction will involve
a number of tasks related in some precedence order.

For example, consider a simple periodic transaction consisting of three tasks, τ1, τ2
and τ3. Assume that data is processed by the tasks in the order τ1, τ2 and τ3. Let the
precedence order over the tasks be represented by the operator �.

34 CHAPTER 3. ADVANCED FIXED PRIORITY SCHEDULING

P

S

A Data Flow

A Control Flow (Release of a Sporadic Process

A Protected Shared Object

A Sporadic Process

A Periodic Process

τ1
P

τ2
P

τ3
P

Figure 3.1 First implementation (with key)

Then, for the ith invocation of each task,

8i � (τ1; i)� (τ2; i)� (τ3; i) (3.1)

Thus the ith invocation of τ1 is completed before the ith invocation of τ2 begins, and
likewise for τ2 and τ3. Invocation numbers can often be omitted for straightforward re-
lations.

Figures 3.1, 3.2 (and 3.3) and 3.4 represent three different ways of implementing this
transaction within the computational model.

In all three implementations, τ1 is a periodic task (since the transaction is periodic); in
Figure 3.1, τ2 and τ3 are also periodic and have the same period as τ1 but their releases
are offset in time. Let these offset values be represented as O2 and O3. In order for (3.1)
to be satisfied, the scheduling technique must ensure

R1 < O2 (3.2)

and

R2 +O2 < O3 (3.3)

For the deadline D of the transaction to be met:

O3+R3 < D (3.4)

In Figure 3.2, τ2 and τ3 are sporadic tasks released by τ1 and τ2 respectively. τ1 writes
to PSO1 and then sends an event to τ2 as its final action for that invocation. This is a

3.1. COMPUTATIONAL MODEL 35

P S S
τ1 τ2 τ3

PSO1 PSO2

Figure 3.2 Second implementation (showing PSOs)

P S
t1 t2 t3

P

Figure 3.3 Second implementation (PSOs not shown)

commonly needed pair of operations and there is therefore an advantage in combining
them into a single operation; we shall see in Section 3.3 that this has been done in Ada 95.
We shall use a combined operation in subsequent diagrams, for example by redrawing
Figure 3.2 as Figure 3.3; note that the arrow denoting control flow now also implies a
possible data flow.

Relation 3.1 is satisfied by definition in this second implementation. To meet the trans-
action requirement, the following condition must be met:

R1 +R2+R3 < D (3.5)

The second implementation has the advantage that its overall worst-case response time
is likely to be less than that provided by the first implementation. This is because the
timer events are spread out (e.g. because the hardware platform may not be able to sup-
port the release of periodic tasks at arbitrary times). Hence O2 may be somewhat larger
than R1, and the scheduling technique may be able to guarantee (3.5) but not (3.4).

There is another property of the second implementation which may, or may not, be an
advantage. Not only may the worst-case response time be less but the average- and best-
case response times may also be less. Response times are calculated for the maximum
load, and for certain patterns of invocation the load may be much less than the maximum.
Hence, in the second implementation, data could ripple quickly through the system.

It is not always possible to guarantee that timing properties are strictly met. For exam-
ple, a periodic event may in fact occur at times either a little before or a little later than
its strict period. This jitter can have many effects and certain control applications may

36 CHAPTER 3. ADVANCED FIXED PRIORITY SCHEDULING

P S P
τ1 τ2 τ3

Figure 3.4 Third implementation

become unstable if results are output too early. So, in addition to a deadline, a transac-
tion may need to have a maximum output jitter defined: e.g. to produce output within
the interval [D� J, D], where J is a jitter constant.

Assume, for illustration, that the minimum response time of all tasks is 0. Then the
second implementation has an output bound of [0, R1 +R2 +R3], while the first imple-
mentation has a much tighter bound of [O3, O3+R3] and this may make it conform more
closely to the requirements.

The third implementation (Figure 3.4) attempts to combine the best features of the two
earlier attempts by keeping the end-to-end response time small without making the tim-
ing conditions too rigid. Here τ2 is sporadic but τ3 is periodic. This implementation has
the same bound on its output as for the second implementation (i.e. [O3, O3 +R3]) but
has a potentially lower value for O3:

R1 +R2 < O3 (3.6)

The advantages of the third implementation increase with the number of tasks in the trans-
action. For example, if there are ten tasks it is still only the first and last tasks that need
to be periodic.

In general, tasks may be associated with more than one transaction and the precedence
relations between tasks can include branching and joining. Even with the simple example
described above, it is clear that there are a number of design choices to be made. It is
the role of a design method to provide the means by which a task set corresponding to
a computational model is obtained from the system specification. Design methods will
not be considered here in detail but some references can be found in Section 3.5.

3.1.2 Allocation

To prevent a task from suspending itself while accessing PSOs, the computational model
must impose restrictions on remote actions (i.e. actions from one processing node to an-
other): a task may read or write from a local PSO, may write to a remote PSO but may
not read from a remote PSO.

To read from a remote PSO would involve suspending the task and would require the
underlying execution environment to support a remote procedure call (RPC) mechanism.
Unfortunately, RPC mechanisms are not usually amenable to timing analysis because of

3.1. COMPUTATIONAL MODEL 37

R1
P

P

P
R2

W

Figure 3.5 Centralized readers and writer

R1

R2W

N N

P P

PP

Copy

Figure 3.6 Distributed readers and writer

the effects of the communications network and the remote processor. By restricting the
model, all that is required from the execution environment is an asynchronous message
transfer feature that can place data in a remote PSO or release a remote sporadic task for
execution.

The disadvantage of this restriction is that it may be difficult to distribute a program
across a set of nodes. For example, to take an extreme case, if all the tasks in a program
read from one PSO, they would all need to be located on the same node as the PSO. How-
ever, in practice, programs are not often so centralized and simple transformations to the
program structure can usually make distributed allocation possible.

Consider a program with one PSO that is read by two tasks (R1 and R2) that must be
allocated to different nodes because they interact directly with devices on these nodes.
Clearly, the PSO can only be in one place and so the program structure must be changed
to use two PSOs. Then data can be copied from the original PSO to one that is local to
the task that does not have direct access. The copying can be done in a number of ways.
If the two tasks are periodic, an additional periodic task can be used with a release time,
period and deadline chosen so that data will appear in the second PSO in time for it to be
read (locally). This transformation of the program is illustrated in Figures 3.5 and 3.6.
where the outer box depicts a node boundary.

The restriction over remote access forces all significant computational events to be ex-
plicitly represented in the system description. Analysis can then be applied to all the rel-
evant components and the effect of the addition of a new periodic task is easily analyzed.

38 CHAPTER 3. ADVANCED FIXED PRIORITY SCHEDULING

It is not easy to analyze the timing properties of an operating system’s RPC mechanism
which automatically generates task stubs.

3.1.3 Summary

We have informally introduced a computational model that is appropriate for resource
sharing in distributed real-time systems. The main features of this model are summarized
below.

Extended program model
� A program consists of tasks and Protected Shared Objects (PSOs).
� Tasks and PSOs may be distributed over a physical system.
� The important timing properties of tasks and PSOs are known.
� A task’s behaviour consists of a potentially unbounded series of invocations, each

released by an invocation event. A task must not voluntarily suspend itself during
an invocation.

� Periodic tasks are released by local timer events.
� Sporadic tasks are released by events originating in either another (possibly re-

mote) task, or from the environment of the system.
� PSOs provide mutually exclusive access to the data shared between tasks.
� Tasks may write to any PSO, but can only read from local PSOs.
� Transactions are defined using precedence relations between tasks and are used to

represent end-to-end timing properties.

3.2 Advanced scheduling analysis

In Chapter 2, the exact analysis was based on fixed priority pre-emptive scheduling and
tasks were independent and periodic. Many of these restrictions will now be relaxed.

For the simple model, the timing attributes of a task consisted of its period T, its worst-
case execution time C, a deadline D and its priority P. A recurrence relationship was
defined for the worst-case response time (or completion time) R for each task, assuming
that a fixed number N of tasks were executed on the processing node. The recurrence
relation for task τi was:

Rn+1
i = Ci + ∑

j2hp(i)

d Rn
i

Tj
e�Cj (3.7)

where hp(i) is the set of tasks of higher priority than τi, and R0 is given an initial value of
Ci (although more efficient initial values can be found). The value R can be considered
to be a ‘computational window’ into which C must be accommodated. When Rn

i is equal
to Rn+1

i , then this value is the worst-case response time, Ri, and the goal is to ensure that
this is less than Di.

3.2. ADVANCED SCHEDULING ANALYSIS 39

We shall now generalize equation (3.7) so that it can be used for the computational
model described in the previous section:

� Tasks interact through PSOs (this requires the use of a ‘priority ceiling’ protocol).
� Tasks may have sporadic (non-periodic) executions.
� There may be jitter over the release time of a task.
� Task deadlines may take any values – including D > T.
� A task may have internal deadlines and external deadlines that occur before exe-

cution of the task is completed.
� Task priorities should be assigned optimally (even when D > T).
� Account must be taken of the execution time overheads.

Each of these issues is considered in the following sections.

3.2.1 Worst-case execution time

We have already seen that it is necessary to find the worst-case execution time of a task.
In addition to processing time, it may also be necessary to estimate the time for delays in
communication and disk access.

The worst-case execution time C can be found either by measurement or by analysis.
Measurement is most useful to validate figures obtained by analysis but when used on its
own it is hard to be sure when the worst-case has been observed. The difficulty in using
analysis is that an accurate model of the processor (including caches, pipelines, memory
wait states, etc.) must be available.

Techniques used for timing analysis usually require two steps: first decompose the
code of a task into a directed graph of basic blocks which represent straightline code,
then use the processor model to estimate the worst-case execution time.

Once the times for all the basic blocks are known, the directed graph can be collapsed.
For example, for a simple alternative statement, the two basic blocks can be reduced to
a single value (i.e. the larger of the two values for the alternative blocks). Similarly,
loops can be collapsed using knowledge about maximum repetition bounds. More so-
phisticated graph reduction techniques can be used if sufficient semantic information is
available. For a simple example, consider the following code:

for I in 1..10 loop
if Cond then
-- 100 time unit basic block

else
-- 10 time unit basic block

end if
end loop

With no further information, the total timing ‘cost’ of this fragment would be 10�
100+ loopoverhead, giving a total of over 1000. But static analysis of the code may
show that Cond is only true for, at most, three iterations, leading to a less pessimistic
timing cost.

40 CHAPTER 3. ADVANCED FIXED PRIORITY SCHEDULING

PSO request

task release task competion

PSO release

pr
io

ri
ty

time

τ1

τ2

τ3

Figure 3.7 Execution sequence without ceiling priorities

3.2.2 Task interactions and ceiling priority algorithms

When tasks interact through PSOs, fixed priority scheduling can give rise to the phe-
nomenon of priority inversion. Consider three tasks τ1, τ2 and τ3 and assume that τ1 has
the highest priority and τ3 the lowest. Assume also that τ1 and τ3 communicate through
PSO1. However rarely τ1 and τ3 may compete for access to PSO1, there will be occasions
for which τ3 has gained access to the shared object just as τ1 is released for execution. τ1
will pre-empt τ3 because of its higher priority but it will also be blocked as τ3 has already
obtained exclusive access to PSO1.

This blocking is unavoidable but it is important to bound the delay and, ideally, to make
it short. If τ2 is released during the execution of τ1, then we have a situation in which
τ1 is blocked by τ3, and τ3 is pre-empted by τ2. The blocking will last for the entire
execution time of τ2. The condition under which a lower priority process is executing
(i.e. τ2) when a higher priority process (i.e. τ1) is blocked is called priority inversion.
This is illustrated in Figure 3.7. A scheduling technique must aim to minimize the time
during which priority inversion occurs.

The solution is to adopt some form of priority inheritance; we describe one method in
this section and refer to others in Section 3.5.

The method considered here is known as Immediate Ceiling Priority Inheritance
(ICPI). With ICPI, all PSOs are assigned a priority equal to the maximum priority of any
task that uses it. This is its ceiling priority. Whenever a task accesses a PSO, its priority

3.2. ADVANCED SCHEDULING ANALYSIS 41

τ2pr
io

ri
ty

time

τ1

τ3

Figure 3.8 Execution sequence with ceiling priorities

is immediately raised to this ceiling level. Where a PSO is accessed externally (from a
remote node), the priority assigned by the execution environment (the operating system)
must be used and, typically, this will be higher than any local task priority.

As a task cannot be pre-empted by another task of equal or lower priority, only one task
can ever be executing within a PSO.1 Thus mutual exclusion, the fundamental property
of a PSO, is guaranteed for single processor systems by this inheritance protocol. In ad-
dition, ICPI has another important property:

� A task may be blocked when it is released but only by a single lower priority task;
once it has started executing it will not be blocked again (although it may, of course,
be pre-empted by a higher priority task).

When a task is released, there may be a lower priority task currently executing with a
ceiling priority of equal or higher priority. When this task has left the PSO and had its
priority returned to a lower value, the released task will pre-empt it and start executing.
As a task does not voluntarily suspend itself during its execution, no further lower priority
task can gain access to any PSOs that the released task may require. Hence it proceeds
through its execution without further blocking. This is illustrated in Figure 3.8 which
represents the same behaviour as Figure 3.7, but with ICPI.

1To ensure this safety property, a pre-empted task must be placed at the front of the run queue (for its
processor and its priority) if it must give way to a higher priority task. This ensures that it will run before
any other task of the same priority. An alternative is to give the PSO a ceiling priority higher than any
calling task.

42 CHAPTER 3. ADVANCED FIXED PRIORITY SCHEDULING

As a task is only blocked at the beginning of its invocation it is only blocked once. And
as a task does not start executing before it is blocked, the context switching overheads
of the protocol are low. Other protocols involve executing the task, context switching to
the blocking task, executing it and then context switching back again.

The final key property of ICPI is that it ensures that use of PSOs by tasks is deadlock
free. As a task is not blocked more than once, no circular blocking dependencies can
exist. It is not possible to write a program that will deadlock when executed with fixed
priorities and ICPI.

In the analysis that follows, the maximum blocking factor will be denoted by B, which
is easily calculated: it is the maximum time for which any lower priority task can execute
with a ceiling priority equal to or greater than that of the task under consideration:

Bi = max
τj2lp(i)

(max
obj2pso(i)

(usage(τj;obj))) (3.8)

where lp(i) is the set of tasks with lower priority than τi, pso(i) is the set of PSOs with a
ceiling priority greater than or equal to the priority of τi and usage gives the worst-case
execution time of task τj in object obj.

Recall that the only way a task can obtain a ceiling priority is to access a PSO. The basic
recurrent equation of Chapter 2 can easily be modified to include the blocking value:

Rn+1
i = Bi + Ci + ∑

j2hp(i)

�
Rn

i

Tj

�
Cj (3.9)

Note that while interference increases as you go down the priority order, blocking does
not: a task can be blocked at most once.

3.2.3 Sporadic tasks and release jitter

In the simple model all tasks were assumed to be periodic and to be released with perfect
periodicity: i.e. if task τi has period Ti then it was assumed to be released with exactly
that frequency. Sporadic tasks can be incorporated into the model by assuming that they
have some minimum inter-arrival interval. However, this is not a realistic assumption.
Consider a sporadic task τs that is released by a remote periodic task τp and τp � τs; e.g.
the first two tasks in Figures 3.3 and 3.4 could have this relationship. The period of the
first task is Tp and the sporadic task will have the same period, but it is incorrect to as-
sume that the maximum load (or interference) that τs exerts on low priority tasks can be
represented in equations (3.7) or (3.9) as that of a periodic task with period Ts = Tp.

To understand the reason for this, consider two consecutive executions of τp. Assume
that the event that releases τs occurs at the end of the periodic task’s execution. On the
first execution of τp, assume that the task does not complete until its latest possible time,
i.e. Rp. However, on the next invocation assume there is no interference on τp so it com-
pletes within Cp. As this value could be arbitrarily small, let it be equal to zero. The two
executions of the sporadic task are then separated not by Tp but by Tp�Rp. Figure 3.9

3.2. ADVANCED SCHEDULING ANALYSIS 43

t

completion of periodic task and release of the sporadic task

release of periodic task

time

t+15 t+20

τP

Figure 3.9 Releases of sporadic tasks

illustrates this behaviour for Tp equal to 20, Rp equal to 15 and minimum Cp equal to
1 (i.e. two sporadic tasks released within six time units). Note that this phenomenon is
of interest only if τp is remote as, otherwise, the variations in the release of τs could be
accounted for by the standard equations.

To represent the interference caused by sporadic tasks upon other tasks correctly, the
recurrence relation must be modified. Let the maximum variation in a task’s release be
called its jitter, represented by J. (In the example above, τs has a jitter of 15.) Examina-
tion of Figure 3.7 and the way the recurrence relation was derived suggests that it should
be changed to the following:

Rn+1
i = Bi + Ci + ∑

j2hp(i)

�
Rn

i + Jj

Tj

�
Cj (3.10)

In general, periodic tasks do not suffer release jitter. An implementation may, however,
restrict the granularity of the system timer which releases periodic tasks. In this situation
a periodic task may also suffer release jitter. For example, a period of 10 with a system
granularity of 8 will lead to a jitter value of 6, i.e. the periodic task will be released for
its time=10 invocation at time=16. If response time R�i is to be measured relative to the
real release time, then the jitter value must be added to the previous response time:

R�i = Ri + Ji (3.11)

This assumes that the response time is smaller than Ti.

44 CHAPTER 3. ADVANCED FIXED PRIORITY SCHEDULING

3.2.4 Arbitrary deadlines

When Di, and hence possibly Ri, can be greater than Ti, the analysis must be changed
again. When Di � Ti, it is only necessary to consider a single release of each task. The
critical instant, when all higher priority tasks are released at the same time, represents
the maximum interference and hence the response time following a release at the criti-
cal instant must be the worst-case response time. However, when Di > Ti, a number of
releases must be considered.

Assume that the release of a task is delayed until all previous releases of the same task
have been completed. For each potentially overlapping release, define a separate window
w(q), where q is the serial number of the window (i.e. q = 0;1;2; :::). Equation (3.9) can
then be extended (ignoring jitter) as follows:

Rn+1
i (q) = Bi + (q+1)Ci + ∑

j2hp(i)

�
Rn

i (q)

Tj

�
Cj (3.12)

For example, with q = 2, three releases of task τi will occur in the window. For each
value of q, a stable value of w(q) can be found by iteration – as in equation (3.7). The
response time is

Ri(q) = Rn
i (q) � qTi (3.13)

e.g. with q = 2 the task started 2Ti into the window and hence the response time is the
size of the window minus 2Ti.

The number of releases that need to be considered is bounded by the lowest value of
q for which the following relation is true:

Ri(q) 6 Ti (3.14)

At this point, the task completes execution before its next release and the succeeding win-
dows do not overlap. The worst-case response time is then the maximum value found for
each q:

Ri = max
q=0;1;2;:::

Ri(q) (3.15)

Note that for D6 T, relation (3.14) is true for q = 0 and equations (3.12)and (3.13) can
be simplified into their original form.

To combine the use of arbitrary deadlines with the effect of release jitter, two alter-
ations must be made to this analysis. First, as before, the extent of interference must be
increased if any higher priority tasks have release jitter:

Rn+1
i (q) = Bi + (q+1)Ci + ∑

j2hp(i)

�
Rn

i (q)+ Jj

Tj

�
Cj (3.16)

The other change is in the structure of the task: if it is subject to release jitter then two
consecutive windows will overlap if its response time plus the extent of jitter is greater
than the period. To accommodate this, equation (3.13) must be altered:

Ri(q) = Rn
i (q) � qTi + Ji (3.17)

3.2. ADVANCED SCHEDULING ANALYSIS 45

a b c d

Figure 3.10 Task execution phases

3.2.5 Internal deadlines

As we shall see shortly (Section 3.2.7), it may be necessary for the model to take account
of the overheads of context switching between tasks and to ‘charge’ this to some task.
With realistic (i.e. non-zero) context switch times, the ‘deadline’ may well then not be at
the end of the context switch. Moreover, the last observable event may not be at the end
of the task execution and there may be a number of internal actions after the last output
event.

Figure 3.10 gives a block representation of a task execution (excluding pre-emptions
for higher priority tasks). Phase a is the initial context switch to begin the execution
of the task, phase b is the task’s actual execution time up to the last observable event,
phase c represents the internal actions of the task following the last observable event
and, finally, phase d is the cost of the context switch at the end of the task execution.
The ‘real’ deadline of the task is at the end of phase b.

Let CD be the computation time required before the real internal deadline (i.e. phases
a + b only), and CT the total computation time of the task in each period (i.e. all four
phases). Note there is no requirement to complete CT by T as long as CD is completed by
D. Hence, an adaptation of the analysis for arbitrary deadlines is required. If we include
the two phases of computation into equation (3.16) we obtain:

Rn+1
i (q) = Bi + qCT

i + CD
i + ∑

j2hp(i)

�
Rn

i (q)+ Jj

Tj

�
CT

j (3.18)

Combined with equations (3.17), (3.14) and (3.15), this allows the worst-case response
time (RD

i) for CD
i to be calculated (assuming the maximum CT

i interference from early
releases of the task). It can be shown, trivially, that when the utilization of the processor
is less than 100% the response times for all tasks are bounded.2 What is important is that
RD

i is less than Di.

3.2.6 Priority assignment

One of the consequences of having arbitrary or internal deadlines is that simple algo-
rithms, such as those using rate-monotonic or deadline-monotonic assignment for de-

2Consider a set of periodic tasks with 100% utilization; let all tasks have deadlines equal to the LCM
of the task set. Clearly, within the LCM period, no idle time occurs and no task executes for more than it
needs, and hence all deadlines must be met.

46 CHAPTER 3. ADVANCED FIXED PRIORITY SCHEDULING

riving priority orderings are no longer optimal. In this section we state a theorem and
provide an algorithm for assigning priorities in these situations.

Theorem 3.1 If task τ is assigned the lowest priority and is feasible then, if a feasible
priority ordering exists for the complete task set, an ordering exists with τ assigned the
lowest priority.

If such a task τ is found, then the same reasoning can be applied to the task with the
lowest but one priority, etc., and a complete priority ordering is obtained (if one exists).

An implementation in Ada of the priority assignment algorithm is given below. Set

is an array of tasks that is ordered by priority, Set(1) being the highest and Set(N) the
lowest priority. The procedure Task Test tests whether task K is feasible at the current
position in the array. The nested loops work by first putting a task into the lowest position
and checking whether a feasible result is obtained. If this fails, the next higher priority
position is then considered, and so on. If at any time the inner loop fails to find a feasible
task, the whole procedure is abandoned. (Observe that a more compact algorithm can
be used if an extra Swap is performed.) If the test of feasibility is exact (necessary and
sufficient), then the priority ordering is optimal. Thus for arbitrary deadlines and internal
deadlines (without blocking), an optimal ordering can be found.

procedure Assign_Pri (Set : in out Process_Set; N : Natural;
Ok : in out Boolean) is

begin
for K in reverse 1..N loop

for Next in reverse 1..K loop
Swap(Set,K,Next);
Task_Test(Set,K,Ok);
Set(K).P := K;
exit when Ok;

end loop;
exit when not Ok;

end loop;
end Assign_Pri;

3.2.7 Overheads

Simple scheduling analysis usually ignores context switch times and queue manipula-
tions but the time for this is often significant and cannot realistically be assumed to be
negligible.

If a second processor is used to perform context switches (in parallel with the applica-
tion/host processor) there will still be some context switch overhead. And when a soft-
ware kernel is used, if the actual timing of operations models is not known a safely large
overhead must be assumed. In addition, the interrupt handler for the clock will usually
also manipulate the delay queue. When there are no tasks in the delay queue the cost may
be only a few microseconds but if an application has, say, 20 periodic tasks that have a

3.2. ADVANCED SCHEDULING ANALYSIS 47

common release, the cost of moving all 20 tasks from the delay queue to the run queue
may take hundreds of microseconds.

Context switch times can be accounted for by adding these times to the task that causes
the context switch. For periodic tasks, the worst-case time for returning a task to the delay
queue and switching back to a lower priority task may depend on the longest possible
size of the delay queue (i.e. on the number of periodic tasks in the application). In most
execution environments, the context switching will be performed by a non-pre-emptable
section of code and will therefore itself give rise to blocking. For example, if a clock
interrupt occurs once a low priority task has begun to suspend itself then the interrupt
will be delayed. If this interrupt leads to a high priority task being released then it will
also be delayed. Equation (3.8) should therefore have the form:

Bi = max(max
τj2lp(i)

(max
obj2pso(i)

(usage(τj;obj)));CE) (3.19)

where CE is the maximum non-pre-emptible execution time in the kernel.
To take account of the delay queue manipulations that occur in the clock interrupt han-

dler (i.e. at one of the top priority levels) adequately, the overheads caused by each pe-
riodic task must be computed directly. It may be possible to model the clock interrupt
handler using two parameters, CCLK (the overhead occurring on each interrupt assuming
that tasks are on the delay queue but none are removed), and CPER (the cost of moving
one task from the delay queue to the run-queue). Equation (3.7) thus becomes:

Rn+1
i = Ci+∑j2hp(i)

l
Rn

i
Tj

m
Cj +

l
Rn

i
TCLK

m
CCLK

+∑f2pts

l
Rn

i
Tf

m
CPER (3.20)

where pts is the set of periodic tasks.
For a sporadic task (released by an interrupt), it is necessary to account for the inter-

rupt handler’s execution time. For most hardware systems, this handler will execute with
a priority higher than the released sporadic task. In fact, it may well be higher than any
application task. To account for this extra overhead, equation (3.20) must have an addi-
tional term included:

Rn+1
i = Ci+∑j2hp(i)

l
Rn

i
Tj

m
Cj +

l
Rn

i
TCLK

m
CCLK

+∑f2pts

l
Rn

i
Tf

m
CPER +∑g2sts

l
Rn

i
Tg

m
CINT (3.21)

where sts is the set of sporadic tasks released by interrupts, and CINT is the system inter-
rupt cost (assuming a fixed cost for all interrupts). The other extensions to equation (3.7)
would have to incorporate these changes similarly.

3.2.8 Analysis for system transactions

All these methods of analysis allow the worst-case response times for each individual task
to be predicted. However, as we noted in the discussion on computational models, the

48 CHAPTER 3. ADVANCED FIXED PRIORITY SCHEDULING

timing requirements usually refer to the end-to-end time for transactions running through
an entire system. Although some transactions may be realized by a single task, most are
not. The following discussion allows the system-level timing requirements to be verified.
This will be done by examining a number of examples. In these illustrations it is assumed
that the worst-case response times (R) of the tasks are known.

Case I – a simple control loop

The simplest example is that of a periodic task which reads an input from the environment
and produces a control output. The basic requirement for this task is to work at a specified
rate (i.e. have a fixed period) and to deliver its output within a known bounded time (this
is usually referred to as its deadline, D). With this simple structure, verification is needed
to check simply that R6D.

Case II – responding to an event using a sporadic task

A deadline can also be placed on the response time of the system to some external event
that manifests itself as an interrupt. Mapping the interrupt onto the release conditions of
a sporadic task again requires simple verification that R6 D.

Case III – responding to an event using a periodic task

The external event may be the result of polling. In the worst case, the event will occur
just after the periodic polling is over and the next check will be in the next period. Hence
the required test is T +R6 D.

In Cases II and III, improvements can be made by using an internal response time
rather than the task’s final response time (see Section 3.2.5).

Case IV – precedence chain on the same processor

Figure 3.3 gave an example of a transaction consisting of three tasks, the last two being
sporadic tasks released by the completion of a predecessor. One way of structuring this
chain on one processor is to assume that all three tasks are released at the same time but
run in the correct order because the earlier tasks have higher priorities. The end-to-end
response time of the complete transaction is therefore equal to the response time of the
final sporadic task, or R3 6D. Note that this is a different formula to that given in equa-
tion (3.5). The value of R3 is measured relative to the start of the complete transaction
and therefore includes R1 and R2.

3.2. ADVANCED SCHEDULING ANALYSIS 49

Case V – a distributed precedence chain

In the previous example, assume now that communication between the second and third
tasks uses a communication link between independent processors. There still remains
an end-to-end transaction deadline but the analysis is now more complicated. When a
task releases a local sporadic task for execution, it is appropriate to assume that the re-
sponse time of the releaser incorporates the time needed to release the sporadic task. But
with a remote release this is not the case: the first task constructs the release message but
the underlying system software performs the actual transmission across the network (or
point-to-point link) and the release of the remote task. Assuming that M2 is the worst-
case communication delay for the the second task to release the third, the verification test
is then R2+M2 +R3 6D. Note that the response time for the third task is calculated ac-
cording to its priority on its processor, while the first and second tasks are assumed to be
on the same processor.

In calculating the response times for the tasks on the second processor it will be nec-
essary to take into account the release jitter of the third task (see Section 3.2.3). If we
assume that the third task can be released arbitrarily close to the first, then J3 = R2+M2.
This jitter value can be reduced if the minimum execution and communication times are
known.

The value of M (the message worst-case communication time) must be obtained from
an analysis of the communication medium. Protocols that use priority-based message
scheduling are available and with these the analysis presented in this chapter can be used
directly.

Case VI – a precedence chain using offsets

Figure 3.3 illustrated another means of implementing precedence relationships. In Sec-
tion 3.1.1 it was shown that the deadline test was O3 +R3 6 D. In general where tasks
interact asynchronously (i.e. via PSOs) the key question is: how old is the data when the
receiving task actually reads it?

As with remote sporadic releases, writing to a remote PSO has a communication cost
that must be added to the data’s maximum age. It should also be noted that time offsets
can only be used to implement precedence relationships if the clocks on the two proces-
sors are synchronized. Let ∆ be the maximum drift between any two clocks. If, as before,
the second and third tasks are on different nodes, then the offset needed (relative to the
release of τi) is O3 >O2 +R2 +M2+∆.

3.2.9 Summary

The simple scheduling analysis presented in Chapter 2 has been extended to incorporate
the realistic characteristics of a more general computational model. The main new fea-
tures are listed below:

50 CHAPTER 3. ADVANCED FIXED PRIORITY SCHEDULING

� the use of ICPI to implement mutual exclusion for PSOs and to provide a deadlock-
free efficient means for tasks to share access to PSOs,

� an improved method of analysis to cater for release jitter and arbitrary deadlines,
� analysis to cater for tasks with precedence relations,
� a general priority assignment algorithm,
� analysis to incorporate kernel overheads,
� analysis of system transactions.

Taken together, they allow the timing requirements of realistic applications to be verified.

3.3 Introduction to Ada 95

In order to implement the computational model introduced in Section 3.1 it is necessary
to use an implementation language that can support its features, and one such language
is Ada.

The Ada programming language has gone through a number of changes since its initial
design in the late 1970s. The current version, known as Ada 95, has a number of features
that make it suitable as the implementation language for real-time systems. In particular
it:

� provides features to implement tasks and PSOs directly,
� supports pre-emptive priority-based scheduling, and
� permits distribution of tasks and PSOs over a system.

Being a general purpose programming language, Ada also has a number of other fea-
tures but in the following overview we focus mainly on the ‘real-time’ features.

3.3.1 Tasks and protected objects

Concurrent tasks can be declared statically or dynamically (though static declarations are
sufficient for the computational model).

A task type has a specification and a body. If direct synchronous communication be-
tween tasks is required, then the specification must declare entries that can be called from
other tasks. With asynchronous communication, no entries are necessary. Instead pro-
tected objects are used and these are described below. An example of a task type and
some task objects follows:

task type Controller;
Con1, Con2 : Controller;
task body Controller is

-- internal declarations
begin
-- code to be executed by each task

end Controller;

This defines two task objects Con1 and Con2. The task body will usually contain a loop

3.3. INTRODUCTION TO ADA 95 51

that will enable the task to execute repetitive actions.
A protected object type defines data that can be accessed mutually exclusively by tasks.

For example, the following simple object allows client tasks to read and write a shared
integer data item:

protected type Shared is
procedure Read(D : out Integer);
procedure Write(D : Integer);

private
Store : Integer := Some_Initial_Value;

end Shared;
Simple : Shared;
protected body Shared is

procedure Read(D : out Integer) is
begin
D := Store;

end Read;
procedure Write(D : Integer) is
begin
Store := D;

end Write;
end Shared;

In addition to mutual exclusion, a protected object can also be used for conditional
synchronization. A calling task can be suspended until released by the action of some
other task, in the following example by a call to Update with a negative value:

protected Barrier is
-- note this defines a single object of an anonymous type
entry Release(V : out Integer);
procedure Update(V : Integer);

private
Store : Integer := 1;

end Barrier;
protected body Barrier is

entry Release(V : out Integer) when Store < 0 is
begin
V := Store;

end Release;
procedure Update(V : Integer) is
begin
Store := V;

end Update;
end Barrier;

As Release is a conditional routine, it is defined as an entry. To make a call on this pro-
tected object a task would execute

Barrier.Release(Result); -- where Result is of type integer

52 CHAPTER 3. ADVANCED FIXED PRIORITY SCHEDULING

To construct a single processor multi-tasking program, all tasks and objects are defined
either in library units or at the topmost level of the main procedure. (In Ada, tasks can
be arbitrarily nested. However, this is not required for the computational model.)

procedure Main is
-- declaration of protected objects
-- declaration of tasks

begin
null;

end Main;

All tasks and protected objects can be assigned priorities using the priority pragma. It
is also possible to use library units to define units of distribution and to define a task’s
call on a remote procedure to be asynchronous, but we shall not deal with that here.

3.3.2 Realising the computational model

The computational model requires periodic and sporadic tasks. A periodic task has a
fixed period which is controlled by a clock (see the Real-Time Annex of the Ada defi-
nition):

with Ada.Real_Time; use Ada.Real_Time;
procedure Main is

pragma Task_Dispatching_Policy(Fifo_Within_Priority);
task Example_Periodic is -- example task with priority 10

pragma Priority(10); -- and period 25ms
end Example_Periodic;
task body Example_Periodic is
Period : Time_Span := Milliseconds(25);
Start : Time;
-- other declarations

begin
Start := Clock;
loop
-- code of periodic
Start := Start + Period;
delay until Start;

end loop;
end Example_Periodic;

end Main;

Type Time is defined as an abstract data type in a predefined package.
A sporadic task needs a protected object to manage its release conditions and this is

enclosed in a package:

package Example_Sporadic is
procedure Release_Sporadic;

end Example_Sporadic;

3.4. THE MINE PUMP 53

package body Example_Sporadic is
task Sporadic_Thread is

pragma Priority(15);
end Sporadic_Thread;
protected Starter is

procedure Go;
entry Wait;
pragma Priority(15); -- ceiling priority

private
Release_Condition : Boolean := False;

end Starter;
procedure Release_Sporadic is
begin
Starter.Go;

end Release_Sporadic;
task body Sporadic_Thread is

-- declarations
begin

loop
Starter.Wait;
-- code of sporadic

end loop;
end Sporadic_Thread;
protected body Starter is

procedure Go is
begin
Release_Condition := True;

end Go;
entry Wait when Release_Condition is
begin
Release_Condition := False;

end Wait;
end Starter;

end Example_Sporadic;

The Wait entry must reset the release condition so that its next caller will be blocked
until Release Sporadic is called again. Variations of this basic structure can deal with
bursty releases (with the protected object buffering the releases) and data communication
through the protected object from the task that calls Release Sporadic to the sporadic
task.

If the sporadic task is to be released by an interrupt then the Go procedure is mapped
directly onto the interrupt source. An example of this is given in the mine pump example
in the next section.

3.4 The mine pump

Chapter 1 introduced the mine pump control problem. In this section we develop a design
using the computational model defined earlier. A simple decomposition of the system
identifies four major components:

54 CHAPTER 3. ADVANCED FIXED PRIORITY SCHEDULING

� the pump controller,
� the environmental monitors (for airflow, methane and carbon monoxide),
� the data logging subsystem,
� the operator’s subsystem.

The details of the data logging subsystem will be ignored and a protected object will be
used as the interface. Calls to the operator will similarly be mapped onto a protected
object. The operator can enquire about the status of the pump and attempt to turn the
pump on – these operations will be accommodated within the pump controller.

The timing requirements of the environmental monitors have a cyclic behaviour and so
these are represented as periodic tasks. The pump itself is a protected resource and is en-
capsulated within a PSO. Whenever the methane monitor reads a critically high methane
level it will call this PSO to turn the pump off.

The high and low water sensors come into the system as interrupts. It is therefore ap-
propriate to define sporadic tasks as the objects that respond to these interrupts and at-
tempt to either turn on or turn off the pump (via calls to the pump PSO).

Although this structure provides an adequate design, one piece of functionality is still
missing: after the methane level returns to low how is the pump turned on again? There
is also an issue of safety analysis that would normally be applied to this sort of system.
With the current design, the methane monitor and the pump controller are safety-critical.
It could be argued that the fail-silent behaviour of the monitoring subsystem should not
lead to failure (i.e. pump working while methane level too high). This leads to two extra
elements being added.

� a PSO Methane Status that holds the current methane level and the time at which
the data was read (these values are obtained from the methane monitor),

� a periodic task that reads the Methane Status PSO and sends control commands
to the pump controller.

With this structure the new periodic task has the responsibility for turning the pump on
again once the methane level is low enough.

Failure of the methane monitor will lead to a fail-safe state. Of course, this is not a fully
reliable situation as the pump would not be able to operate if the mine were flooding and
the methane level were low.

Figure 3.11 gives a pictorial representation of the design. Table 3.1 gives the details of
the tasks and PSOs (including a key to the labels used in Figure 3.11). Note that both spo-
radic tasks are released by the same PSO. The design could be implemented on a single
processor or a distributed system. Figure 3.12 gives one possible distributed configura-
tion. Note how all the remote actions are legal in the computational model. One advan-
tage of the design of this configuration is that the system fails-silent even when remote
communications are unreliable.

Table 3.1 shows, where appropriate, the periods and minimum arrival rates of the tasks.
It also includes the deadlines and priorities of the tasks (and hence the PSOs). A single
processor implementation is assumed and priorities are in the range 1 : : :10; unlike the
analysis in Chapter 2, 1 is the lowest and 10 the highest priority which is allocated to the

3.4. THE MINE PUMP 55

LS MS

interrupts
IH

HS
S S

CT

OP

SC P

MM

AM

CM

LO

P

P

Poperator

alarms

Figure 3.11 Design for the mine pump problem

S

alarms

S

interrupts

P

P

P

Poperator

MS

CT

N

NN

N

AM

CM

SC

LSHS

OP LO

MM

IH

Figure 3.12 Distributed design

interrupt handler. The protected shared objects are given a ceiling priority which is one
higher than the maximum priority of the tasks that use them.

56 CHAPTER 3. ADVANCED FIXED PRIORITY SCHEDULING

Table 3.1 Mine control tasks and protected objects
Name Class Label Symbol T D P
Methane Monitor Periodic MM τM 20 10 8
Air Monitor Periodic AM τA 30 20 7
COo Monitor Periodic CM τC 30 20 6
Operator Alarm PSO OP POa 9
Methane Status PSO MS POm 9
Logger PSO LO POl 9
Safety Checker Periodic SC τS 35 30 5
Controller PSO CT POc 9
Interrupt Handler PSO IH POi 10
High Sensor Sporadic HS τH 10000 100 3
Low Sensor Sporadic LS τL 10000 75 4

System transactions

The timing requirements of the mine pump system require the following transactions:

1. Emergency shut down following a high methane value reading (τM � POc); this
has a bound of 30 milliseconds.

2. Recognition of monitor failure, and pump shut down, (τS�POc); this has a bound
of 65 milliseconds.

3. Turning the pump on again when it is safe (τM � POm � τS � POc); the bound is
100 milliseconds.

4. Turning the pump on (if safe) when the water is high (POi� τH �POc); the bound
is 100 milliseconds.

5. Turning the pump off when the low water level has been reached (POi � τL �
POc); the bound is 75 milliseconds.

6. Signalling an alarm if any environmental condition warrants it (τM � POa, τA �
POa and τC � POa); the bound is 50 milliseconds.

Note that the data logging actions do not have explicit timing deadlines. The interrupts
for high and low water events cannot occur arbitrarily close to each other. It can be as-
sumed that no two interrupts can occur as close as five seconds or less (and hence no two
interrupts from the same source occur within ten seconds).

Given the rates at which the monitoring tasks execute, it is possible to define deadlines
for each task such that all transaction deadlines are met. These deadlines then dictate the
appropriate priority levels, values of which are included in Table 3.1. For example, τM

has a period of 20 ms and a deadline of 10 ms; hence in the worst-case POc will be called
30ms after the methane level goes high.

The deadlines (and hence the priorities) represented in Table 3.1 are not unique; other
allocations are possible. In general, there is a tradeoff between the period and the dead-
line of a monitoring task.

3.4. THE MINE PUMP 57

3.4.1 Ada 95 implementation

The design objects introduced in the previous section can be coded in Ada 95. The fol-
lowing program is for a single processor solution. All the necessary code is included,
apart from the instructions that interact with the hardware; these instructions are repre-
sented as comments as their actual form would depend upon the particular hardware be-
ing used.

Some basic types are first defined in a global package together with constants repre-
senting critical input values. For example, if the methane level from the sensor is above
32, then the pump should be disabled. The time-constant Freshness indicates the max-
imum time a data item should reside within POm without being overwritten by a more
recent reading. Its value is set to T +D for τm.

with Ada.Real_Time; use Ada.Real_Time;
package Data_Defs is

type Status is (On,Off);
type Safety_Status is (Stopped, Operational);
type Alarm_Source is (Methane, Air_Flow, Carbon_Monoxide);
type Methane_Value is range 0..256;
type Air_Value is range 0..256;
type Co_Value is range 0..256;
Methane_Threshold : constant Methane_Value := 32;
Air_Threshold : constant Air_Value := 100;
Co_Threshold : constant Co_Value := 124;
Freshness : constant Time_Span := Milliseconds(30);

end Data_Defs;

There are two main protected objects in the program: one gives the current methane
reading, the other controls the pump. First consider the simple Methane Status object:

protected Methane_Status is
procedure Read(Ms : out Methane_Value; T : out Time);
procedure Write(V : Methane_Value; T : Time);
pragma Priority(9);

private
Current_Value : Methane_Value := Methane_Value’Last;
Time_Of_Read : Time := Clock;

end Methane_Status;
protected body Methane_Status is

procedure Read(Ms : out Methane_Value; T : out Time) is
begin
Ms := Current_Value;
T := Time_Of_Read;

end Read;
procedure Write(V : Methane_Value; T : Time) is
begin
Current_Value := V;
Time_Of_Read := T;

end Write;
end Methane_Status;

58 CHAPTER 3. ADVANCED FIXED PRIORITY SCHEDULING

The pump controller is also a protected object. The sporadic tasks that respond to the
high and low water interrupts will call Turn On and Turn Off. The safety controller will
call Stop and Start. Only if the status of the pump is on (following a call of Turn On)
and the safety status is operational (i.e. no call of Stop) will the pump be actually started
(or restarted). The other subprogram defined in this object is called by the operator mod-
ule:

protected Controller is
procedure Turn_On;
procedure Turn_Off;
procedure Stop;
procedure Start;
procedure Current_Status(St:out Status;

Safe_St:out Safety_Status);
pragma Priority(9);

private
Pump : Status := Off;
Condition : Safety_Status := Stopped;

end Controller;
protected body Controller is

procedure Turn_On is
begin
Pump := On;
if Condition = Operational then
-- turn on pump

end if;
end Turn_On;
procedure Turn_Off is
begin
Pump := Off;
-- turn off pump

end Turn_Off;
procedure Stop is
begin
-- turn off pump
Condition := Stopped;

end Stop;
procedure Start is
begin
Condition := Operational;
if Pump = On then
-- turn on pump

end if;
end Start;
procedure Current_Status(St:out Status;

Safe_St:out Safety_Status) is
begin
St := Pump;
Safe_St := Condition;

end Current_Status;
end Controller;

3.4. THE MINE PUMP 59

For completeness, the two objects that form the interface between the system and the
operator and the data logger are as follows:

protected Operator_Alarm is
procedure Alarm(Al : Alarm_Source);
pragma Priority(9);

private
...

end Operator_Alarm;
protected Logger is

procedure Methane_Log(V : Methane_Value);
procedure Air_Log(V : Air_Value);
procedure Co_Log(V : Co_Value);
pragma Priority(9);

private
...

end Logger;

The periodic task that executes the safety check has a simple structure:

task Safety_Checker is
pragma Priority(5);

end;
task body Safety_Checker is

Reading : Methane_Value;
Period : Time_Span := Milliseconds(35);
Next_Start, Last_Time, New_Time : Time;

begin
Next_Start := Clock;
Last_Time := Next_Start;
loop
Methane_Status.Read(Reading, New_Time);
if Reading >= Methane_Threshold or

New_Time - Last_Time > Freshness then
Controller.Stop;

else
Controller.Start;

end if;
Next_Start := Next_Start + Period;
Last_Time := New_Time;
delay until Next_Start;

end loop;
end Safety_Checker;

The methane monitor is also a simple periodic task:

task Methane_Monitor is
pragma Priority(8);

end;

60 CHAPTER 3. ADVANCED FIXED PRIORITY SCHEDULING

task body Methane_Monitor is
Sensor_Reading : Methane_Value;
Period : Time_Span := Milliseconds(20);
Next_Start : Time;

begin
Next_Start := Clock;
loop
-- read hardware register into Sensor_Reading;
if Sensor_Reading >= Methane_Threshold then
Controller.Stop;
Operator_Alarm.Alarm(Methane);

end if;
Methane_Status.Write(Sensor_Reading,Next_Start);
Logger.Methane_Log(Sensor_Reading);
Next_Start := Next_Start + Period;
delay until Next_Start;

end loop;
end Methane_Monitor;

To complete the software for the periodic structures, the tasks for air monitoring and
carbon monoxide monitoring are as follows:

task Air_Monitor is
pragma Priority(7);

end;
task body Air_Monitor is

Sensor_Reading : Air_Value;
Period : Time_Span := Milliseconds(30);
Next_Start : Time;

begin
Next_Start := Clock;
loop
-- read hardware register into Sensor_Reading;
if Sensor_Reading <= Air_Threshold then
Operator_Alarm.Alarm(Air_Flow);

end if;
Logger.Air_Log(Sensor_Reading);
Next_Start := Next_Start + Period;
delay until Next_Start;

end loop;
end Air_Monitor;
task Co_Monitor is

pragma Priority(6);
end Co_Monitor;
task body Co_Monitor is

Sensor_Reading : Co_Value;
Period : Time_Span := Milliseconds(30);
Next_Start : Time;

3.4. THE MINE PUMP 61

begin
Next_Start := Clock;
loop
-- read hardware register into Sensor_Reading;
if Sensor_Reading >= Co_Threshold then
Operator_Alarm.Alarm(Carbon_Monoxide);

end if;
Logger.Co_Log(Sensor_Reading);
Next_Start := Next_Start + Period;
delay until Next_Start;

end loop;
end Co_Monitor;

The two sporadic tasks are closely related and can therefore be managed by the same
protected object:

package Flow_Sensors is
task High_Sensor is

pragma Priority(4);
end High_Sensor;
task Low_Sensor is

pragma Priority(3);
end Low_Sensor;

end Flow_Sensors;
package body Flow_Sensors is

protected Interrupt_Handlers is
procedure High; pragma Interrupt_Handler(High);
procedure Low; pragma Interrupt_Handler(Low);
entry Release_High; entry Release_Low;
pragma Priority(10);

private
High_Interrupt, Low_Interrupt : Boolean := False;

end Interrupt_Handlers;
protected body Interrupt_Handlers is

procedure High is
begin
High_Interrupt := True;

end High;
procedure Low is
begin
Low_Interrupt := True;

end Low;
entry Release_High when High_Interrupt is
begin
High_Interrupt := False;

end Release_High;
entry Release_Low when Low_Interrupt is
begin
Low_Interrupt := False;

end Release_Low;
end Interrupt_Handlers;

62 CHAPTER 3. ADVANCED FIXED PRIORITY SCHEDULING

Table 3.2 Worst case execution times
Name Class Symbol C
Methane Monitor Periodic τM 5:4
Air Monitor Periodic τA 3:3
CO Monitor Periodic τC 3:3
Safety Checker Periodic τS 3:5
Low Sensor Sporadic τL 2:9
High Sensor Sporadic τH 2:9
Interrupt Handler PSO POi 1:2
Controller PSO POc 1:4
Operator Alarm PSO POa 0:1
Methane Status PSO POm 1.2
Logger PSO POl 0:8

task body High_Sensor is
begin

loop
Interrupt_Handlers.Release_High; Controller.Turn_On;

end loop;
end High_Sensor;
task body Low_Sensor is
begin

loop
Interrupt_Handlers.Release_Low; Controller.Turn_Off;

end loop;
end Low_Sensor;

end Flow_Sensors;

This completes the code for all of the components of the design.

3.4.2 Analysis of the application

Once the code has been developed it must be analyzed to obtain its worst-case execution
times. As indicated in Section 3.2.1, these values can be obtained either by direct mea-
surement or by modelling the hardware. None of the code derived is likely to require
extensive computations and so it is reasonable to assume that a slow speed processor
is adequate. Table 3.2 contains some representative values for the worst-case execution
times for each task and PSO in the design. Note that the times for each task include time
spent executing within called PSOs. Hence, for example, τM will call POm and POl in
each period but will also call POc and POa when the methane is high. This gives a total
of 5.4 milliseconds of execution time.

The execution environment imposes its own set of important parameters – these are

3.4. THE MINE PUMP 63

Table 3.3 Overheads
Name Symbol C
Context Switch Time Ccw 0:2
Clock Period TCLK 5
Clock Overhead CCLK 0:4
Cost of Single Task Move CPER 0:3
Cost of Interrupt CINT 0:3
Maximum Kernel Blocking CE 1:1

given in Table 3.3. Note that the clock interrupt is of sufficient granularity to ensure no
release jitter for the periodic tasks.

Adding the context switch times to the task’s own computation times gives an over-
all computational load of 65.5%. The overheads of delay queue manipulations and the
servicing of the timer interrupt add a further load of 12.4%. Hence the total system uti-
lization is 77.9%.

The appropriate equations from Section 3.2 can now be applied to each of the tasks to
obtain their worst-case response times. These values are given in Table 3.4. Note that
the equations in Section 3.2 must deal with integer values (as they use ceiling functions);
hence in Table 3.4 the unit of time is 100 microseconds. The blocking value in this table
is 14 time units, on the assumption that whatever operator task calls the controller PSO
will have a priority of less than 3. Hence for all tasks the maximum blocking time comes
from this task (as the computation time of POc is the maximum of all PSOs). Note that
the maximum non-pre-emptive section in the kernel is less than 14 (i.e. is 11 – from Table
3.4).

We can look at one task in detail to review how its response time value is obtained.
Consider the Air Monitor which has a computation time of 33 units. Context switch
costs add a further four units (as there are two context switches per task invocation),
which gives a total C value of 37. Blocking B is 14. One task has a higher priority; its
total computational time is 58. The interrupt also has a higher priority; this adds three
units. The clock has a period of 50 and hence equation (3.20) gives an initial interfer-
ence of 4+3�(number of periodic tasks), which equates to 16. Taken together, this gives
a first value of 37+ 14+ 58+ 3+ 16, which equals 128. Within this interval the clock
will have interrupted two more times but no further periodic tasks will have been released
and hence an extra eight units of interference will need to be added. This gives a value
of 136, which balances the response time equation. Hence R is 136 (or 13:6 ms).

The final stage of the analysis is to return to the task deadlines. These were given in
Table 3.1 and are repeated in Table 3.4. It is clear that all tasks complete before their
deadlines and hence all transactions are satisfied.

64 CHAPTER 3. ADVANCED FIXED PRIORITY SCHEDULING

Table 3.4 Results of schedulability analysis
Name Class Symbol T D P C R
Methane Monitor Periodic τM 200 100 8 58 95
Air Monitor Periodic τA 300 200 7 37 136
CO Monitor Periodic τC 300 200 6 37 177
Safety Checker Periodic τS 350 300 5 39 285
Low Sensor Sporadic τL 100000 750 4 33 525
High Sensor Sporadic τH 100000 1000 3 33 558

3.5 Historical background

The computational model presented in this chapter is similar to that used in a number of
design methods such as Mascot (Bate, 1986) and HRT-HOOD (Burns & Wellings, 1994).
A formal representation of the model can be found in the semantic descriptions of the
Temporal Access Method (TAM) (Scholfield et al., 1994).

Section 3.2 gave an overview of some recent scheduling results; the derivation of these
equations is described in Burns (1994), Audsley et al. (1993a; 1993b) and Burns et
al. (1993), and detailed descriptions have been provided by Audsley (1993) and Tindell
(1993). Discussion of the inheritance and ceiling protocols can be found in Goodenough
and Sha (1988), Sha et al. (1990) and Baker (1990; 1991). A detailed case study of the
Altitude and Orbital Control System (AOCS) of the Olympus Satellite appears in Burns
et al. (1993).

Debates over the development of the Ada programming language have raged for a
number of years. Readers interested in issues relating to the Ada tasking model will find
a discussion in Burns et al. (1987). Real-time issues are discussed extensively in the
Proceedings of the International Workshops on Real-Time Ada Issues.3

3.6 Further work

The analysis presented in this chapter covers a level of detail and a range of practical con-
cerns that make it suitable for use on ‘real’ systems. There is current research in increas-
ing the flexibility of the analysis and further removing restrictions in the computational
model. For example, the model can be extended to include invocation interruption (i.e.
asynchronously affecting the execution of a periodic task, during execution, to allow it
to respond immediately to a mode change), dynamic allocation and re-allocation to cater
for processor failure.

There has been much attention recently to the use of on-line techniques because, it is
argued, that contemporary systems are too complex for purely off-line analysis. On-line

3The proceedings of these workshops, which started in 1987, are published annually in ACM Ada
Letters.

3.7. EXERCISES 65

techniques are based on ‘best-effort’ scheduling to make the most effective use of the
system under all possible conditions; they will be described in greater detail in Chapter
4. While priority-based scheduling and best-effort scheduling are often considered to be
irreconcilable, there has been work on defining a framework that can accommodate both
approaches (Audsley et al., 1993c; 1994; Davis et al., 1993). Within such a framework
it would be possible to integrate static analysis, diverse and adaptive software, deadline
variations and software fault-tolerance (Bondavalli et al., 1993).

3.7 Exercises

Exercise 3.1 Verify that the system transaction deadlines for the mine control problem
are satisfied by the period and deadline definitions in given Table 3.1.

Exercise 3.2 Check the response-time calculations given in Table 3.4. Which value is
wrong?

Exercise 3.3 In the analysis of the mine control system, what would be the conse-
quences of running the clock at 10 ms (or 20 ms)?

Exercise 3.4 Do a sensitivity analysis on the mine control task set. Taking each task
in turn, consider by how much its computation time must increase before the task set
becomes unschedulable. Express this value as a percentage of the original value of the
computation time.

Chapter 4

Dynamic Priority Scheduling

Krithi Ramamritham

Introduction

Dynamic scheduling of a real-time program requires a sequence of decisions to be taken
during execution on the assignment of system resources to transactions. Each decision
must be taken without prior knowledge of the needs of future tasks. As in the case of
fixed priority scheduling, the system resources include processors, memory and shared
data structures; but tasks can now have arbitrary attributes: arrival times, resource re-
quirements, computation times, deadlines and importance values.

Dynamic algorithms are needed for applications where the computing requirements
may vary widely, making fixed priority scheduling difficult or inefficient. Many real-time
applications require support for dynamic scheduling: e.g. in robotics, where the control
subsystem must adapt to a dynamic environment. This kind of scheduling also allows
more flexibility in dealing with practical issues, such as the need to alter scheduling de-
cisions based on the occurrence of overloads, e.g. when

� the environment changes,
� there is a burst of task arrivals, or
� a part of the system fails.

In a practical system, it can prove costly to assume that overloads and failures will never
occur and, at the same time, be inefficient to determine schedulability or a priori to con-
struct a fixed schedule for a system with such variable properties.

Dynamic scheduling has three basic steps: feasibility checking, schedule construction
and dispatching. Depending on the kind of application for which the system is designed,
the programming model adopted and the scheduling algorithm used, all of the steps may
not be needed. Often, the boundaries between the steps may also not be clear.

We shall first generalize the definitions of transaction and process used in Chapter 3. A
computational transaction will now be assumed to be made up of one or more processes
composed in parallel. A process consists of one or more tasks.

66

INTRODUCTION 67

Feasibility analysis
Feasibility, or schedulability, analysis has been described in Chapters 2 and 3: it is the
process of determining whether the timing requirements of a set of tasks can be satis-
fied, usually under a given set of resource requirements and precedence constraints. With
fixed priority scheduling, feasibility analysis is typically done statically, before the pro-
gram is executed. Dynamic systems perform feasibility checking on-line, as tasks arrive.

There are two approaches to scheduling in dynamic real-time systems:

1. Dynamic planning-based approaches: Execution of a task is begun only if it passes
a feasibility test, i.e that it will complete execution before its deadline. Often, one
of the results of the feasibility analysis is a schedule or plan that is used to decide
when a task should begin execution.

2. Dynamic best-effort approaches: Here no feasibility checking is done; the system
tries to ‘do its best’ to meet deadlines but, since feasibility is not checked, a task
may be aborted during its execution.

In a planning-based approach, the feasibility of a set of tasks is checked in terms of a
scheduling policy such as ‘earliest-deadline-first’ or ‘least-laxity-first’, before the execu-
tion of a set of tasks. By contrast, in a best-effort approach, tasks may be queued accord-
ing to policies that take account of the time constraints (similar to the kind of scheduling
found in a non-real-time operating system). No feasibility checking is done before the
tasks are queued.

The relative importance of a task and the value given to its completion are used to
take scheduling decisions, whether or not feasibility checking is done. This information
is usually given as a time-value function that specifies the contribution of a task to the
system upon its successful completion. Figure 4.1 relates value with completion time,
for different value functions.

For hard real-time tasks, the value drops immediately after the deadline and dynamic
algorithms cannot be used: there should be a priori verification that such tasks will meet
their deadlines. Dynamic algorithms are suitable for the tasks in the ‘firm’ and ‘soft’
categories.

To achieve high system performance, the system must also consider the relative values
of tasks, or their importance, when determining which tasks to reject and which to exe-
cute. Because a dynamic scheduling algorithm takes decisions without prior knowledge
of the tasks, the total value is not predictable and the algorithm must attempt to maximize
the value accrued from tasks that complete on time. Most dynamic algorithms developed
so far assume that a value function assigns a positive value to a task that is successfully
completed, and zero to an incomplete task. This corresponds to the curve marked ‘firm’
in Figure 4.1, where the value for a task remains constant until its deadline and then drops
to zero. If all the tasks have the same value, maximizing the accrued value is the same
as maximizing the number of completed tasks.

While achieving maximum value, real-time systems must also exhibit a capability for
‘graceful degradation’. To achieve this, not only must the fact that a task did not meet its
deadline be detected, but the fact that this is going to occur must be detected as soon as

68 CHAPTER 4. DYNAMIC PRIORITY SCHEDULING

time

hard

firm

soft

value

Figure 4.1 Different kinds of value function

possible. An exception must then be signalled to make it possible for the task to be substi-
tuted by one or more contingency tasks. Thus on-line schedulability analysis must have
an early warning feature which provides sufficient lead time for the timely invocation of
contingency tasks, making it possible for the scheduler to take account of a continuously
changing environment.

Such schedulability analysis is especially important for transactions for which recov-
ery following an aborted partial execution can be complicated. Error handlers are com-
plex in general and abnormal termination may produce inconsistent system states. This
is likely to be the case especially if the transaction involves inter-process interaction. In
such situations, it is better to allow a transaction to take place only if it can be guaranteed
to complete by its deadline. If such a guarantee cannot be provided, then the program can
perform an alternative action. And to provide sufficient time for executing the alterna-
tive action, a deadline may be imposed on the determination of schedulability. This can
be generalized so that there are N versions of the transaction and the algorithm attempts
to guarantee the execution of the best possible version. ‘Best’ refers to the value of the
results produced by a particular version; typically, the better the value of the result, the
longer the execution time.

Schedule construction
Schedule construction is the process of ordering the tasks to be executed and storing this
in a form that can be used by the dispatching step.

Feasibility checking is sometimes performed by checking if there is a schedule or plan
in which all the tasks will meet their deadlines. For planning-based approaches, schedule
construction is usually a direct consequence of feasibility checking.

In other cases, priorities are assigned to tasks and at run-time the task in execution

4.1. PROGRAMMING DYNAMIC REAL-TIME SYSTEMS 69

has the highest priority. This is the case with fixed priority approaches and with some
simple dynamic priority approaches, such as earliest-deadline-first or least-laxity-first,
where feasibility checking involves ensuring that the total processor utilization is below
a bound.

In the remainder of this chapter we will refer to schedule construction simply as
scheduling. Thus, scheduling involves deciding when tasks will execute. The schedule
is maintained explicitly in the form of a plan or implicitly as the assignment of priorities
to tasks.

Dispatching
Dispatching is the process of deciding which task to execute next. The complexity and
requirements for the dispatching step depend on:

1. the scheduling algorithm used in the feasibility checking step,
2. whether a schedule is constructed as part of the schedulability analysis step,
3. the kinds of tasks, e.g. whether they are independent or with precedence con-

straints, and whether their execution is pre-emptive or non-pre-emptive, and
4. the nature of the execution platform, e.g. whether it has one processor or more and

how communication takes place.

For example, with non-pre-emptive scheduling a task is dispatched exactly once; with
pre-emptive scheduling, a task will be dispatched once when it first begins execution and
again whenever it is resumed.

In the remainder of this chapter, we discuss how the timing requirements of transac-
tions can be specified and how user level transactions can be mapped into tasks with
different characteristics including timing constraints, precedence constraints, resource
requirements, importance levels and communication characteristics. Issues to be con-
sidered for dynamic scheduling are introduced and different ways of assigning priori-
ties to tasks are considered. The two types of dynamic scheduling approach, best-effort
scheduling and planning-based scheduling, are discussed in detail and, since the run-time
cost of a dynamic approach is an important practical consideration, several techniques are
discussed for efficient dynamic scheduling.

4.1 Programming dynamic real-time systems

The requirements for tasks in a real-time system can be quite varied. In this section, we
show how they can be specified from within a program. For dynamic real-time applica-
tions, it should be possible to specify several important requirements:

� Before initiating a time-constrained transaction, it should be possible for the pro-
gram to ask for a guarantee from the run-time system that the transaction will be
completed within the specified deadline.

70 CHAPTER 4. DYNAMIC PRIORITY SCHEDULING

A transaction can be guaranteed to complete within its deadline if a schedule can
be created for this transaction and the other transactions that have been previously
guaranteed to meet their deadlines.

� If the system cannot give a guarantee when it is sought, then it should be possible
to choose an alternative activity. When a guarantee is not sought and it is not pos-
sible to meet the timing constraint, it should be possible to take alternative action.
In either case, the alternative may be a timing-error handler that will allow some
corrective action to be taken.

Language constructs to express such constraints are described using a form of pseudo-
code. In what follows, terminals are shown in typewriter font, [] encloses optional
items and | separates alternatives.

A transaction (shown in italics) refers to a statement. A real-time transaction has a
time constraint such as a periodicity requirement or a deadline.

4.1.1 Activities with deadlines

Timeouts can be associated with any statement using the within deadline statement
which has the form

within deadline (d) statement1
[else statement2]

During execution, if execution of a within deadline statement starts at time t and is not
completed by t+d, then it is terminated and statement2, if provided, is executed. Hence,
d is the deadline relative to the current time. The effect of this abnormal termination
is local if statement1 does not require any inter-process communication; otherwise, the
other interacting processes may be affected. We discuss this further in Section 4.1.5.

Example 4.1 Air traffic control 1. An air-traffic control system should provide final
clearance for a pilot to land within 60 seconds after clearance is requested. Otherwise
the pilot will abort the landing procedure:

within deadline (60) get clearance
else abort landing

4.1.2 Guaranteed transactions

The guarantee statement is used to ensure before a transaction is started that it can be
completed within the specified time constraint:

within deadline (gd) guarantee

time constrained statement
[else statement]

4.1. PROGRAMMING DYNAMIC REAL-TIME SYSTEMS 71

where gd is the deadline for obtaining the guarantee. If the guarantee is not possible, or
if it cannot be given within gd, the else statement, if provided, is executed. Otherwise,
the time-constrained statement is executed.

To provide such a guarantee, the execution time and the resource requirements of the
statement must a priori be determinable (at least at the time of the guarantee). This makes
it important for the execution time to lie within relatively small bounds as resources must
be provided for the worst-case needs. In general, the larger the worst-case needs, the less
likely it will be to obtain a guarantee; further, even if a guarantee can be given for large
bounds, it is likely to affect future guarantees.

Dynamic scheduling makes it possible to use run-time information about tasks, such as
execution times and resource constraints. Such information can be derived from formu-
las provided by the compiler for evaluation at the time of task invocation. For example,
the calculation of the execution time can then take into account the specific parameters
of the invocation and hence be more accurate (and perhaps less pessimistic) than a stat-
ically determined execution time; such calculations can make use of data only available
at run-time, such as the number and values of inputs. As for compile-time calculation of
worst-case execution times, run-time calculation also requires loop iterations and com-
munication times to be bounded. If synchronous communication statements do not have
associated time-constraints, it is necessary to consider the communicating tasks together
as a transaction when checking feasibility.

Example 4.2 The following statement tries to guarantee that statement1 will be com-
pleted within the next d seconds:

within deadline (gd) guarantee

within deadline (d) statement1
[else ...]

[else statement2]

If execution starts at time t, statement2 will be executed if it is not possible to obtain the
guarantee by t + gd. If guaranteed, execution of statement1 will start at st and end by t
+ d, where st lies in the interval (t; t+gd).

Example 4.3 A simple railway crossing. The task controlling a railway signal has to
determine whether a certain track will be clear by the time a train is expected to reach
there. This must be done early enough to give enough time to stop the train if the track is
not expected to be clear. Assume that the train will not reach the track before d seconds
and that it takes at most s seconds to stop the train (s < d):

within deadline (d� s) guarantee

within deadline (d) clear track
else ...

else stop train

72 CHAPTER 4. DYNAMIC PRIORITY SCHEDULING

4.1.3 Start-time-constraints

The following statement attaches start time constraints to transactions with deadlines:

start at (s) within deadline (d) statement1
[else statement2]

If execution of the within deadline statement starts at time t, then execution of
statement1 should start at or after t+ s and be completed by t+d, where d > s. A simple
extension gives the guaranteed version of this statement.

The value v of a task is specified by attaching the construct value v to the within

deadline statement.

4.1.4 Flexible time-constraints

The time-constraints described thus far are to ensure that if a transaction is not completed
within the specified time, it is terminated and timing-error handling is done. This is ap-
propriate if there is no value in completing the transaction after the specified time.

For many real-time applications, while it may be desirable for all transactions to meet
the timing-constraints, it may be better, and sometimes necessary, to complete a transac-
tion even if it is delayed. Such time-constraints will be called flexible. Thus a transaction
may have a non-zero value up to some point past its deadline; if this point does not lie in
a fixed interval, the transaction should be completed regardless of how long it takes.

To express flexible time-constraints, an overflow is associated with a time-constraint.
If the overflow is positive, a transaction should be terminated only after the end of the
interval corresponding to the overflow. This corresponds to a soft deadline.

If the overflow has a negative value, it indicates that the transaction must be completed
by the specified deadline but, if possible, within overflow units before the deadline. (This
is like asking the system to ‘be nice’ to a transaction by trying to complete it before the
deadline.)

A deadline-constrained transaction statement1 is specified as

within deadline (d)[overflow] statement1
else statement2

and has the following effect:

� If execution of statement1 is not completed by max(d;d+overflow), processing of
statement1 is terminated and statement2, if provided, is executed.

� If overflow is not specified, it is assumed to be zero.
� If a guarantee is requested, it will be first attempted for min(d;d+overflow) and,

if this is unsuccessful, for max(d;d+ overflow); if the second attempt is also un-
successful, the else clause, if specified, will be executed.

� If a time-constrained component of statement1 has an overflow, it can increase the
worst-case execution time of statement1.

4.1. PROGRAMMING DYNAMIC REAL-TIME SYSTEMS 73

Example 4.4 Air traffic control 2. An air-traffic control system should provide final
clearance for a pilot to land within t1 seconds after the request has been made; if this is
not possible, clearance should be given within another t2 seconds or the pilot will abort
the landing procedure:

within deadline (t1) (t2) clear landing
else abort landing

It is easy to see that a large overflow indicates that the transaction has only a nominal
deadline and should be allowed to complete even if the deadline is past.

4.1.5 Inter-process communication and time-constraints

There are two important considerations when a time-constrained transaction interacts
with other transactions. The first is to find the duration of such interactions so that the
execution time of the transaction can be determined. The second is the effect on other
transactions when a time-constrained transaction is terminated because a specified time-
constraint is not met.

The sender of an asynchronous message does not wait (assuming that buffers do not
overflow), so the time needed for sending a message is bounded. However, for syn-
chronous communication, the sending task is suspended until the receiver responds and
the delay may be unbounded. With timed synchronous communication, the maximum
time that a task can wait for a call to complete is bounded.

The execution of a statement with an associated deadline is abandoned when its dead-
line has expired, and there are a number of consequences when a synchronous send or
receive statement is abandoned by the callee:

� A send that is abandoned before the matching receive occurs will clearly not af-
fect the sender. If it is withdrawn during the execution of the receive statement,
there is no effect on the receiver. It should be possible for the sender to determine
if the message was received or if it was withdrawn while in the process of being
received. A special variable t interrupted can be associated with each task to
indicate if the last send was withdrawn during the receive.

� A similar variable t abandoned can be used to indicate if execution of a receive
statement was abandoned by the receiver.

Example 4.5 Termination during process interaction. A resource is managed by a
Manager task. If a requesting task has not received the resource within max wait time it
will take its request to another provider:

within deadline (max wait)
Manager.get(pid)

else get resource from another provider

74 CHAPTER 4. DYNAMIC PRIORITY SCHEDULING

where pid is the id of the calling task.
The Manager task may be responding to the get request when the specified time limit

max wait expires. In this case, although the request is withdrawn, the Manager contin-
ues with the allocation as if nothing happened and the requester is required to free the
resource after examining the value of variable t interrupted:

within deadline (max wait)
Manager.get(pid)

else if (t interrupted) then Manager.free(pid);

get resource from another provider

Let us now examine what is involved in guaranteeing whether or not a synchronous
send can be completed within a deadline:

within deadline (d) guarantee

within deadline (max wait) Manager.get(pid);

else get resource from another provider;

To provide this guarantee, the scheduler must be able to determine when the receiver will
actually receive the message. In some special cases, it may be possible to determine this
time but, in general, the delay may depend on a number of factors such as the execution
times of various code segments within the receiver, when these code segments will be
scheduled, etc. Taken together, they make it all but impossible for the sender to determine
dynamically when the receiver will receive the message.

However, in the special case of a set of interacting tasks participating in a transaction
with a deadline, the transaction can be converted into a set of precedence-related tasks
and started only if they are found to be feasible.

A transaction may be suspended at a number of scheduling points; these occur at the
beginning and end of critical sections, at synchronous communication calls, or where
explicit suspend calls appear in the code. A transaction is executed from one scheduling
point to the next (a task) and it can then be executed without being interrupted for want
of resources or for synchronization.

A task graph contains tasks related by precedence and communication constraints. Ac-
tivities without internal scheduling points reduce to a graph with a single task. Activities
containing critical sections or other scheduling points will reduce to task graphs with sev-
eral tasks. During the construction of the task graph, the resources needed for each task
can be determined. The description of a transaction is then available for the scheduler as
a group of tasks representing the transaction.

Figure 4.2 shows a transaction with two components A and B which can execute in
parallel and communicate synchronously. This transaction is converted into a graph with
five tasks. With this, the two components, and hence the transaction, can be executed
predictably if the corresponding task graph can be feasibly scheduled.

4.2. ISSUES IN DYNAMIC SCHEDULING 75

B2
Synch Synch

A B
A1 B1

A2 B3

send rec.

Precedence constraint

Communication

Figure 4.2 Communicating tasks and the corresponding task graph

4.2 Issues in dynamic scheduling

With static priorities, a task’s priority is assigned when it arrives and fresh evaluation
is not required as time progresses and new tasks arrive. Hence static priorities are well
suited for periodic tasks that execute at all times (but, with the extensions shown in Chap-
ter 3, they can be used for aperiodic tasks as well).

In a dynamic system, static feasibility checking is not possible and dynamic decision
making algorithms must be used. This has several implications. It is no longer possible
to guarantee that all task arrivals will be able to meet their deadlines: if the arrival times
of tasks are not known, the schedulability of the tasks cannot be guaranteed. However, if
the system has only independent, periodic tasks and one processor, static schedulability
analysis can be used even if the scheduling policy is dynamic.

For tasks with a more complex structure, other attributes can be used to assign prior-
ities. This gives dynamic algorithms a lot of flexibility and adds to their ability to deal
with a wide variety of tasks. But there may be substantial overheads in calculating the
priorities of tasks and in selecting the task of highest priority. When dynamic priorities
are used, the relative priorities of tasks can change as time progresses, as new tasks arrive
or as tasks execute. Whenever one of these events occurs, the priority of all the remain-
ing tasks must be recomputed. This makes the use of dynamic priorities more expensive
in terms of run-time overheads, and in practice these overheads must be kept as small as
possible.

A shortcoming of static schedulability analysis arises from the assumptions and the
restrictions on which off-line guarantees are based. For example, if there is a non-zero
probability that these assumptions are unlikely to hold or that restrictions may be vi-
olated, a system using a static approach will not perform as designed and tasks may
miss their deadlines. And, under some situations, effective control of the system can
be lost because of the limited scheduling capability available at run-time. Thus, when
constraints assumed by off-line schedulability analysis are likely to be violated, dynamic

76 CHAPTER 4. DYNAMIC PRIORITY SCHEDULING

scheduling approaches provide a solution.
Consider a very simple example. If system overloads are known to be impossible, then

the earliest-deadline-first algorithm (EDF) can be used. Since overloads cannot occur,
when a task is pre-empted there is an implicit guarantee that the remainder of the task
will be completed before its deadline; without overloads, simple algorithms such as EDF
and least-laxity-first (LLF) perform very well. But if overloads are possible, in the worst
case, EDF and LLF may produce zero value, i.e. none of the tasks that arrive will meet its
deadline (even if, under another scheduling discipline, some tasks may meet their dead-
lines).

An optimal dynamic scheduling algorithm always produces a feasible schedule when-
ever a clairvoyant algorithm, i.e. a scheduling algorithm with complete prior knowledge
of the tasks, can do so. Unfortunately, it is difficult to construct a good on-line algo-
rithm to compete with a clairvoyant algorithm. Competitiveness analysis, involving the
comparison of an on-line algorithm with a clairvoyant algorithm, is one way to predict
the behaviour of a dynamic algorithm. However, this analysis considers only worst-case
behaviours involving all possible task characteristics. For predictability, planning-based
scheduling is a viable alternative. Here, given a particular priority assignment policy and
the requirements of a task before it begins execution, a check is made to see whether
there is a way for the task to meet its deadline. As mentioned earlier, many planning ap-
proaches also produce a schedule for task execution as a useful by-product and the added
cost of the checking may be well spent.

4.3 Dynamic priority assignment

Construction of a plan in planning-based approaches and determining which task to ex-
ecute next in best-effort approaches requires assigning priorities to tasks; this raises the
question of how priorities are assigned. Further, there is a conflict between priority-based
scheduling and the goal of maximizing resource utilization in a real-time system.

4.3.1 Simple priority assignment policies

In a real-time system, priority assignment must be related to the time constraints asso-
ciated with a task, e.g. according to EDF or LLF ordering. For scheduling independent
tasks with deadline constraints on single processors, EDF and LLF are optimal methods,
so if any assignment of priorities can feasibly schedule such tasks, then so can EDF and
LLF.

For a given task set, if tasks have the same arrival times but different deadlines, EDF
generates a non-pre-emptive schedule, while the LLF schedule requires pre-emptions. If
both arrival times and deadlines are arbitrary, EDF and LLF schedules may both require
pre-emptions. These algorithms use the timing characteristics of tasks and are suitable
when the processor is the only resource needed and tasks are independent of each other.

4.3. DYNAMIC PRIORITY ASSIGNMENT 77

4.3.2 Priority assignment for tasks with complex requirements

Of more practical interest is the scheduling of tasks with timing constraints, precedence
constraints, resource constraints and arbitrary values on multi-processors. Unfortunately,
most instances of the scheduling problem for real-time systems are computationally in-
tractable. Non-pre-emptive scheduling is desirable as it avoids context switching over-
heads, but determining such a schedule is an NP-hard problem even on uniprocessors if
tasks can have arbitrary ready times. The presence of precedence constraints exacerbates
the situation and finding a resource-constrained schedule is an NP-complete problem.

This makes it clear that it serves no effective purpose to try to obtain an optimal sched-
ule, especially when decisions are made dynamically. And, with multi-processors, no dy-
namic scheduling algorithm is optimal and can guarantee all tasks without prior knowl-
edge of task deadlines, computation times and arrival times. Such knowledge is not avail-
able in dynamic systems so it is necessary to resort to approximate algorithms or to use
heuristics, as we shall now see.

As in Chapter 3, a task τ is the unit for scheduling; it is characterized by its arrival
time AT, its absolute deadline D, its value V, its worst-case computation time C and its
resource requirements fRRg. Tasks are assumed to be independent, non-periodic and
non-pre-emptive. A task uses a resource either in shared mode or in exclusive mode and
holds a requested resource as long as it executes. EST is the earliest start time at which
the task can begin execution (EST is calculated when scheduling decisions are made).

The following condition relates AT, D, C, EST and the current time T :

AT � EST � D�C

Let Pr(τ) be the priority of task τ, and assume that the smaller the value of Pr(τ), the
higher the priority. There are a number of possible priority assignment policies.

1. Smallest arrival time first, or first-come-first served (FCFS): Pr(τ) = AT. FCFS is a
fair policy but it does not take any real-time considerations into account. For tasks
with the same priority, FCFS may be a suitable policy.

2. Minimum processing time first (Min C): Pr(τ) = C. In non-real-time environ-
ments, the simple heuristic Min C is often a rule for minimizing average response
times but it is not usually adequate for real-time systems.

3. Minimum (or earliest) deadline first (Min D): Pr(τ) = D. For tasks needing only
a processor resource, Min D can be a suitable policy.

4. Minimum earliest start time first (Min S): Pr(τ) = EST. This is the first policy to
take resource requirements into account through calculation of EST.

5. Minimum laxity first (Min L): Pr(τ) = D� (EST+C). Like EDF, (Min L) is op-
timal for tasks that have just processing requirements; Min L takes into account
the information used in Min D and Min S.

6. Minimum value first (Min V): Pr(τ) = V. Min V considers only the value of a
task.

7. Minimum value density first (Min VD): Pr(τ) = TV
C . Unlike Min V, which does

not take the computation time into account, Min VD considers the value per unit
time when assigning task priorities.

78 CHAPTER 4. DYNAMIC PRIORITY SCHEDULING

Table 4.1 Task parameters for Example 4.1
Task τ1 τ2 τ3

computation time 9 10 1
resource request either copy either copy both

deadline 9 74 11

8. Min D + Min C: Pr(τ) = D+W1�C, where W1 is a weighting constant. This
policy considers two task parameters, but resource requirements are ignored.

9. Min D + Min S: Pr(τ) = D+W1�EST, where W1 is a weighting constant. For
tasks having time- and resource-constraints, this policy has been shown to result
in good real-time performance.

10. Min D + Min S + Min VD: Pr(τ) =D+W1�EST+W2� V
C . This considers the

value, computation time, deadline and resource requirements of a task.

4.3.3 Priority-based scheduling and resources

There is usually a conflict between keeping resources busy and respecting task priorities:
if resources are to be used to the fullest extent possible, there may be task executions that
violate task priorities.

Example 4.6 Greedy scheduling. Assume that the (Min D + Min S) heuristic is used
to assign priorities to tasks. Let W1 = 6. Assume there are two processors, three tasks
and two copies of a resource, each of which is used only in exclusive mode. The task
parameters are listed below in Table 4.1. We first determine the schedule produced by
list scheduling, a greedy approach. Tasks are ordered on a list by decreasing priority and,
when a processor is idle, the list is scanned from the beginning and the first task which
does not violate the resource constraints is assigned to the processor.

The task priorities are Pr(τ1) = 9, Pr(τ2) = 74 and Pr(τ3) = 11. So τ1 has the highest
priority and it is scheduled to start at time=0. Then, because one processor is still idle, list
scheduling is used to find another task that can start at time=0. Recomputing the priorities
of the remaining tasks gives Pr(τ2) = 74 and Pr(τ3) = 65. Although τ3 has the higher
priority, since it requires both resources only τ2 can start at time=0 and so it is chosen.
Finally, τ3 is scheduled to start at time=10 when both copies of the resource are available.
Thus, tasks are scheduled according to their priority but while the policy is greedy about
keeping the resources fully used.

Suppose we used a pure priority-driven approach, one that is not greedy. After τ1 is
scheduled, the remaining task priorities are recomputed and τ3 will be chosen to be exe-
cuted next at time=9, followed by τ2 at time=10.

Thus with list scheduling, the higher priority task τ3 will be delayed by one time unit
while, without greed, τ2 will be delayed by ten time units.

The example shows that though list scheduling keeps resources better utilized, it does
so by delaying the execution of higher priority tasks. Since the priority of a task reflects

4.3. DYNAMIC PRIORITY ASSIGNMENT 79

its time-constraints and other characteristics of importance, in real-time systems it is usu-
ally desirable to take more account of priorities than of the underutilization of resources.

We can attempt to obtain the best of both worlds by adopting pre-emptive priority-
driven scheduling. If this is done, then by the time τ1 completes execution, τ2 could have
been pre-empted by τ3. Unfortunately, the decision to pre-empt may not be simple:

� There may be tasks which, once pre-empted, will need to be restarted, losing all the
computation up to the point of pre-emption. For example, in a communicating task,
if a communication is interrupted it may have to be re-started from the beginning:
the communication line represents an exclusive resource that is required for the
complete duration of the task.

� A task that is pre-empted while reading a shared data structure can resume from
the point of pre-emption only provided the data structure has not been modified.

� A task that is pre-empted while modifying a shared data structure may leave it in
an internally inconsistent state; one way to restore consistency is to wait for the
pre-empted task to be completed before allowing further use of the resource. An
alternative is to rollback the changes made by the pre-empted task but, in general,
it is difficult to keep a record of all such changes. A rollback can add considerably
to the overhead.

Returning to Example 4.6, τ2 uses the resource in exclusive mode. So there are two
possible ways in which list scheduling can be used, depending on the nature of the re-
source:

1. If the resource is like the communication line, τ2 can be pre-empted at time=9 and
τ3 can begin using it immediately. This is equivalent to not having started execu-
tion of τ2 at all, and allowing τ2 to execute ahead of its turn by being greedy has
not helped. But, if τ2’s computation time is less than or equal to that of τ1, greed
can be used. In any case, the execution of τ3 will not be more delayed than it would
be for pure priority-driven scheduling.

2. If the resource is a modifiable data structure, τ3’s execution will be delayed, either
by the need to rollback τ2’s changes or to wait for τ2 to complete execution. In
either case, τ3 will complete later than under pure priority-driven scheduling.

This suggests that a limited form of list scheduling can be used in which task computa-
tion times and the nature of the resources, as well as their use, is considered when making
scheduling decisions. The goal is then to ensure that priorities are not violated when a
greedy policy is used. Another alternative is to limit the greed so that the algorithm tries
to keep only a specified fraction of each replicated resource busy.

In the examples, we have assumed that the worst-case resource requirements for each
task are available. The scheduling algorithm then takes these resource requirements dur-
ing feasibility checking. Assuming that tasks are non-pre-emptable, the scheduling al-
gorithm will not schedule in parallel two tasks with resource conflicts.

There is another approach to dealing with resource requirements in which the schedul-
ing algorithm does not explicitly consider resource requirements. Instead, the resource

80 CHAPTER 4. DYNAMIC PRIORITY SCHEDULING

requirements of each task are analyzed and also the resource conflicts among the tasks.
This allows calculation of the worst-case blocking time for each task due to resource con-
tention, and incorporation of this into the task’s worst-case execution time (see Chapter
3). When this is done, the run-time management of the resources must correspond to the
assumptions made at analysis time. For example, if the worst-case times are derived as-
suming that each resource use is guarded by a semaphore, then semaphores must be used
at run-time.

4.4 Dynamic best-effort approaches

4.4.1 Best-effort scheduling

In best-effort scheduling, tasks are assigned priorities according to one of the policies of
Section 4.3, and task execution occurs in priority order. It is this requirement to always
execute the highest priority task that necessitates pre-emption: if a low priority task is
in execution and a higher priority task arrives, or becomes eligible to execute, the low
priority task is pre-empted and the processor is given to the new arrival.

With priority-driven pre-emptive scheduling using, say, task deadlines to decide on
priorities and without any feasibility checking, a task can be pre-empted at any time dur-
ing its execution. In this case, until the deadline, or until the task finishes, whichever
comes first, it is not known whether a timing-constraint will be met.

The overall predictability of best-effort approaches is also difficult to assess. Whereas
real-time scheduling algorithms, such as EDF and LLF, have optimal behaviour as long
as no overloads occur, extreme performance degradation can occur under overloads and,
at times, a system may produce only zero value. This potential for very poor performance
under overloads is the major disadvantage of the dynamic best-effort approaches. But,
since dynamic algorithms must perform well under varying loading conditions, careful
choice is needed of the task to execute and of the task to discard when an overload occurs.
In practice, this requires confidence to be gained using extensive simulation, re-coding
the tasks and adjusting the priorities.

During overloads, tasks with lower values can be shed and there are several ways of
accomplishing this. Tasks of lower importance can be removed one at a time and in strict
order from low to high importance. This incurs higher overheads than a scheme which
chooses any lower valued task, but neither method takes into account the time gained by
dropping a task. Shedding tasks in the lowest-value-density-first order does, however,
take a task’s computation time into consideration.

Let S be an arbitrary task arrival sequence and A an on-line scheduling algorithm that
knows about task τ only at its arrival time AT. Let CA be a clairvoyant algorithm which
gives an ideal, optimal, off-line schedule using information about all the tasks in S. VA(S)
is the total value obtained by A and VCA(S) is the total value obtained by CA.

First overload example: For a single processor system, assume that A uses a sim-
ple strategy to take scheduling decisions: it uses EDF when the system is underloaded,

4.4. DYNAMIC BEST-EFFORT APPROACHES 81

Table 4.2 Task parameters for first overload example
Tasks AT C D V

τ1 0 2 2 3
τ2 1 100 101 100

Table 4.3 Task parameters for second overload example
Tasks AT C D V Tasks AT C D V

τ1 0 10 10 10 τ01 0 9 11 9
τ2 9 11 20 11 τ02 9 10 21 10
τ3 19 12 31 12 τ03 19 11 32 11
τ4 30 13 43 13 τ04 30 12 44 12
τ5 42 14 56 14 τ05 42 13 57 13
τ6 55 15 70 15 τ06 55 14 71 14
τ7 69 16 85 16 τ07 69 15 86 15
τ8 84 16 100 16

and it favours the tasks with larger value density during overloads. Let the task request
sequence be

S = fτ1;τ2g
with its parameters as specified in Table 4.2.

At time=0, τ1 arrives and gets service. At time=1, τ2 arrives and the system is over-
loaded. Algorithm A favours the task τ1 which has the larger value density. Hence, τ2 is
rejected and is lost. The total value obtained by A is 3. On the other hand, the total value
obtained by a clairvoyant algorithm can be 100 (v2). The performance ratio is

VA(S)
VCA(S)

=
3

100

If the computation time, deadline and the value of τ2 increase at the same rate, the ratio
between VA(S) and VCA(S) goes to zero.

Second overload example: Once again for a single processor system, let A use EDF
when the system is underloaded and assume that it favours the task with the larger value
during overloads. Let the task request sequence be

S = fτ1;τ01;τ2;τ02;τ3;τ03;τ4;τ04;τ5;τ05;τ6;τ06;τ7;τ07;τ8;g
with its parameters as specified in Table 4.3.

Notice that the value density of all the tasks is 1. The CA schedule is

(τ01;τ
0
2;τ

0
3;τ

0
4;τ

0
5;τ

0
6;τ

0
7;τ8)

giving a total value of 100. Algorithm A works as follows: τ1 and τ01 arrive at time=0 and
τ1 is given the processor. τ01 is discarded because A favours the larger valued task during

82 CHAPTER 4. DYNAMIC PRIORITY SCHEDULING

overload. (A has no information that τ2 will arrive, otherwise it would have chosen τ01.)
At time=9, τ2 and τ02 arrive and the system is overloaded again: τ2 gets the processor
because it is the task with the largest value in the current task set. This pattern continues
until τ8 arrives at time=84. The current running task τ7 has the same value as τ8 and
algorithm A does not make the switch. The total value obtained by A is 16 because only
τ8 meets its deadline and all other tasks are lost. The performance ratio is

VA(S)
VCA(S)

=
16

100

A task pattern can be constructed in a similar way to give a task arrival sequence for an
arbitrary number of tasks for which the ratio between VA(S) and VCA(S) goes to zero.

These examples demonstrate a phenomenon that is not uncommon in on-line schedul-
ing: an on-line algorithm will at times unavoidably make the wrong decision because it
lacks future knowledge and, in the worst case, this can reduce the value of the result to
zero.

There is no optimal algorithm for on-line scheduling to maximize the total task value,
so attention has turned to a new, worst-case bound method, competitiveness analysis,
which provides very good insight into the design of best-effort scheduling algorithms.
To evaluate a particular on-line scheduling algorithm, the worst case of a scheduling
algorithm is compared with all possible competing algorithms, including the idealized
clairvoyant algorithm. The results of such analysis can be useful in handling overloads
effectively.

4.4.2 Competitiveness analysis of best-effort approaches

Assume that tasks are aperiodic, independent and pre-emptable without penalty (it helps
to calculate the bound, though this may not be a realistic value). In a multi-processor
system, a pre-empted task can be resumed on any available processor. Assume that the
system has no information about the tasks before they arrive.

The lower bound, BA, of an on-line scheduling algorithm, A, is defined as

VA(S)
VCA(S)

� BA; for all S

where BA 2 [0;1] because 8S � VA(S) � VCA(S)

The upper bound, B, is defined as

B� BA; for all A

A bound is tight if it can be reached.
Suppose a task has a value equal to its execution time when it completes successfully

and no value otherwise. It is known that no dynamic scheduling algorithm can guarantee
a cumulative value greater than 0.25 of the value obtainable by a clairvoyant algorithm.

4.5. DYNAMIC PLANNING-BASED APPROACHES 83

(In fact, for an algorithm that always sheds the lowest valued task upon an overload, this
ratio can be as low as zero.) Thus, in the worst case, an on-line algorithm is only able
to complete 0.25 of the work completed by a clairvoyant algorithm and, in fact, such an
algorithm can be constructed, showing the bound to be tight.

This result can be extended to cases in which tasks have different value densities. Let
γ be the ratio of the highest and lowest value densities of tasks. The upper bound for the
on-line scheduling is 1=(γ+ 1+ 2

pγ). As a special case, if γ is 1, the upper bound is
0.25, which is the result mentioned above, and if γ is 2, the upper bound is 1/5.828.

With two processors, the upper bound is 0.5 and is tight when all the tasks have the
same value density and zero laxity. Thus, the upper bound doubles and, for the worst
case, is twice the value obtained from two separate single processor systems. For a real-
time system designer, this can provide an important reason for choosing a two processor
system instead of a single processor system.

4.5 Dynamic planning-based approaches

Dynamic planning combines the flexibility of dynamic scheduling with the predictability
offered by feasibility checking. When a task arrives, an attempt is made to guarantee the
task by constructing a plan for task execution by which all previously guaranteed tasks
continue to meet their timing constraints. A task is guaranteed subject to a set of assump-
tions, for example about its worst-case execution time and resource needs, and the nature
of the faults in the system. If these assumptions hold, once a task is guaranteed it will
meet its timing requirements. Thus, predictability is checked with each arrival.

If the attempt to guarantee fails, the task is not feasible and a timing fault is forecast.
If this is known sufficiently ahead of the deadline, there may be time to take alternative
action. For example, it may be possible to trade off quality for timeliness by attempting
to schedule an alternative task which has a shorter computation time or fewer resource
needs. In a distributed system, it may be possible to transfer the task to a less-loaded
node.

If a node with guaranteed tasks fails, the guarantees cease to hold. For a guarantee to
hold in spite of node failures, a task must be guaranteed on multiple nodes and we shall
discuss this later.

4.5.1 Algorithms for dynamic planning

A dynamic planning algorithm attempts to construct a feasible schedule for a given set of
tasks. This can be viewed as a search for a feasible schedule in a tree in which the leaves
represent schedules, of which some are feasible. The root is the empty schedule. An
internal node is a partial schedule for a task set with one more task than that represented
by its parent. Given the NP-completeness of the scheduling problem, it would serve little
purpose to search exhaustively for a feasible schedule. So the priority Pr of each task is

84 CHAPTER 4. DYNAMIC PRIORITY SCHEDULING

used to direct scheduling choices along the most likely path.
The basic algorithm attempts to schedule a task τi non-pre-emptively, given its arrival

time ATi, deadline Di or period Ti, worst-case computation time Ci and resource require-
ments fRRig. A task uses a resource Rj either in shared mode or in exclusive mode and
holds a requested resource as long as it executes. The algorithm computes the earliest
start time, ESTi, at which task τi can begin execution after accounting for resource con-
tention among tasks. Given a partial schedule, the earliest time EATj at which resource
Rj is available can be determined. Then the earliest time that a task τi that is yet to be
scheduled can begin execution is

ESTi = Max(ATi;EATu
i)

where u is either s for ‘shared’ or e for ‘exclusive’ mode.
The heuristic scheduling algorithm starts at the root of the search tree and repeatedly

tries to extend the schedule (with one more task) by moving to one of the vertices at the
next level in the search tree until a full feasible schedule is derived. At each level of the
search, the priority can be computed for all the tasks that remain to be scheduled. This
is a

n+(n�1)+ : : :+2 = O(n2)

search algorithm, where n is the number of tasks in the set. The complexity can be re-
duced to O(n) if only the k tasks that remain to be scheduled at each level of search are
considered. In both cases, the task with the highest priority is selected to extend the cur-
rent schedule.

While extending the partial schedule at each level of search, the algorithm determines
whether the current partial schedule is strongly feasible or not. A partial feasible sched-
ule is said to be strongly feasible if all the schedules obtained by extending this current
schedule with any one of the remaining tasks are also feasible. Thus, if a partial feasi-
ble schedule is found not to be strongly feasible because, say, task τ misses its deadline
when the current task set is extended by τ, then it is appropriate to stop the search since
none of the future extensions involving task τ will meet its deadline. In this case, a set
of tasks cannot be scheduled given the current partial schedule. (In the terminology of
branch-and-bound techniques, the search path represented by the current partial schedule
is bounded since it will not lead to a feasible complete schedule.)

However, it is possible to backtrack to continue the search even after a non-strongly
feasible schedule is found. Backtracking is done by discarding the current partial sched-
ule, returning to the previous partial schedule and extending it with a different task, e.g.
the task with the second highest priority. When backtracking is used, the overheads can
be restricted either by restricting the maximum number of possible backtracks or the total
number of re-evaluations of priorities.

The algorithm starts with an empty partial schedule and at each step determines
whether the current partial schedule is strongly feasible and, if so, extends the current
partial schedule by one task. The following variables are used:

� TR, the tasks that remain to be scheduled, in order of increasing deadline,

4.5. DYNAMIC PLANNING-BASED APPROACHES 85

TR := task set to be scheduled;
partial schedule := empty; Result := Success;

whileTR 6= empty ^ Result 6= Failure loop
if more than NTR tasks in TR
then TC := first NTR tasks in TR

else TC := TR end if
EST calculation:
for each task τi in TR compute ESTi;
Priority value generation:
for each task τi in TR compute Pr(τi);
Task selection:
find task minτi with highest priority in TC;
Update partial schedule or backtrack:
if (partial schedule �minτi) is feasible and strongly feasible
partial schedule := (partial schedule �minτi);
TR := TR 	 minT;

elseif backtracking is allowed and possible
backtrack to a previous partial schedule;

else Result:=Failure;
endif;

end loop

where �, 	 add and remove respectively a task from a schedule

Figure 4.3 Basic guarantee algorithm

� N (TR), the number of tasks in TR,
� M (TR), the maximum number of tasks considered by each step of scheduling,
� NTR, the actual number of tasks in TR considered at each step of scheduling, where

NTR = M (TR), if N (TR) �M (TR), NTR = N (TR), otherwise, and
� TC, the first NTR tasks in TR.

When attempting to extend the partial schedule by one task:

1. strong-feasibility is determined with respect to tasks in TC,
2. if the partial schedule is strongly feasible, then the highest priority task is chosen

to extend the current schedule.

After a task τi is selected to extend the current partial schedule, its Scheduled Start Time
SSTi is equal to ESTi.

Given that only NTR tasks are considered at each step, the complexity is O(N �
M (TR)) for a task set of size N. If M (TR) is constant (in practice it will be small when
compared to N), the complexity is linearly proportional to N.

Figure 4.3 outlines the structure of the basic guarantee algorithm. It can be seen that
the algorithm uses only priority-based selection at each step of the search. This means
that it may leave some resources idle and, in order to reduce such idle times, while still

86 CHAPTER 4. DYNAMIC PRIORITY SCHEDULING

being driven by task priorities, the algorithm can be extended to select the next task and
to keep a specified minimum number of resources busy whenever possible.

We now consider the extensions necessary to deal with periodic tasks, tasks that have
fault-tolerance requirements, tasks with different importance levels and tasks with prece-
dence constraints.

Periodic tasks
There are several ways of guaranteeing periodic tasks when they are executed together
with non-periodic tasks. Assume that when a periodic task is guaranteed, every release
of the task is guaranteed.

Consider a system with only periodic tasks. A schedule can be constructed using the
basic planning algorithm; given n periodic tasks with periods T1; : : :;Tn, the length of
the schedule is LCM(T1; : : :;Tn). The earliest start time of the jth release of the ith task
is (j� 1)�Ti and its deadline is j�Ti. That is, assume that the deadline of a periodic
task is the same as its period.

If a periodic task arrives dynamically, an attempt can be made to construct a new sched-
ule. The new task is guaranteed if the attempt succeeds.

Suppose there are periodic and non-periodic tasks in the system. If the resources
needed by the two sets of tasks are disjoint, then the processors in the system can be par-
titioned, with one set used for the periodic tasks. The remaining processors are used for
non-periodic tasks guaranteed using the dynamic planning algorithm.

If, however, periodic and non-periodic tasks need common resources, a more com-
plicated scheme is needed. If a periodic task arrives in a system consisting of previously
guaranteed periodic and non-periodic tasks, an attempt is made to construct a new sched-
ule: if the attempt fails, the new task is not guaranteed and its introduction has to be de-
layed until either the guaranteed non-periodic tasks complete or its introduction does not
affect the remaining guaranteed tasks.

Suppose a new non-periodic task arrives. Given a schedule for periodic tasks, the new
task can be guaranteed if there is sufficient time in the idle slots of the schedule. Alter-
natively, applying the dynamic guarantee scheme, a non-periodic task can be guaranteed
if all releases of the periodic tasks and all previously guaranteed non-periodic tasks can
also be guaranteed.

Tasks with fault-tolerance requirements
If guarantees are required in spite of the possibility of node failures, they must be pro-
vided on multiple nodes. Specifically, if a task is non-periodic and does not share re-
sources with other tasks, or if it is a release of a periodic task and shares resources only
with other releases of the same task, then guaranteed execution with respect to t fail-stop
node failures can be achieved by guaranteeing the execution of the task at t+1 nodes.

When a task does not share resources, the following scheme reduces the overheads of
executing its t+1 copies: the start times of its copies are staggered such that the ith copy
is guaranteed for a start time of

s+(i�1)c

4.5. DYNAMIC PLANNING-BASED APPROACHES 87

and a deadline of

d� (t+1� i)c

where s and d are the start time and deadline of the task and c is the communication delay
between nodes. As few task copies as possible should be used, so the first copy to com-
plete successfully informs all the others and the resources and time allocated to the other
copies can be reclaimed (see Section 4.6). This assumes that all interactions with the
environment take place when a copy completes successfully. Obviously, the scheme is
applicable only when communication delays and task computation times are small com-
pared to task deadlines.

Tasks with different levels of importance
The deadline and importance of a task are sometimes at conflict: tasks with very short
deadlines might be less important than tasks with longer deadlines. For example, read-
ing from a rotating disk may have a relatively short deadline but low importance as a
missed disk read can be retried on the next disk revolution. This makes it more difficult
to choose the next task to be executed. The question of guarantees may also have to be
refined when tasks with differing importance values are present. Suppose a task has been
guaranteed and a task of higher importance arrives. It may be that the new task can be
guaranteed only if the guarantee of the task of lower importance is withdrawn. Thus the
once-guaranteed–always-guaranteed strategy may mean that the new task is not guaran-
teed even though it has higher importance.

Assume, instead, that tasks are handled using an acceptance, rather than the guarantee
policy. This allows the rejection of previously accepted tasks, while the guarantee policy
does not: the acceptance does not imply a guarantee but is conditional upon the non-
arrival of tasks of higher importance which conflict with it. In most applications, meeting
the deadlines of tasks of higher importance takes precedence over guarantees to tasks of
lower importance. It would then be desirable that a task is not guaranteed until it is clear
that the guarantee will not be withdrawn.

A compromise approach is to allow an acceptance to be withdrawn until the guaran-
tee deadline but not later. This gives some leeway to the system scheduler and allows a
transaction to try alternatives in case one task is not accepted.

There are different ways to choose tasks for rejection so that a new task can be ac-
cepted:

1. remove the tasks of lower importance, one at a time and in order from low to high
importance, or

2. remove tasks of lower importance, starting with tasks with the largest deadline,

until sufficient resources are released.

Tasks with precedence constraints
Precedence constraints between tasks are used to model end-to-end timing constraints
both for a single node and across nodes (see Chapter 3). Let a task group be a collection

88 CHAPTER 4. DYNAMIC PRIORITY SCHEDULING

of simple tasks with precedence constraints and a single deadline. Each task acquires
resources before it begins, and releases them upon completion. Assume that when a task
group is invoked, the worst-case computation time and resource requirements of each
task can be determined. The first step is to find the set of ‘eligible’ tasks, i.e those whose
ancestors are all in the partial schedule, and then to apply the basic planning algorithm
to the set of eligible tasks. Priorities are computed only for tasks whose ancestors have
been scheduled.

4.5.2 Timing of the planning

As the number of tasks increases, so does the cost of planning and there is less time avail-
able for planning. This is the main reason for the poor performance of planning schemes
during overloads. So when a system overload is anticipated, use of a method that con-
trols scheduling overheads is essential. Thus, it is important to address the issue of when
to plan the execution of a newly arrived task. Two simple approaches are:

1. When a task arrives, attempt to plan its execution along with previously scheduled
tasks: this is scheduling-at-arrival-time and all tasks that have not yet executed are
considered for planning when a new task arrives.

2. Postpone the feasibility check until a task is chosen for execution: this is
scheduling-at-dispatch-time and can be done very quickly for non-pre-emptive
task execution by checking whether the new task will finish by its deadline.

The second approach is less flexible and announces task rejection very late. Conse-
quently, it does not provide sufficient lead time for considering alternative actions when
a task cannot meet its timing-constraints. Both avoid resource wastage as a task does not
begin execution unless it is known that it will complete before its deadline.

To minimize scheduling overheads while giving enough lead time to choose alterna-
tives, instead of scheduling tasks when they arrive or when they are dispatched, they
should be scheduled somewhere in between – at the most opportune time. If they can
be scheduled at some punctual point, this can limit the number of tasks to be considered
for scheduling and avoids unnecessary scheduling (or rescheduling) of tasks that have no
effect on the order of tasks early in the schedule.

Choice of the punctual point must take into account the fact that the larger the mean
laxity and the higher the load, the more tasks are ready to run. The increasing number
of tasks imposes growing scheduling overheads for all except a scheduler with constant
overheads. The punctual point is the minimum laxity value, i.e. the value to which a
task’s laxity must drop before it becomes eligible for scheduling. In other words, the
guarantee of a task with laxity larger than the punctual point is postponed at most until
its laxity reaches the punctual point. Of course, if the system is empty a task becomes
eligible for scheduling by default. By postponing scheduling decisions, the number of
tasks scheduled at any time is kept under control, reducing the scheduling overheads and
potentially improving the overall performance.

4.5. DYNAMIC PLANNING-BASED APPROACHES 89

The main benefit of scheduling using punctual points is the reduced scheduling over-
heads when compared to scheduling at arrival time. This is due to the smaller number of
relevant tasks (the tasks with laxities smaller than or equal to the punctual point) that are
scheduled at any given time. Clearly, when the computational complexity of a schedul-
ing algorithm is higher than the complexity of maintaining the list of relevant tasks, the
separation into relevant/irrelevant tasks reduces the overall scheduling cost; that is, the
scheduling becomes more efficient.

Scheduling at the opportune time ensures that a scheduling decision is made earlier
than when scheduling at dispatch time, but not necessarily as early as when scheduling
at arrival time. Consequently, the lead time for alternative actions is adjustable and is
based on design and run-time parameters. Scheduling at an opportune time (i.e. at the
punctual point) is more flexible, more effective and more tolerant of timing errors than
scheduling at dispatch time, primarily due to its early warning characteristics. Hence,
ways of finding the punctual point for different system characteristics are required.

Consider the following scheme for tasks with deadlines that are held on a dispatch
queue, Q1(n), maintained in minimum laxity order, and a variant of the FCFS queue.
When a task arrives, its laxity is compared with that of the n tasks in the queue Q1(n)
and the task with the largest laxity is placed at the end of the FCFS queue. When a task
in Q1 is executed, the first task on the FCFS queue is transferred to Q1.

Analysis shows that performance to within 5% of the optimal LLF algorithm is
achieved for even small values of n.

A more experimental way to limit the number of scheduled tasks is to have a Hit queue
and a Miss queue: the number of scheduled tasks in the Hit queue is continuously ad-
justed according to the ratio of tasks that complete on time (the ‘hit’ ratio). This method
is adaptive, handles deadlines and values and is easy to implement. However, it does not
define a punctual point.

The weakness of both these approaches is the lack of analytical methods to adjust the
number of scheduled tasks. The parameters that control the number of schedulable tasks
must be obtained through simulation and a newly arrived task can miss its deadline before
it gets considered for execution. By contrast, if the punctual point is derived analytically,
it can be ensured that every task that arrives will be considered for execution.

The number of schedulable tasks must be controlled using timing-constraints, rather
than by explicitly limiting the number of schedulable tasks; this ensures that every task is
considered for scheduling when its laxity reaches the most opportune moment, the punc-
tual point. The approach is especially beneficial for systems where tasks have widely
differing values, and rejecting a task without considering it for scheduling might result
in a large value loss, something that can happen easily when the number of schedulable
tasks is fixed.

Finally, the features of a ‘well-timed scheduling framework’ are summarized below:

� Newly arrived tasks are classified as relevant or irrelevant, depending on their lax-
ity.

� Irrelevant tasks are stored in a D-queue (the delay queue), where they are delayed
until their laxity becomes equal to the punctual point, at which time they become

90 CHAPTER 4. DYNAMIC PRIORITY SCHEDULING

relevant.
� Relevant tasks are stored in an S-pool (the scheduling pool) as tasks eligible for

immediate scheduling.
� When a task is put into the S-pool, a feasibility check is performed; if this is satis-

fied, it is transferred into the current feasible schedule.

It is important to observe that apart from reducing the scheduling cost, the separation of
relevant and irrelevant tasks also contributes to reducing the scheduling overheads due
to queue handling operations.

4.6 Practical considerations in dynamic scheduling

4.6.1 Implementing best-effort scheduling

The implementation mechanisms needed here are similar to those found in priority-based
non-real-time systems, the primary difference being the way in which priorities are as-
signed.

Ready tasks are maintained in a ready queue according to their priority order. The set
of tasks waiting for a resource (other than a processor) are placed in a wait queue. When
a task completes execution or when it releases a resource, one or more tasks may move
from the wait queue to the ready queue. This, or the arrival of a high priority task, may
cause the currently running task to be pre-empted. This is because these events can lead
to changes in the relative priorities of tasks and task priorities must be re-evaluated and
the ready queue re-ordered according to the new priorities. Dispatching involves pre-
emption, context switching and possibly placing the pre-empted task back in the ready
queue, according to its priority, for future resumption.

4.6.2 Implementing planning-based scheduling

Here there are two main considerations: feasibility checking and schedule construction.
In a multi-processor system, feasibility checking and dispatching can be done indepen-
dently, allowing these system functions to run in parallel. The dispatcher works with a
set of tasks that have been previously guaranteed to meet their deadlines, and feasibility
checking is done on the set of currently guaranteed tasks plus any newly invoked tasks.

Feasibility checking and schedule construction
One of the crucial issues in dynamic scheduling is the cost of scheduling: the more time
that is spent on scheduling the less there is for task executions.

In a single-processor system, feasibility checking and task executions compete for pro-
cessing time. If feasibility checking is delayed, there is less benefit from the early warn-
ing feature. However, if feasibility checking is performed immediately after a task ar-
rives, this may lead to guaranteed tasks missing their deadlines. Thus, when tasks are

4.6. PRACTICAL CONSIDERATIONS IN DYNAMIC SCHEDULING 91

guaranteed, some time must be set aside for scheduling-related work and a good balance
must be struck depending on task arrival rates and task characteristics such as computa-
tion times.

One way is to provide for the periodic execution of the scheduler. Whenever invoked,
the scheduler will attempt to guarantee all pending tasks. In addition, if needed, the
scheduler could be invoked sporadically whenever these extra invocations will affect nei-
ther guaranteed tasks nor the minimum guaranteed periodic rate of other system tasks.

Another alternative, applicable to multi-processor systems, is to designate a ‘schedul-
ing’ processor whose sole responsibility is to deal with feasibility checking and schedule
construction. Guaranteed tasks are executed on the remaining ‘application’ processors.
In this case, feasibility checking can be done concurrently with task execution. Recall
that a task is guaranteed as long as it can be executed to meet its deadline and the dead-
lines of previously guaranteed tasks remain guaranteed. Guaranteeing a new task might
require re-scheduling of previously guaranteed tasks and so care must be taken to ensure
that currently running tasks will not be re-scheduled.

These considerations suggest that scheduling costs should be computed based on the
total number of tasks in the schedule plus the newly arrived tasks, the complexity of the
scheduling algorithm and the cost of scheduling one task. Tasks with scheduled start
times before the current time plus the scheduling cost are not considered for reschedul-
ing; the remaining tasks are candidates for re-scheduling to accommodate new tasks.

Dispatching
Planning-based schedulers typically use non-pre-emptive schedules. Dispatching de-
pends on whether the tasks are independent and whether there are resource constraints.

If the tasks are independent and have no resource constraints, dispatching can be ex-
tremely simple: the task to be executed next is the next task in the schedule, and this task
can always be executed immediately even if its scheduled start time has not arrived.

On the other hand, precedence constraints and resource constraints may increase the
complexity of dispatching. If tasks have resource or precedence constraints, the dispatch-
ing process must take these into account. When the actual computation time of a task dif-
fers from its worst-case computation time in a non-pre-emptive multi-processor schedule
with resource constraints, run-time anomalies may occur, causing some of the scheduled
tasks to miss their deadlines. There are two possible kinds of dispatcher:

1. Dispatch tasks exactly according to the given schedule. In this case, upon the com-
pletion of one task, the dispatcher may not be able to dispatch another task imme-
diately because idle time intervals may have been inserted by the scheduler to con-
form to the precedence constraints or resource constraints. One way to construct a
correct dispatcher is to use a hardware (count down) timer in order to enforce the
start time constraint.

2. Dispatch tasks taking into consideration the fact that, given the variance in task
execution times, some tasks will complete earlier than expected. The dispatcher
tries to reclaim the time left by early completion and uses it to execute other tasks.

92 CHAPTER 4. DYNAMIC PRIORITY SCHEDULING

Clearly, non-real-time tasks can be executed in the idle time slots. More valuable is an
approach that improves the guarantees of tasks that have time-constraints. Several issues
must be considered to achieve this. Resource reclaiming algorithms used in systems that
perform dynamic planning-based scheduling must maintain the feasibility of guaranteed
tasks, must have low overheads, as a resource reclaiming algorithm is invoked whenever
a task finishes, and must have costs that are independent of the number of tasks in the
schedule. They must also be effective in improving the performance of the system.

Complete rescheduling of all remaining tasks is an available option, but, given the
complexity of scheduling, it is usually expensive and ineffective.

A feasible multi-processor schedule provides task ordering information that is suffi-
cient to guarantee the timing and resource requirements of tasks in the schedule. If two
tasks overlap in time on different processors in a schedule, then it can be concluded that
no matter which of them is dispatched first at run-time, the deadline of the other will
not be affected. On the other hand, if two tasks do not overlap in time, the same con-
clusion cannot be drawn without re-examining resource constraints or without total re-
scheduling.

Assume each task τi is assigned a scheduled start time SSTi and a scheduled finish time
SFTi in the given feasible schedule. Resource reclaiming algorithms use this information
to perform local optimization at run-time, while preserving the correct relative ordering
among the scheduled tasks and ensuring the original guarantees. This local optimization
is accomplished by reasoning only about the first task scheduled to execute on each of the
m processors, and there is no need to examine the availability of the resources needed in
order to dispatch a task when reclaiming occurs. Thus, the complexity of the algorithm
is independent of the number of tasks in the schedule and depends only on the number
of processors.

We now describe the basic reclaiming algorithm:

1. Upon completion of a task, the dispatcher identifies idle intervals on all processors
and resources by computing a function

reclaimable δ = min(SSTi)� current time

where SSTi is the scheduled start time of the current first task for processor i in
the schedule, 1 � i � m. The complexity of this is O(m). A positive value of
reclaimable δ indicates the length of the idle period. The cumulative value of
these idle periods is stored in total reclaimable time.

2. Compute

actual start time = SSTi� total reclaimable time

for the next task τi scheduled for a processor; the task is dispatched if its actual
start time equals the current time.

Thus the complexity of the basic version is: O(m) + m�O(1) = O(m).
The Early Start algorithm differs from the basic version by replacing Step 2 with the

following:

4.7. HISTORICAL BACKGROUND 93

Compute the Boolean function

can start early = SSTi < SFTj;1� j� m; i 6= j

where SSTi is the scheduled start time of the first task on processor i, SFTj is
the scheduled finish time of the first task on processor j and m is the number
of processors.

This function identifies parallelism between the first task on processor i and the first tasks
on all other processors. It has a complexity of O(m). If can start early is true the first
task is dispatched and otherwise the actual start time is computed as in the basic version.

The second step of the algorithm must be executed for all currently idle processors
whenever a positive value of reclaimable time is obtained in the first step. Thus, Early
Start has a complexity of O(m)+m�O(m) = O(m2).

Though Early Start has a higher run-time cost, experimental studies show that it per-
forms much better than the basic version for most parameter settings. Only when the
resource conflict probability is very high, or when the system is either extremely over-
loaded or very lightly loaded, does the basic version demonstrate the same effectiveness.

One of the positive outcomes of reclaiming is that it is possible to be pessimistic about
the computation times of tasks. This is because even if the dynamic guarantees are pro-
vided with respect to worst-case computation times, since any unused time is reclaimed,
the negative effects of pessimism are considerably reduced.

4.7 Historical background

A number of books on scheduling theory (Coffman, 1976; Blazewicz et al., 1986) pro-
vide excellent general background. Surveys of work on real-time task scheduling can be
found in Stankovic and Ramamritham (1988; 1993).

Liu and Layland (1973) focused on the problem of scheduling periodic tasks on a
single processor and proposed two pre-emptive algorithms. In addition to the rate-
monotonic algorithm, described in Chapters 2 and 3, they analyzed the earliest-deadline-
first dynamic priority assignment algorithm.

Mok and Dertouzos (1978) and Dertouzos and Mok (1989) studied multi-processor on-
line scheduling of real-time tasks, noting that in most real-world circumstances, optimal
dynamic algorithms do not exist (Hong & Leung, 1988; Chetto & Chetto, 1989; Mok,
1983). Dynamic algorithms that do not a priori know the arrival times, deadlines and
computation times of tasks cannot guarantee optimal performance (Dertouzos & Mok,
1989).

Different types of heuristic for best-effort algorithms are examined in Locke (1985),
including shortest-processing-time-first, earliest-deadline-first, least-laxity-first, first-
come-first-served, an algorithm that randomly chooses the next task to execute and one
that fixes a task’s priority to be its highest possible value. In addition to the standard
highest-priority-first scheduling algorithm, an algorithm which discards tasks with low
value density when an overload is considered likely is also evaluated. As expected, the

94 CHAPTER 4. DYNAMIC PRIORITY SCHEDULING

new algorithm improves performance under overloads. Dealing with overheads, in gen-
eral, is a complex problem and solutions are still in their infancy (Baruah et al., 1992;
Baruah & Rosier, 1991; Wang, 1993).

With deadline and resource constraints added to tasks, many heuristic approaches have
been developed for dynamic planning-based scheduling: see e.g. Ramamritham and
Stankovic (1984), Ramamritham et al. (1990), Stankovic and Ramamritham (1991),
Zhao and Ramamritham (1987), Zhao et al. (1987a; 1987b). Extensive simulation stud-
ies of the heuristics show that those that combine deadline and resource requirements
work well (Zhao & Ramamritham, 1987; Zhao et al., 1987b) according to the perfor-
mance criterion of maximizing the number of guaranteed tasks. Such an algorithm has
been implemented as part of the Spring Kernel (Stankovic & Ramamritham, 1991). Al-
gorithms that attempt to maximize the value of tasks that meet their deadlines can be
found in Biyabani et al. (1988.), Butazzo and Stankovic (1993), Locke (1985) and
Zlokapa (1993).

Well-timed scheduling and the analytical derivation of punctual points applicable to
planning-based scheduling for simple task models are discussed in Zlokapa (1993). This
tries to optimize the number of tasks considered for scheduling. Approaches using sim-
ulation to bound the number of scheduled tasks are presented in Goli et al. (1990) and
Hong et al. (1989); both papers examine the performance of variants of the minimum-
laxity-first scheduling policy – the policy that has been shown to be optimal with respect
to minimizing the long-term, steady-state percentage of tasks that miss their deadlines,
over all work-conserving non-pre-emptive policies (Panwar & Towsley, 1988; Panwar
et al., 1988). Details of resource reclaiming algorithms as well as their performance im-
plications are presented in Shen et al. (1993).

Several schemes for dynamic distributed scheduling have been reported in the liter-
ature (Ramamritham et al., 1989; Blake & Schwan, 1991; Ramamritham & Stankovic,
1984; Stankovic et al., 1985). A detailed discussion of scheduling imprecise computa-
tions appears in Liu et al. (1991; 1994a); they allow the system to trade quality for the
purpose of achieving timeliness.

Though many real-time operating systems assign static priorities to periodic tasks,
for the remaining tasks they usually employ best-effort scheduling (Furht et al., 1991;
Ready, 1986; Holmes et al., 1987; Jensen, 1992). Experimental operating systems using
planning-based scheduling include Spring (Stankovic & Ramamritham, 1991), Maruti
(Gudmundsson et al., 1992) and Chaos (Schwan et al., 1990).

4.8 Further work

A comprehensive and integrated set of solutions for the real-time scheduling of complex
systems is still being sought. There are some important open research questions:

� What are good sets of integrated scheduling policies that span processor schedul-
ing, input/output scheduling, communication needs and resource allocation?

4.9. EXERCISES 95

� Can a single sophisticated scheduling algorithm handle complex task sets cost ef-
fectively, or should tasks be partitioned into equivalence classes with algorithms
tailored to each class? How would such a set of algorithms interact?

� What type of predictability is possible for distributed real-time computation? Can a
comprehensive scheduling approach that supports predictable and analyzable dis-
tributed real-time systems be developed?

� How can task importance, computation time, tightness of deadline and fault re-
quirements be traded off to maximize value in the system? What are the roles of
the scheduling algorithms in this analysis?

� What is the impact of off-line allocation policies on dynamic on-line scheduling?
� Can worst-case performance bounds be determined for the various algorithms; can

these bounds provide insight into practical techniques for avoiding the worst-case
performance at run-time?

4.9 Exercises

Exercise 4.1 Why is dynamic scheduling required in many real-time applications?

Exercise 4.2 What are the predictability properties of dynamic priority algorithms vis-
a-vis static priority algorithms?

Exercise 4.3 Develop algorithms to translate a task group deadline into individual task
deadlines.

Exercise 4.4 Develop programming language constructs to support the acceptance pol-
icy in place of the guarantee policy.

Exercise 4.5 Develop a guarantee version of the language construct that is used to spec-
ify start time constraints.

Exercise 4.6 What characterizes dynamic best-effort scheduling?

Exercise 4.7 What characterizes dynamic planning-based scheduling?

Exercise 4.8 How are task priorities used in (a) dynamic best-effort scheduling? (b)
dynamic planning-based scheduling?

Exercise 4.9 Why do dynamic priority approaches incur higher overheads than static
priority approaches?

Exercise 4.10 Which incurs higher overheads: dynamic best-effort scheduling or dy-
namic planning-based scheduling? Why? What are the ways in which these overheads
can be reduced?

96 CHAPTER 4. DYNAMIC PRIORITY SCHEDULING

Exercise 4.11 What is the difference between the interruptions that occur when tasks
communicate and when tasks are pre-empted?

Exercise 4.12 Is (Min L + Min S) a possible priority assignment policy? Explain the
reasons for your answer.

Exercise 4.13 To reduce search time during planning-based scheduling it was suggested
that the priority of at most a constant number of tasks be computed at each level of search.
What factors influence the choice of this constant?

Exercise 4.14 For greedy scheduling, a limited form of list scheduling was suggested
in which task computation times are considered such that priorities are not violated when
a greedy policy is used. An alternative is to use a limited form of greed in which the al-
gorithm tries to keep x% of each replicated resource busy. Develop these ideas into fully
fledged scheduling algorithms. Will your algorithms help in keeping a certain number of
processors in a multi-processor system busy?

Chapter 5

Assertional Specification and
Verification
Jozef Hooman

Introduction

We now introduce a formal framework for the specification and verification of programs
for embedded real-time systems. Such programs are often concurrent programs, or dis-
tributed programs, and the number of possible executions is so large that exhaustive test-
ing is impossible. However, design faults in the programs can have disastrous conse-
quences and the goal is to devise a formal method whose use will increase confidence in
the correctness of the program.

The number of possible states of a complex system is usually exponential in the num-
ber of components. To deal with this ‘state explosion’, we use an assertional method of
reasoning in which a set of states can be characterized by a single logical formula. Fur-
ther, to reduce the complexity of the verification task, we use a method which is compo-
sitional: it allows reasoning about the specifications of components without considering
details of their implementation. This makes it possible to consider a part of the system
as a black box which is characterized by its specification.

Traditional Hoare logic allows the formulation of convenient and effective composi-
tional rules for sequential composition and iteration in sequential programs. This logic
is based on triples of the form fpg S fqg, where p is the precondition, S the program
and q the postcondition. We will show how similar triples can be used in a formalism
for the specification and verification of distributed, real-time programs. This is achieved
by extending the assertion language in which the precondition and the postcondition are
expressed and by modifying the interpretation of the triples.

The functional behaviour of a program is expressed in terms of the values of program
variables before and after the execution of the program. To express timing, a special vari-
able now is added to represent time: placed in the precondition it denotes the starting time
of the program; in the postcondition it denotes the termination time. The relation between
the starting and completion times can then be used, for example to specify bounds on the
execution time of a program. Also, the real-time interface of the program with the envi-
ronment can be specified using primitives denoting the timing of observable events.

97

98 CHAPTER 5. ASSERTIONAL SPECIFICATION AND VERIFICATION

Traditional triples were restricted to expressing partial correctness properties of pro-
grams, i.e. properties of terminating computations. Partial correctness is a safety prop-
erty, which means that it can be falsified in finite time. Liveness properties are also needed
(e.g. to specify the progress of a computation, or its termination) and we shall describe
a formalism in which safety and liveness properties can both be described. For exam-
ple, ‘termination within ten time units’ and ‘communication via channel c within 25 time
units’ are safety properties because they can be falsified after ten and 25 time units, re-
spectively, but they also express the fact that something must happen. Similarly, the real-
time safety property ‘termination within ten time units’ implies the liveness property ‘ter-
mination’. The interpretation of triples has therefore been adapted to require the post-
condition to hold for terminating and non-terminating computations. Combined with the
timing primitives, this provides a framework in which liveness properties can be speci-
fied.

We shall first formulate a compositional proof system, i.e. a set of rules and axioms
which allow a formal derivation of the modified triples. For each compound program-
ming language construct (such as sequential composition and parallel composition) there
will be a rule in which the specification of the construct can be deduced from specifica-
tions of its constituents (without any further information about the internal structure of
these constituents). The proof system can then be used to verify design steps taken in the
course of top-down program construction.

In general, the method proceeds according to the following steps.

1. Formulate the top-level requirements specification of the complete system, includ-
ing the properties of continuous components:

2. Formalize the assumptions about the physical processes in the system.

3. Specify the control requirements in terms of continuous quantities.

4. Verify Step 3, i.e. show that the specifications of Steps 2 and 3 lead to the properties
specified in Step 1.

5. Transform the control strategy (of Step 3) into a specification in terms of a discrete
interface; this is usually done using formal specifications of sensors and actuators.

6. Implement the discrete specification of Step 5 using a real-time programming lan-
guage.

5.1 Basic framework

We begin by considering only the parallel composition of processes, without taking ac-
count of their implementation (which may be in hardware or in software). We define the
semantic model used to describe the behaviour of real-time processes and then present a
formalism to specify their properties.

5.1. BASIC FRAMEWORK 99

5.1.1 Parallel processes

Assume that a number of processes are composed in parallel using the operator k. Certain
objects (e.g. channels, variables, or physical quantities) of a process can be observed by
its parallel environment.

Let obs(P) be the set of (representations of) observable objects of process P represent-
ing the interface of P. For instance, if P communicates through channels, then obs(P)
contains the names of these channels, and if P uses shared variables, then the names of
these variables are included in obs(P). Define

obs(P1kP2) = obs(P1)[obs(P2)

The actions of a process that affect its interface are called observable actions and the
occurrence of an observable action is an observable event.

Process P will also have local objects (e.g. local variables) and loc(P) denotes the set
of objects of P that are not observable by other parallel processes. For P1kP2 we assume
that loc(P1)\ loc(P2) = ø. Local variables range over a value domain VAL which is the
set of real numbers R.

Reasoning about the real-time behaviour of parallel processes needs information about
the progress of actions, i.e. how long the execution of a statement can be postponed. For
example, the execution time of the program x := 0k y := 1 depends on the allocation of
processes to processors. Assuming that assignment ‘:=’ takes one time unit, the program
x := 0ky := 1 terminates after one time unit if each process x := 0 and y := 1 has its own
processor and can execute independently. However, if the two processes are executed
on a single processor, the program will take at least two time units, since then the pro-
cesses have to be scheduled in some order. Thus the real-time behaviour of a concurrent
program will depend on the number of available processors and the way in which they
are allocated to processes. We shall make the maximal parallelism assumption that each
process has its own processor and local actions are executed as soon as possible.

5.1.2 Semantic model

The timing behaviour of a program is described from the viewpoint of an external ob-
server with a clock. Thus, although components of a system may have local clocks, the
observable behaviour of the system is described in terms of a single, conceptual, global
clock. This global time is not part of the distributed system and it does not impose any
synchronization upon processes. The real-time semantics of programs is defined using a
function which assigns a set of records to each point of time to represent the observable
events that are taking place at that time.

We use a dense time domain TIME: i.e. between any pair of elements of TIME there is
an intermediate value, also in TIME. Such a time domain allows modelling events that
are arbitrarily close to each other; dense time is also suitable for the description of hybrid
systems which interact with an environment that has a time-continuous nature (e.g. the
mine pump controller).

100 CHAPTER 5. ASSERTIONAL SPECIFICATION AND VERIFICATION

Let the non-negative reals be taken as the time domain: TIME = fτ 2 R j τ� 0g.
The real-time behaviour of a process P is described using the following components:

� the initial state (i.e. the values of the local objects at the start of the execution) and
the starting time of P,

� the timed occurrence of the observable actions of P, and
� if P terminates, the final state (i.e. the values of the local objects at termination)

and the termination time of P (or ∞, if P does not terminate).

The observed real-time behaviour is modelled by a timed occurrence function, ρ, which
assigns to each point of time a set of records representing the observable events occurring
at that time. The starting and termination times of programs are defined using a special
variable now. Then a state σ assigns a value from TIME[f∞g to the variable now and
a value to each local object.

Example 5.1 Consider a system in which we can observe read and write actions on a
shared variable x and send and receive actions on two channels c and d. Then part of an
occurrence function ρ of this system might be given by

ρ(3:14)= fsend(c;0); read(x;5)g
ρ(5:1) = frec(c;0)g
ρ(6) = ø
ρ(6:3) = fwrite(x;7); send(c;2); send(d;3)g
ρ(7:4) = frec(c;2)g
ρ(9) = frec(d;3);write(x;9)g

Of course this does not completely describe ρ because TIME is a dense domain, but it
shows the events at the moments 3:14, 5:1, 6, etc.

The semantics of a program P starting in a state σ0 is denoted by M (P)(σ0); it is a set
of pairs of the form (σ;ρ), where σ is a state and ρ a timed occurrence function. σ0(x)
gives the value of local object x at the start of the execution and σ0(now) represents the
starting time. Consider a pair (σ;ρ) in M (P)(σ0). If P terminates, σ represents the val-
ues of the local objects on termination and σ(now) denotes the termination time. When P
does not terminate, we define σ(now) =∞ and σ(x) is an arbitrary value for any x 6� now.

Function ρ represents the observable behaviour of P during its execution. Thus, for
σ0(now)� τ < σ(now), ρ(τ) represents the observable events of the execution of P at τ.
Outside this interval, the occurrence of actions is not restricted by the semantics of P, so
arbitrary events may occur.

5.1.3 Specifications

Our specifications are based on traditional triples with some modifications: a slightly dif-
ferent notation is used and the terms ‘assumption’ and ‘commitment’ replace ‘precondi-
tion’ and ‘postcondition’. Formulas have the structure hhAii P hhCii, where P is a process
and A and C are the assumption and the commitment respectively.

5.1. BASIC FRAMEWORK 101

Assertion A defines the values of local objects at the start of P, the starting time of P,
and the timed occurrence of observable events.

Given assumption A, assertion C defines the commitment of P in terms of the values
of the local objects at termination, if P terminates, the termination time (which is taken
as ∞ if P does not terminate) and the timed occurrence of observable events.

Unlike the postcondition of a traditional triple, the commitment expresses properties
of terminating and non-terminating computations. The addition of time makes it possible
for the formalism to be used to express partial correctness and liveness properties.

The assertions A and C in a correctness formula hhAii P hhCii are expressed in a first-
order logic with the following primitives:

� Names denoting local objects, such as x;y; : : :, ranging over VAL.
� Logical variables that are not affected by program execution: logical value vari-

ables v, v0, v1, : : : range over VAL and logical time variables t, t0, t1, : : : over
TIME[f∞g.

� A special variable now, ranging over TIME[f∞g, refers to global time; an oc-
currence of now in assumption A represents the starting time of statement P and in
commitment C it denotes the termination time (using now=∞ for non-terminating
computations).

� For observable action O and expression exp which yields a value in TIME, the
boolean primitive O@exp denotes that O occurs at time exp.

Example 5.2 Consider the system described in Example 5.1. We might use write(x;7)
@6:3 to say that value 7 has been assigned to x at time 6:3 and send(c;0)@3:14 to say
that value 0 has been sent along channel c at time 3:14.

Let loc(p) be the set of names of the local objects occurring in assertion p. Similarly,
let obs(p) denote the set of observables occurring in p. Time intervals will be defined as
conventional intervals, for example

[t0; t1) = ft 2 TIME j t0 � t < t1g
(t0; t1) = ft 2 TIME j t0 < t < t1g

Let � denote syntactic equality. Given P@t and a set (usually an interval) I � TIME,

P during I � 8 t 2 I : P@t
P in I � 9 t 2 I : P@t
(:P)@t � :(P@t), or simply :P@t instead of (:P)@t

Thus, :P during I is equivalent to (:P) during I (and also to :(P in I)).
For functions such as f : TIME! VAL we will often use these abbreviations for time-

dependent predicates of the form (f > v)@t, (f � v)@t, which hold if f (t) > v, f (t) � v
respectively. Thus (f < 5) during [2;7] holds if f (t) < 5, for all t 2 [2;7].

The notation p[exp=var] is used to represent the substitution of expression exp for each
free occurrence of variable var in assertion p. We assume the usual properties of ∞. For
instance, for all t 2 TIME, t < ∞, t+∞ = ∞+ t = ∞� t = ∞. Frequently, 8 t0; t1 < ∞ is
used as an abbreviation for 8t0 < ∞; 8t1 < ∞.

102 CHAPTER 5. ASSERTIONAL SPECIFICATION AND VERIFICATION

Interpretation
Logical variables are interpreted using a logical variable environment γ, which is a map-
ping which assigns a value from VAL to each logical value variable and a value from
TIME[f∞g to each logical time variable. The value of expression exp in an environment
γ, a state σ and a mapping ρ is denoted by V (exp)(σ;ρ;γ). It is defined by induction on
the structure of exp. A few illustrative cases are shown below:

V (t)(σ;ρ;γ) = γ(t)
V (now)(σ;ρ;γ) = σ(now)
V (x)(σ;ρ;γ) = σ(x)
V (exp1 + exp2)(σ;ρ;γ) = V (exp1)(σ;ρ;γ)+V (exp2)(σ;ρ;γ)

Similarly, we define inductively that an assertion p holds in a triple (σ;ρ;γ), denoted by
(σ;ρ;γ) j= p. Two examples illustrate this:

(σ;ρ;γ)j= O@exp iff O 2 ρ(V (exp)(σ;ρ;γ))
(σ;ρ;γ)j= p1_p2 iff (σ;ρ;γ) j= p1 or (σ;ρ;γ) j= p2

Example 5.3 Consider the occurrence function ρ from Example 5.1. From this,

(σ;ρ;γ) j= write(x;7)@6:3

(σ;ρ;γ) j= send(c;0)@3:14

and if σ(x) = 2, then

(σ;ρ;γ) j= send(c;0)@(x+1:14)

Note that

(σ;ρ;γ) j= :(send(c;2)@7:4)

and is also written as

(σ;ρ;γ) j= :send(c;2)@7:4

To define the formal interpretation of a correctness formula hhAii P hhCii, observe that
assumption A may refer to points in time after the starting time. Thus A may contain
assumptions about the occurrence of actions during the execution of P. Therefore, the
same occurrence function will interpret A and C. Further, between the start and the ter-
mination time of P, this occurrence function should correspond to the execution of P, as
represented by the semantics of P.

Definition 5.1 (Validity) For a program P and assertions A and C, a correctness formula
hhAii P hhCii is valid, denoted by j= hhAii P hhCii, iff for any environment γ, any state
σ0 2 STATE, and any pair σ, ρ with (σ;ρ) 2M (P)(σ0) we have

(σ0;ρ;γ) j= A implies(σ;ρ;γ) j= C

5.1. BASIC FRAMEWORK 103

Examples of specifications
Program F is specified to start at time 6 in a state where local object x has the value 5,
assuming that there is some observable action O at 3. The specification expresses the
property that F terminates between times 15 and 23 in a state where x has the value f (5).
Further, the commitment asserts that O occurs at 3:

hhx = 5^now = 6^O@3ii F hhx = f (5)^15 < now < 23^O@3ii
Specifications can be generalized using logical variables to represent the starting time
and the initial values of program variables. For instance, to specify that a program FUN
computes f (x) within certain time bounds and leaves x unchanged, logical variables v and
t can be used:

hhx = v^now = t < ∞ii FUN hhy = f (v)^ x = v^ t+5 < now < t+13ii
Note that logical variables are implicitly universally quantified.

The real-time communication interface of a non-terminating program can be specified;
consider, for instance, process L which sends output periodically:

hhx = 0^now = 0ii L hhnow = ∞^8i 2 N : (output; f (i))@T(i)ii
Next, consider a program REACT with terminating as well as non-terminating computa-
tions; it terminates iff it receives input 0:

hhnow = 0ii
REACT
hh (8 t < now : (input;v)@t! (output; f (v)) in [t+Tl; t+Tu])
^ (now < ∞$9 t0 < now : (input;0)@t0) ii

The traditional triple fpg P fqg denoting partial correctness (i.e. if p holds initially and
if program P terminates, then q holds in the final state) can be expressed as

hhp^now < ∞ii P hhnow < ∞! qii
Total correctness of P with respect to p and q (i.e. if p holds initially, then program P
terminates, and q holds in the final state) can be denoted by

hhp^now < ∞ii P hhnow < ∞^qii

5.1.4 Proof rules

The rule of consequence in the proof system is identical to the original rule for traditional
triples and allows assumptions to be strengthened and commitments to be weakened.

Rule 5.1.1 (Consequence)

hhA0ii P hhC0ii; A! A0;C0! C

hhAii P hhCii

104 CHAPTER 5. ASSERTIONAL SPECIFICATION AND VERIFICATION

The proof rule for parallel composition has the following general form, using a com-
binator Comb of assertions which will be defined below.

Rule 5.1.2 (Parallel Composition)

hhA1ii P1 hhC1ii; hhA2ii P2 hhC2ii; Comb(C1;C2)! C

hhA1 ^A2ii P1kP2 hhCii
provided

loc(C1)\ loc(P2) = ø and loc(C2)\ loc(P1) = ø
i.e. the commitment of one process should not refer to local objects of the other, and

obs(A1;C1)\obs(P2)� obs(P1) and obs(A2;C2)\obs(P1)� obs(P2)

i.e. if an assertion in the specification of one process refers to the interface of another
process, then this is part of a joint interface.

Consider three possibilities for Comb:

1. If now does not occur in C1 and C2 then define

Comb(C1;C2) �C1^C2

Without an additional restriction on now the rule is not sound. For example,

hhnow = 0ii P1 hhnow = 2iiand hhnow = 0ii P2 hhnow = 3ii
would lead to

hhnow = 0ii P1kP2 hhnow = 2^now = 3ii
and hence by the Consequence rule

hhnow = 0ii P1kP2hhfalseii
We shall refer to this version as the Simple Parallel Composition rule.

2. It is not straightforward to use now in the commitments because, in general, the
termination times of P1 and P2 will be different. To obtain a general rule, substitute
logical variables t1 and t2 for now in C1 and C2 respectively. Then the termination
time of P1kP2, expressed by now in its commitment, is the maximum of t1 and t2:

Comb(C1;C2) �C1[t1=now]^C2[t2=now]^now = max(t1; t2)

3. This definition of Comb leads to a sound rule but, for completeness, predicates are
needed to state that process Pi, i = 1;2, does not perform any action after its ter-
mination. Define

Comb(C1;C2) �C1[t1=now]^VO2obs(P1):O during [t1;now)
^C2[t2=now]^VO2obs(P2):O during [t2;now)
^now = max(t1; t2)

This parallel composition rule is compositional, as a specification of the compound con-
struct P1kP2 can be derived using only the specifications of the components P1 and P2
and their static interface given by loc and obs. Basically, compositionality is achieved
by requiring that the specification of a process refers only to its interface.

5.2. THE MINE PUMP 105

SumpContr

Control System

outflow wl

inflow

Sump

Figure 5.1 The mine pump system

5.2 The mine pump

The function of the mine pump is to prevent flooding in the shaft. But the pump should
not be working when the atmosphere contains too much methane as this could lead to an
explosion.

Let wl be a function from TIME to the non-negative reals and let wl(texp) represent the
water level in the sump at time texp. Define obs(wl(texp)) = fwlg. The aim is to keep the
water level between certain bounds, say LWL and HWL, as expressed by the commitment

CTL� 8t < ∞ :LWL < wl(t) < HWL

Then, the Mine can be specified by

hhnow = 0ii Mine hhCTLii
with obs(Mine) = fwlg.

The mine consists of two components: Sump and a controller SumpContr (see Fig-
ure 5.1). Sump represents the water level; there is an inflow of water into the sump and
the function of SumpContr is to remove water (by means of the pump), i.e. control the
outflow so that the water level stays between the specified bounds. At any time, the wa-
ter level is the sum of the initial level wl(0) at time 0 and the total inflow, minus the total
outflow.

Let inflow(texp) denote the inflow at time texp, i.e. the amount of water added per unit
of time, and let outflow(texp) denote the outflow at time texp, i.e. the amount of water
removed per unit of time. Assume that these two functions are continuous and range
over the non-negative reals. Define

obs(inflow(texp)) = finflowgandobs(outflow(texp)) = foutflowg
The water level in the sump is determined by the commitment

CSump1 � 8t < ∞ : wl(t) = wl(0)+
Z t

0
(inflow(x)�outflow(x))dx

106 CHAPTER 5. ASSERTIONAL SPECIFICATION AND VERIFICATION

By the continuity of inflow and outflow, wl is a continuous function.
Clearly, CTL can only be achieved if the water level does not change too fast, i.e. if

the inflow is bounded. For some constant λmax
in > 0,

CSump2 � 8t < ∞ : 0� inflow(t) � λmax
in

Further, assume that the initial level is between the bounds LSWL (Low Water Safety
Level) and HSWL (High Water Safety Level):

CSump3 � LSWL < wl(0)< HSWL

Define CSump�CSump1^CSump2^CSump3. Then the physical properties of the sump
are specified by

hhnow = 0ii Sump hhCSumpii
with obs(Sump) = fwl; inflow;outflowg.

The following lemma can be derived by standard mathematical analysis.

Lemma 5.1 CSump1 implies
8t0; t1 < ∞ : t0 � t1! wl(t1) = wl(t0)+

R t1
t0
(inflow(x)�outflow(x))dx

SumpContr should start to remove water as soon as the water level becomes high. First,
we specify that as long as the water level is above HSWL there will be an outflow of at
least λmin

out , allowing a reaction delay of δsc time units. The constants λmin
out and δsc are

non-negative:

CSC1 � 8t0; t1 < ∞ : (wl� HSWL) during [t0; t1]
! (outflow� λmin

out) during [t0+δsc; t1]

Similarly, as soon as the level reaches a minimum level LSWL no more water should be
removed:

CSC2 � 8t0; t1 < ∞ : (wl� LSWL) during [t0; t1]
! (outflow = 0) during [t0+δsc; t1]

These commitments do not specify the outflow when the water level is between LSWL
and HSWL, or during the reaction periods (of, at most, δsc time units). Therefore we add
a commitment about the maximal outflow, using a non-negative constant λmax

out :

CSC3 � 8t < ∞ : 0� outflow(t) < λmax
out

Using CSC�CSC1^CSC2 ^CSC3 we have

hhnow = 0ii SumpContr hhCSCii
with obs(SumpContr)� fwl;outflowg. Note that

obs(CSump)\obs(SumpContr)� obs(CSump)
= fwl; inflow;outflowg= obs(Sump)

5.2. THE MINE PUMP 107

and

obs(CSC)\obs(Sump) = fwl;outflowg � obs(SumpContr)

Since there are no local objects, the specifications of Sump and SumpContr satisfy the
requirements of the Simple Parallel Composition rule and

hhnow = 0ii SumpkSumpContr hhCSump^CSCii

Standard mathematical analysis yields the following lemma.

Lemma 5.2 (Intermediate Value Property) Consider a continuous function f and two
time points t1 and t2 with t1 < t2. Then for any µ with f (t1) � µ� f (t2) or f (t1) � µ �
f (t2) there exists some t3 2 [t1; t2] such that f (t3) = µ and (µ� f) during [t3; t2] or (f �
µ) during [t3; t2] respectively.

Lemma 5.3 If

LSWL� LWL+δscλmax
out (5.1)

HSWL�HWL�δscλmax
in (5.2)

λmax
in < λmin

out (5.3)

then CSump^CSC!CTL.

Proof: Assume (5.1), (5.2), and (5.3). Suppose CSump^CSC. Let t < ∞.
First we prove LWL < wl(t) by contradiction. Let

wl(t) � LWL (5.4)

Since the constants are non-negative, (5.1) implies LWL� LSWL. Thus wl(t) � LSWL.
By CSump3 we have LSWL < wl(0). Using the continuity of wl, Lemma 5.2 implies

that there exists some ts 2 [0; t] such that wl(ts) = LSWL and (wl � LSWL) during [ts; t].
Hence, by CSC2, (outflow = 0) during [ts +δsc; t]. Using this, CSump1 and Lemma 5.1,
and CSump2 and CSC3, respectively, we obtain

wl(t)= wl(ts)+
R t

ts
(inflow(x)�outflow(x))dx

= LSWL+
R t

ts inflow(x)dx� R ts+δsc
ts outflow(x)dx� R t

ts+δsc
outflow(x)dx

� LSWL� R ts+δsc
ts outflow(x)dx

> LSWL�δsc λmax
out

Hence wl(t)>LSWL�δsc λmax
out . Thus, by equation (5.1), wl(t)> LWL, which contradicts

(5.4).
Similarly, we prove wl(t) < HWL by contradiction. Let

wl(t) �HWL (5.5)

108 CHAPTER 5. ASSERTIONAL SPECIFICATION AND VERIFICATION

Since all the constants are non-negative, equation (5.2) implies HWL � HSWL. Thus
wl(t) � HSWL. By CSump3, wl(0) < HSWL. Using the continuity of wl, Lemma 5.2
implies that there exists some ts 2 [0; t] such that

wl(ts) = HSWLand (wl� HSWL) during [ts; t]

Hence, by CSC1,

(outflow� λmin
out) during [ts +δsc; t1]

Using this and CSump1 and Lemma 5.1, and CSump2 and CSC3, respectively, we obtain

wl(t) = wl(ts)+
R t

ts(inflow(x)�outflow(x))dx

= HSWL+
R t

ts inflow(x)dx� R ts+δsc
ts outflow(x)dx� R t

ts+δsc
outflow(x)dx

� HSWL+(t� ts)λmax
in �

R t
ts+δsc

outflow(x)dx
6 HSWL+(t� ts)λmax

in �(t� (ts +δsc))λmin
out

= HSWL+δsc λmax
in +(t� ts�δsc)λmax

in �(t� (ts +δsc))λmin
out

By (5.3), this gives wl(t) < HSWL+ δscλmax
in and hence, by (5.2), wl(t) < HWL, which

contradicts (5.5). 2

Thus, by the Consequence rule, we determine that SumpkSumpContr is a correct im-
plementation of Mine. It remains to implement SumpContr according to its specification.
Now the specification of SumpContr was formulated in terms of the continuous variables
wl and outflow. Since our implementation by software will be ‘discrete’, this continuous
interface must be ‘discretized’. The first step is to refine SumpContr into a component
Pump and a pump control component PumpContr. But we must recall that a pump can
cause an explosion if it operates when the methane concentration in the air is above a
critical level CML. We therefore introduce the primitives

expl@texp to denote that an explosion occurs at time texp, and
ml(texp) to represent the methane level at time texp.

Define obs(expl@texp) = fexplg, obs(ml(texp)) = fmlg.
The top-level specification must be altered to express the requirement that no explosion

occurs and that if the methane level stays below a safe level SML the water level will
stay between the specified bounds. SML, rather than CML, is used to take account of the
reaction time needed to switch the pump off:

CTL1 �8t < ∞ : :expl@t
CTL2 �8t < ∞ : (ml < SML) during [0; t]! LWL < wl(t) < HWL

Let CTL�CTL1^CTL2. Then the specification of Mine is

hhnow = 0ii Mine hhCTLii
with obs(Mine) = fwl;ml;explg.

The specification of SumpContr must also be changed: CSC1 is replaced by

5.3. COMMUNICATION BETWEEN PARALLEL COMPONENTS 109

CSC1 �8t0; t1 < ∞ :
(wl� HSWL) during [t0; t1] ^ (ml < SML) during [t0; t1]
! (outflow � λmin

out) during [t0 +δsc; t1]

To satisfy CTL1 we simply add CSC4 � CTL1. Then we have

CSC� CSC1^CSC2^CSC3^CSC4

and it is easy to see that Lemma 5.3 is still valid for the modified specifications.

5.3 Communication between parallel components

There are several ways in which parallel processes can communicate, e.g. using shared
variables or by passing messages along channels. Formal reasoning about concurrent
systems requires a precise axiomatization of communication mechanisms. We shall pro-
vide this for three forms of communication: message passing along asynchronous chan-
nels, message passing along synchronous channels and communication using physical
lines.

5.3.1 Asynchronous channels

Assume that parallel processes communicate by passing messages along unidirectional,
point-to-point channels, each connecting two processes. Channels are asynchronous, so
a sender does not wait for a receiver, but there is no buffering and a message is lost if
there is no waiting receiver. A receiving process waits until a message is available.

Let CHAN be a non-empty set of channel names and c 2 CHAN, and exp and texp be
expressions yielding values in VAL and TIME respectively:

� send(c;exp)@texp denotes a process that starts sending value exp along channel
c at time texp.

� waitrec(c)@texp states that a process is waiting to receive a message along chan-
nel c at time texp.

� rec(c;exp)@texp denotes that a process starts to receive value exp along channel
c at time texp.

Define obs(send(c;exp)@texp) = fsend(c)g, obs(waitrec(c)@exp) = fwaitrec(c)g,
and obs(rec(c;exp)@texp) = frec(c)g.

A process which starts waiting at time t to receive input along c and either receives an
input with value v or waits forever, can be specified using the following abbreviation.

await rec(c;v)@t �waitrec(c) during [t;∞)
_ (9 t1 2 [t;∞) : waitrec(c) during [t; t1)^ rec(c;v)@t1)

We shall often ignore the value that is transmitted and use the abbreviations

110 CHAPTER 5. ASSERTIONAL SPECIFICATION AND VERIFICATION

rec(c)@t� 9v : rec(c;v)@t,
send(c)@t� 9v : send(c;v)@t, and
await rec(c)@t� 9v : await rec(c;v)@t.

To specify a process which waits for at most ∆ time units to receive a message the
following abbreviation is introduced:

await�∆rec(c)@t � (9 t0 : t 2 [t0; t0+∆)^waitrec(c) during [t0; t0+∆))
_ (9 t1 2 [t;∞) : waitrec(c) during [t; t1)^ rec(c)@t1)

Similar abbreviations can be defined with general expressions instead of v and t and we
will sometimes use (P1 ^P2)@t instead of P1@t^P2@t, etc.

Communication properties
At any point in time, at most one message is transmitted on an asynchronous channel c:

8t < ∞ 8v1;v2 : send(c;v1)@t^ send(c;v2)@t! v1 = v2 (ASYN-1)

Since maximal parallelism is assumed, a process waits only if it has to receive input and
no message is available. Assume for simplicity that a message is available to a receiver
as soon as the sender starts to send the message. Then a process can receive a message
along a channel c only if the message is transmitted simultaneously, i.e.

8t < ∞ 8v : rec(c;v)@t! send(c;v)@t (ASYN-2)

There will be minimal waiting if no process waits to receive along channel c a message
that is being transmitted (and hence is available) on c:

8t < ∞ : :(send(c)@t^waitrec(c)@t) (ASYN-3)

It is not difficult to adapt the framework for more realistic assumptions. For instance,
suppose that ∆ time units pass before a message transmitted by a sender is available for
a receiver. Then ASYN-2 becomes

8t < ∞ 8v : rec(c;v)@t! (t � ∆^ send(c;v)@(t�∆))

and ASYN-3 changes to

8t < ∞ : :(send(c)@t^waitrec(c)@(t+∆))

Alternatively, an output may be available during a period [t�∆1; t�∆2] and repeated
reading during this period will produce the same value (as for a shared variable). Then
ASYN-2 and ASYN-3 become

8t < ∞ 8v :rec(c;v)@t
! 9 t0 2 [t�∆1; t�∆2] : send(c;v)@t0^ :send(c) during (t0; t�∆2]

8t < ∞ : :(send(c)@t^waitrec(c) during [t+∆1; t+∆2])

5.3. COMMUNICATION BETWEEN PARALLEL COMPONENTS 111

Based on the properties ASYN-1–ASYN-3, we enunciate a few useful lemmas. The first
says that if a message is not sent before ∆1 and appears after a gap of at least ∆2, and if
the receiver is ready to receive before ∆1 and with a gap of at most ∆2, then no message
gets lost.

Let

maxsend(c;∆1;∆2)@t� send(c)@t! t� ∆1^:send(c) during (t�∆2; t),
minwait(c;∆1;∆2)@t � t� ∆1! await rec(c) in (t�∆2; t]

Lemma 5.4 If maxsend(c;∆1;∆2) during [0;∞) and minwait(c;∆1;∆2) during [0;∞),
then 8t < ∞ : send(c)@t$ rec(c)@t.

Proof: Consider t <∞. By ASYN-2, we have rec(c)@t! send(c)@t. Hence it remains
to prove send(c)@t ! rec(c)@t. Suppose send(c)@t. Assuming maxsend(c;∆1;∆2)
during [0;∞) this leads to t � ∆1 and:send(c) during (t�∆2; t):

Hence, by ASYN-2,:rec(c) during (t�∆2; t). Since we have derived t� ∆1, the as-
sumption minwait(c;∆1;∆2) during [0;∞ leads to awaitrec(c) in (t�∆2; t]:With:rec(c)
during (t�∆2; t) this implies await rec(c)@t. By send(c)@t and the minimal waiting
property ASYN-3, this leads to rec(c)@t. 2

By the next lemma, if a message is sent at least once every ∆s time units, and the re-
ceiver is ready to receive a message at least once every ∆r time units, then there is a com-
munication at least once every ∆s +∆r time units.

Lemma 5.5 If 8t < ∞ : send(c) in [t; t+∆s) and 8t <∞ : await rec(c) in [t; t+∆r), then
8t < ∞ : rec(c) in [t; t+∆s +∆r).

Proof: Consider t < ∞. By the assumption, we have await rec(c) in [t; t+∆r).
If rec(c) in [t; t+∆r), then rec(c) in [t; t+∆s +∆r).
Otherwise, if :(rec(c) in [t; t+∆r)), i.e., :rec(c) during [t; t+∆r), then await rec(c)

@t+∆r, and assumption send(c) in [t+∆r; t+∆r +∆s) leads to rec(c) in [t+∆r; t+
∆r +∆s). 2

A small variation on the previous lemma defines a receiver that has to wait for a mes-
sage for at least ∆s time units.

Lemma 5.6 If 8 t < ∞ : send(c) in [t; t+∆s) and 8t < ∞ : await�∆s rec(c) in [t; t+∆r),
then 8t < ∞ : rec(c) in [t; t+∆s +∆r):

Proof: Consider t < ∞. By await�∆srec(c) in [t; t+∆r), there is a point t2 2 [t; t+∆r) to
which one of the following applies:

1. There is some t0 such that t2 2 [t0; t0+∆s) and waitrec(c) during [t0; t0+∆s). This
leads to a contradiction with the assumption send(c) in [t0; t0+∆s) and (ASYN-3).

2. There is some t1 2 [t2;∞) such that waitrec(c) during [t2; t1) and rec(c)@t1. But
t1 � t2 +∆s implies waitrec(c) during [t2; t2 +∆s) and hence there is a contradic-
tion, as in the previous case.

112 CHAPTER 5. ASSERTIONAL SPECIFICATION AND VERIFICATION

Thus we have t1 < t2+∆s. Since t� t2� t1 < t2+∆s < t+∆r +∆s, then rec(c)@t1 leads
to rec(c) in [t; t+∆s +∆r). 2

Exercise 5.3.1 Prove for an asynchronous channel c,

8t < ∞ : :(rec(c)@t^waitrec(c)@t).

Exercise 5.3.2 As discussed above, it might be more realistic to assume that for an asyn-
chronous channel c and some ∆, for all t < ∞, v, v1, and v2:

1. :(send(c)@t^waitrec(c)@(t+∆))
2. rec(c;v)@t! t� ∆^ send(c;v)@(t�∆)

Prove the following by means of these properties:

� If maxsend(c;∆1;∆2) during [0;∞) and minwait(c;∆+∆1;∆2) during [0;∞),
then 8t < ∞ : rec(c)@t$ t� ∆^ send(c)@(t�∆).

� If 8t < ∞ : send(c) in [t; t+∆s) and 8t < ∞ : await rec(c) in [t; t+∆r),
then 8t 2 [∆;∞) : rec(c) in [t; t+∆s +∆r).

5.3.2 Synchronous channels

With a synchronous channel, both the sender and the receiver must synchronize to trans-
mit a message: the first must wait until the other is ready to perform the corresponding
action.

To characterize this mechanism, we use the primitives send, waitrec and rec of the
previous section, together with the primitive waitsend(c)@texp, to denote that a process
is waiting to send a message on channel c at time texp.

We shall use some more abbreviations:

await send(c;v)@t� waitsend(c) during [t;∞)
_ (9 t1 2 [t;∞) : waitsend(c) during [t; t1) ^ send(c;v)@t1)

await send(c)@t � 9v : await send(c;v)@t

A synchronous channel c has the following properties:

8t < ∞ 8v1;v2 : send(c;v1)@t^ send(c;v2)@t! v1 = v2 (SYN-1)
At any time, at most one message is transmitted on a particular channel.
8t < ∞ 8v : rec(c;v)@t$ send(c;v)@t (SYN-2)
No message is lost: every message received has been sent and every message sent
will be received.
8t < ∞ : :(waitsend(c)@t^waitrec(c)@t) (SYN-3)
Minimal waiting: it is not possible for processes to be simultaneously waiting to
send and waiting to receive on a particular channel.

5.3. COMMUNICATION BETWEEN PARALLEL COMPONENTS 113

8t < ∞ : :(rec(c)@t^waitrec(c)@t)
^:(send(c)@t^waitsend(c)@t) (SYN-4)

It is not possible for a process to simultaneously be communicating and be waiting
to communicate.

With a synchronous channel c, the time at which a communication takes place can be
derived from the times at which both partners are ready to communicate.

Lemma 5.7 Assume, for t1; t2 < ∞, await send(c;v1)@t1^ await rec(c;v2)@t2:

(a) If t1 � t2 and :rec(c) during [t1; t2), then rec(c;v1)@t2 and v1 = v2.
(b) If t2 � t1 and :rec(c) during [t2; t1), then rec(c;v1)@t1 and v1 = v2.

Proof:
(a) By assumption SYN-2, :rec(c) during [t1; t2) leads to :send(c) during [t1; t2).

Together with await send(c;v1)@t1 this implies await send(c;v1)@t2. Hence this gives
waitsend(c)@t2_send(c)@t2. With ASYN-2, this leads to waitsend(c)@t2_rec(c)@t2.
By SYN-3 and SYN-4 we obtain:waitrec(c)@t2. Since awaitrec(c;v2)@t2, this implies
rec(c;v2)@t2. Hence by ASYN-2, send(c;v2) @t2 and by SYN-4, :waitsend(c) @t2.
Hence await send(c;v1)@t2 leads to send(c;v1)@t2, and thus rec(c;v1)@t2, using SYN-
2. Further, by SYN-1 we obtain v1 = v2.

(b) The proof is similar. 2

Exercise 5.3.3 Prove Part (b) of Lemma 5.7.

Exercise 5.3.4 Prove

await rec(c;v)@t1^ (:rec(c)) during [t1; t2)^ t1 � t2! await rec(c;v)@t2

5.3.3 Communication using physical lines

Assume that a program component can set a physical line to a value and that other com-
ponents are able to read the value of this line. For a line l and expressions exp and texp
yielding values in VAL and TIME, respectively, let l(texp) represent the value of line l at
time texp, and read(l;exp)@texp denote that a process starts reading from line l at time
texp.

Let obs(l(texp)) = flg and obs(read(l;exp)@texp) = fread(l)g. Define the following
abbreviations:

(l < v)@t� l(t) < v, and similarly for other relational operators, and
read(l)@t � 9v : read(l;v)@t

Finally, let the value read from a line be the value of the line:

8t < ∞ 8v : read(l;v)@t! l(t) = v (LINE)

114 CHAPTER 5. ASSERTIONAL SPECIFICATION AND VERIFICATION

outflow wl

inflow

Sump

Pump Pump Control

pch ml

PumpContr

Figure 5.2 Introduction of the mine pump

5.4 Parallel decomposition of the sump control

SumpContr can be decomposed into a number of components executing in parallel.

5.4.1 Introducing a pump

Water is pumped from the sump by a Pump which is controlled by PumpContr. This con-
trol component communicates with the pump by sending messages on the asynchronous
channel pch. Hence SumpContr is refined by PumpContr kPump (see Figure 5.2). On
channel pch, messages of value 1 and 0 are used to switch the pump on and off respec-
tively.

First the pump is specified using the following abbreviations:

ON(t1; t2) � rec(pch;1)@t1^ :rec(pch;0) during (t1; t2]
OFF(t1; t2) � rec(pch;0)@t1^ :rec(pch;1) during (t1; t2]

To specify maximal outflow, let CPump1 � CSC3.
Assume that after a period Init the pump is ready to receive inputs periodically every

Period units of time, i.e.

CPump2 � minwait(pch; Init;Period) during [0;∞)

When the pump receives the value 1 along pch, it produces an outflow of at least λmin
out

after a delay of at most δp, as long as no value 0 is received (δp and λmin
out are assumed to

be non-negative):

CPump3 � 8t1; t2 < ∞ : ON(t1; t2)! (outflow� λmin
out) during [t1 +δp; t2]

5.4. PARALLEL DECOMPOSITION OF THE SUMP CONTROL 115

The pump will switch off within δp if the value 0 is received:

CPump4 � 8t1; t2 < ∞ : OFF(t1; t2)! (outflow = 0) during [t1+δp; t2]

There will be no explosion if the methane level is below a critical level CML or if the
pump has been switched off:

CPump5 � 8t < ∞ : (ml(t) < CML_9 t0 � t�δp : OFF(t0; t))!:expl@t

Let CPump� CPump1^CPump2^CPump3 ^CPump4^CPump5 and assume

hhnow = 0ii Pump hhCPumpii
with obs(Pump) = fwaitrec(pch); rec(pch);ml;outflow;explg.

PumpContr must contribute towards meeting the commitment of SumpContr. First, it
must not send messages along pch too fast:

CPC1 � maxsend(pch; Init;Period) during [0;∞)

Then the pump must be switched on (SETON) or off (SETOFF) if the water level is high
or low. Let

SETON(t1; t2) � send(pch;1)@t1^:send(pch;0) during (t1; t2]
SETOFF(t1; t2) � send(pch;0)@t1^:send(pch;1) during (t1; t2]

But the pump is switched on or kept running only if the methane level is below SML:

CPC2� 8t0; t1 < ∞ :t0 +δpc� t1^ (wl � HSWL) during [t0; t1]
^ (ml < SML) during [t0; t1]!9 t2 � t0+δpc : SETON(t2; t1)

CPC3� 8t0; t1 < ∞ : t0 +δpc� t1^ (wl� LSWL) during [t0; t1]
!9 t2 � t0+δpc : SETOFF(t2; t1)

The methane level cannot be controlled but we make a safety stipulation that if it is above
CML the pump should have been off for at least δp:

CPC4 � 8t < ∞ : ml(t) � CML!9 t0 � t�δp : SETOFF(t0; t)

Define CPC� CPC1 ^CPC2^CPC3 ^CPC4, and let

hhnow = 0ii PumpContr hhCPCii
with obs(PumpContr) � fmlg.

Now

obs(CPump)\obs(PumpContr) � obs(CPump)
= fwaitrec(pch); rec(pch);ml;outflow;explg
= obs(Pump)

116 CHAPTER 5. ASSERTIONAL SPECIFICATION AND VERIFICATION

Also,

obs(CPC)\obs(Pump)
= fsend(pch);wl;mlg\fwaitrec(pch); rec(pch);ml;outflow;explg
= fmlg � obs(PumpContr)

So by the Simple Parallel Composition rule

hhnow = 0ii PumpkPumpContr hhCPump^CPCii

Lemma 5.8 If

δsc� δpc+δp (5.6)

then CPump^CPC! CSC.

Proof: Assume (5.6). Suppose CPump^CPC. Since CPump2 and CPC1, together with
Lemma 5.4, show that for all t <∞, send(pch)@t$ rec(pch)@t, we have:send(pch;0)
during (t1; t2] is equivalent to :rec(pch;0) during (t1; t2], and

8t1; t2 < ∞ : SETON(t1; t2)$ ON(t1; t2) (5.7)

Similarly,

8t1; t2 < ∞ : SETOFF(t1; t2)$ OFF(t1; t2) (5.8)

To prove CSC1, note that t0+δsc > t1 implies [t0+δsc; t1] = ø. Then (outflow� λmin
out)

during [t0+δsc; t1] holds. Next assume t0+δsc� t1, (wl�HSWL) during [t0; t1], and
(ml < SML) during [t0; t1]. Since the assumption (5.6) implies t1 � t0+δsc� t0 +δpc,
the commitment CPC2 shows there exists some t2 � t0 + δpc such that SETON(t2; t1).
Hence, by (5.7), ON(t2; t1). Then CPump3 leads to (outflow� λmin

out) during [t2+δp; t1].
Since t2 � t0 +δpc we obtain (outflow � λmin

out) during [t0 +δpc+δp; t1], and this, with
(5.6), gives (outflow� λmin

out) during [t0+δsc; t1].
To prove CSC2, observe that t0+δsc > t1 implies [t0+δsc; t1] =ø. Then (outflow = 0)

during [t0+δsc; t1] holds trivially. Assume t0+δsc� t1 and (wl� LSWL) during [t0; t1].
Since (5.6) implies t1 � t0+δsc� t0 +δpc, CPC3 shows that there exists some t2 � t0+
δpc such that SETOFF(t2; t1). Hence, by (5.8), OFF(t2; t1). Then by CPump4 (outflow =
0) during [t2 +δp; t1]. Since t2 � t0 +δpc we obtain (outflow = 0) during [t0 +δpc+
δp; t1], and hence by (5.6) (outflow = 0) during [t0 +δsc; t1].

CSC3 follows from CPump1 by definition.
To prove CSC4, i.e. :expl@t, for any t < ∞, we use CPump5. We must show that

ml(t) < CML_ 9 t0 � t�δp : OFF(t0; t). Suppose ml(t)� CML. Then by CPC4 there is
some t0 � t�δp such that SETOFF(t0; t). Hence, by (5.8), OFF(t0; t). 2

5.4. PARALLEL DECOMPOSITION OF THE SUMP CONTROL 117

outflow wl

inflow

Sump

Pump

pch ml

expl wch
WSens

WContr

Figure 5.3 Introduction of a water level sensor WSens

5.4.2 Introducing sensors

Assume that sensor WSens measures the water level and sends the measured values along
asynchronous channel wch to a control unit WContr (see Figure 5.3). PumpContr can be
then be refined as WSens kWContr, where sensor WSens measures the water level and
sends the measured values along asynchronous channel wch to a control unit WContr.

Assume that a specification of the water level sensor WSens is available. We then need
to find a specification of the control unit from which we can prove CPC.

For the sensor WSens assume we are given constants δws and εws; let the sensor send
values along wch at least once every δws time units:

CWSens1 � 8t < ∞ : send(wch) in [t; t+δws)

Further, assume that the value read by the sensor does not differ by more than εws from
the real water level:

CWSens2 � 8t < ∞ : send(wch;v)@t! v� εws � wl(t) � v+ εws

Define CWSens� CWSens1 ^CWSens2 and assume WSens satisfies

hhnow = 0ii WSens hhCWSensii
with obs(WSens) = fwl; send(wch)g.

Next we specify the control component WContr. As in CPC1, there must be a minimal
delay between messages sent along pch:

CWC1 � CPC1

WContr should be ready to receive input from the sensor along wch at least once every
δwr time units:

CWC2 � 8t < ∞ : await�δws
rec(wch) in [t; t+δwr)

118 CHAPTER 5. ASSERTIONAL SPECIFICATION AND VERIFICATION

Define

(rec(wch) � v0)@t � 8v : rec(wch;v)@t! v� v0

The pump must be switched on if a value above HSWL�εws has been received from the
water level sensor; it is not switched off as long as values above HSWL�εws are received.

CWC3 � 8t0;t1 < ∞ :
t0+δwc � t1rec(wch;v)@t0^ v� HSWL� εws

^ (rec(wch) �HSWL� εws) during [t0; t1]
^ (ml < SML) during [t0; t1]!9 t2 � t0+δwc : SETON(t2; t1)

Similarly, let

(rec(wch) � v0)@t � 8v : rec(wch;v)@t! v� v0

and define

CWC4 � 8t0; t1 < ∞ :t0 +δwc � t1^ rec(wch;v)@t0^ v � LSWL+ εws

^ (rec(wch)� LSWL+ εws) during [t0; t1]
!9 t2 � t0 +δwc : SETOFF(t2; t1)

CWC5 � CPC4

Let CWC� CWC1^CWC2 ^CWC3 ^CWC4^CWC5, and

hhnow = 0ii WContr hhCWCii

with obs(WContr) � fmlg.
This meets the syntactic requirements of the Simple Parallel Composition rule:

obs(CWSens)\obs(WContr)� fwl; send(wch)g = obs(WSens)
obs(CWC)\obs(WSens)

= fsend(pch);waitrec(wch); rec(wch);mlg\fwl; send(wch)g
= ø� obs(WContr)

Hence,

hhnow = 0ii WSens kWContr hhCWSens^CWCii

Lemma 5.9 If

δpc � δws +δwr +δwc (5.9)

then CWSens^CWC! CPC.

5.4. PARALLEL DECOMPOSITION OF THE SUMP CONTROL 119

Proof: Suppose (5.9), CWSens and CWC hold. Observe that by Lemma 5.6, CWSens1
and CWC2 imply

8t < ∞ : rec(wch) in [t; t+δws+δwr) (5.10)

Also, CPC1 is equivalent to CWC1.
To prove CPC2, assume t0 + δpc � t1, (wl � HSWL) during [t0; t1] and (ml < SML)

during [t0; t1]. By (5.10) there is a moment t3 2 [t0; t0+δws+δwr) and some v such that
rec(wch;v)@t3. Using property (ASYN-2) this implies send(wch;v)@t3. By CWSens2
we obtain v � wl(t3)� εws. Since, using (5.9), t3 < t0 + δws + δwr � t0 + δpc � t1, we
have t3 2 [t0; t1] and hence wl(t3)� HSWL. Thus v �HSWL� εws.

To prove (rec(wch) � HSWL� εws) during [t3; t1], take t4 2 [t3; t1] with rec(wch;v0)
@t4. Since t4 � t3 � t0, this gives wl(t4) �HSWL. Using (ASYN-2), send(wch;v0)@t4
and, by CWSens2, this leads to v0 � wl(t4)� εws � HSWL� εws. Hence (rec(wch) �
HSWL� εws) during [t3; t1]. Note that, using (5.9),

t3+δwc � t0+δwc+δws +δwr � t0 +δpc � t1

Further, t0 � t3, so (ml < SML) during [t3; t1]. Hence from CWC3 we can conclude that
there exists some t2 � t3 + δwc such that SETON(t2; t1). Since t3 � t0 + δws + δwr we
obtain t2 � t0 +δpc from (5.9).

To prove CPC3, assume t0+δpc� t1 and (wl� LSWL) during [t0; t1]. By (5.10) there
is some t3 2 [t0; t0+δws+δwr) and some v such that rec(wch;v)@t3. By the communica-
tion property (ASYN-2), this implies send(wch;v)@t3. By CWSens2, v � wl(t3)+ εws.
Since, using (5.9), t3 < t0 + δws + δwr � t0 + δpc � t1, we have t3 2 [t0; t1] and hence
wl(t3)� LSWL. Thus by (wl � LSWL) during [t0; t1] we obtain v� LSWL+ εws.

To prove (rec(wch) � LSWL+ εws) during [t3; t1], take t4 2 [t3; t1] with rec(wch;v0)
@t4. Since t4� t3� t0, we have wl(t4)� LSWL and (ASYN-2) gives send(wch;v0)@t4,
and hence, using CWSens2, v0 �wl(t4)+εws� LSWL+εws. Thus (rec(wch)� LSWL+
εws) during [t3; t1]. Since, by (5.9),

t3+δwc � t0+δwc+δws +δwr � t0 +δpc � t1

from CWC4 we conclude that there exists a t2� t3+δwc such that SETOFF(t2; t1). Since
t3 � t0 +δws +δwr we obtain t2 � t0+δpc from (5.9).

CPC4 is equivalent to CWC5. 2

By Lemma 5.9 and the Consequence rule

hhnow = 0ii WSens kWContr hhCWCii
Observe that obs(WSens kWContr)� fmlg. Thus WSens kWContr refines PumpContr.

To implement WContr, introduce a sensor MSens to measure the methane level ml and
an atmosphere component Air to express assumptions about this methane level. The aim
is to design a control component MContr such that AirkMSenskMContr refines WContr
(see Figure 5.4).

Assume that the air component Air expresses a bound on the initial methane level and
a bound on the maximal rise of this level:

120 CHAPTER 5. ASSERTIONAL SPECIFICATION AND VERIFICATION

outflow wl

inflow

Sump

Pumpexpl wch

pch mOK MSensMContr ml Air

WSens

Figure 5.4 Introduction of a methane level sensor MSens

CAir1� ml(0)< SML
CAir2� 8t1; t2 < ∞ : t1 � t2! ml(t2)�ml(t1) � λmax

ml (t2� t1)

Let CAir� CAir1^CAir2 and

hhnow = 0ii Air hhCAirii

with obs(Air) = fmlg.
The methane sensor MSens communicates with the control component MContr by set-

ting the line mOK to 0 or 1 (as in Section 5.3.3). Let the line mOK be set to 1 if the
methane level is not dangerous, i.e. below the safety level SML, and 0 otherwise; let
mOK(t) 2 f0;1g, for all t 2 TIME. Start with the following commitment:

CMSens�8 t < ∞ : mOK(t) = 1$ ml(t) < SML

This requires there to be no delay or uncertainty but it is easy to adapt the specification
for more realistic assumptions.

Assume that MSens satisfies

hhnow = 0iiMSenshhCMSensii

with obs(MSens) = fml;mOKg.
Component MContr reads line mOK at least once every ∆read time units:

CMC1� 8t < ∞ : read(mOK) in [t; t+∆read)
CMC2� CWC1 (i.e. CPC1)

The other commitments of MContr are similar to those of WContr with the methane level
ml replaced by reading line mOK.

5.4. PARALLEL DECOMPOSITION OF THE SUMP CONTROL 121

CMC3� CWC2
CMC4� 8t0; t1 < ∞ : t0 +δwc � t1^ rec(wch;v)@t0^ v �HSWL� εws

^ (rec(wch)� HSWL� εws) during [t0; t1]
^:read(mOK;0) during [t0; t1!9 t2 � t0 +δwc : SETON(t2; t1)

CMC5� CWC4
CMC6� 8t0; t1 < ∞ : t0+δml � t1^ read(mOK;0)@t0

^:read(mOK;1) during [t0; t1]!9 t2 � t0 +δml : SETOFF(t2; t1)

Define CMC � CMC1 ^CMC2 ^CMC3 ^CMC4 ^CMC5 ^CMC6 and let MContr be
specified by

hhnow = 0iiMContr hhCMCii

Observe that

obs(CAir)\obs(MSens)� obs(CAir) = fmlg= obs(Air)
and

obs(CMSens)\ obs(Air) = fmlg � obs(MSens)

The Simple Parallel Composition rule leads to

hhnow = 0ii Air kMSenshhCAir^CMSensii

Similarly, obs(CAir ^CMSens) \ obs(MContr) � obs(CAir ^CMSens) = fml;mOKg
= obs(Air kMSens) and that obs(CMC)\obs(Air kMSens) = fwaitrec(wch); rec(wch)
, send(pch) , read(mOK)g\fml;mOKg= ø� obs(MContr).
Then the Simple Parallel Composition rule gives

hhnow = 0ii Air kMSensk MContrhhCAir^CMSens^CMCii

Lemma 5.10 If

(∆read+δml +δp)λmax
ml �CML�SML (5.11)

then CAir^CMSens^CMC! CWC.

Proof: Assume (5.11), CAir, CMSens and CMC. Note that CWC1, CWC2, and CWC4,
are equivalent to CMC2, CMC3 and CMC5 respectively.

To prove CWC3, assume that

t0+δwc � t1,
rec(wch;v)@t0 and v� HSWL� εws

(rec(wch) �HSWL� εws) during [t0; t1] and
(ml < SML) during [t0; t1]

122 CHAPTER 5. ASSERTIONAL SPECIFICATION AND VERIFICATION

To apply CMC4, we first show:read(mOK;0)during [t0; t1]. Consider t3 2 [t0; t1]. Since
ml(t3) < SML, by CMSens we obtain mOK(t3) = 1. Thus by the communication line
property (LINE), read(mOK;v)@t3 implies v = 1 and :read(mOK;0)@t3. This gives
:read(mOK;0) during [t0; t1] and so CMC4 leads to 9 t2 � t0 +δwc : SETON(t2; t1].

To prove CWC5, i.e. CPC4, assume ml(t) � CML. Note that (5.11) implies CML �
SML, since all the constants are non-negative. Observe that if λmax

ml = 0, then by CAir2
we have ml(t)�ml(0) � 0; using CAir1, CML � ml(t) � ml(0) < SML, which is in
contradiction with CML � SML. Hence, λmax

ml > 0. By CML � SML and CAir1 we ob-
tain ml(0) � SML � ml(t). Using Lemma 5.2 (Intermediate Value Property), this im-
plies that there exists a ts 2 [0; t] such that ml(ts) = SML and (ml � SML) during [ts; t].
By CMC1, read(mOK) in [ts; ts + ∆read). Thus there exists some t0 2 [ts; ts + ∆read)
such that read(mOK)@t0. By CAir2 we can derive ml(t)�ml(ts) � λmax

ml (t� ts), thus
λmax

ml (t � ts) � ml(t) � SML � CML � SML. With (5.11), we obtain λmax
ml (t � ts) �

(∆read + δml + δp)λmax
ml . Since λmax

ml > 0 and all the constants are non-negative, this im-
plies t� ts � ∆read, and hence ts +∆read � t. Then t0 2 [ts; t] and thus ml(t0)� SML. By
CMSens this (and the range of mOK) implies mOK(t0) = 0.

By the line property (LINE), read(mOK;0)@t0. Further, (ml � SML) during [t0; t]
leads to (mOK = 0) during [t0; t], and by (LINE) we obtain:read(mOK;1)during [t0; t].

Hence, by CMC6, there exists a t2 � t0 + δml such that SETOFF(t2; t). Since t� ts �
∆read+δml+δp, as shown above, we have ts +∆read+δml� t�δp. Thus t2� t0+δml <
ts +∆read+δml � t�δp, that is, t2 � t�δp. 2

Hence, by Lemma 5.10, the Consequence rule leads to

hhnow = 0ii Air kMSenskMContr hhCWCii

Note that obs(Air kMSens kMContr) � obs(Air) = fmlg. Thus Air kMSens kMContr
correctly implements WContr.

5.5 Programming language

We shall now describe the main features of a simple language that is sufficiently ex-
pressive for the mine pump control program. To show that programs satisfy an assump-
tion/commitment specification we shall then formulate a compositional proof system.

5.5.1 Syntax of the programming language

We choose a simple real-time concurrent programming language with communication
along asynchronous channels and physical lines (cf. Section 5.3). Explicit timing is per-
formed using a delay statement which suspends the execution for a specified period.

The statements of the programming language and their informal meanings are listed
below, using program variable x, expression e yielding a value in VAL, boolean expres-
sion b, asynchronous channel c and line l.

5.5. PROGRAMMING LANGUAGE 123

Atomic statements
� skip terminates immediately.
� Assignment x := e assigns the value of expression e to the variable x.
� delay e suspends execution for e time units; if e is negative then delay e is the same

as skip.
� c!!e sends the value of expression e along channel c without waiting for the re-

ceiver.
� c?x assigns to variable x the value received on channel c; an input statement waits

until a message is available.
� read(l;x) assigns to variable x the value of line l.

Compound statements
� S1; S2 is the sequential composition of S1 and S2.
� if b then S1 else S2 fi denotes choice between S1 and S2 based on condition b.
� sel c?x then S1 or delaye then S2 les waits to receive a message on channel c; if

the message comes within e time units, S1 is executed otherwise S2 is executed.
� while b do S od repeatedly tests b and executes S if b is true and terminates if b is

false.
� S1kS2 is the parallel composition of processes S1 and S2 which must not share vari-

ables.

if b then S fi will be used as an abbreviation of if b then S else skip fi.

Example 5.4 The select statement can be used to program a time-out. For instance,

sel in?x then out!!f (x) or delay8 then alarm!!y les

With this statement, a process waits to receive a message on channel in for at most eight
time units; if a message comes within that time, it executes out!!f (x) and otherwise it
executes alarm!!y.

Let loc(S) be the set of program variables of S. Then the set of observables of S, obs(S),
is defined by induction on the structure of S. For input and output it is defined as

obs(c!!e) = fsend(c)g
obs(c?x) = fwaitrec(c); rec(c)g and
obs(read (l;x)) = fread(l)g

The other observables are easily defined:

obs(skip) = obs(x := e) = obs(delay e) = ø
obs(S1; S2)= obs(S1kS2) = obs(if b then S1 else S2 fi)

= obs(S1)[obs(S2)
obs(sel c?x then S1 or delaye then S2 les)

= fwaitrec(c); rec(c)g[obs(S1)[obs(S2)
and obs(while b do S od) = obs(S)

Observe that processes do not share variables: for S1kS2, loc(S1)\ loc(S2) = ø.

124 CHAPTER 5. ASSERTIONAL SPECIFICATION AND VERIFICATION

5.5.2 Basic timing assumptions

The next step is to make assumptions about the execution time needed for the atomic
statements and the relation between the execution time of a compound statement and the
timing of its components. Since we assume maximal progress, an enabled action will be
executed as soon as possible. The execution of a local, non-communication, command
or an asynchronous output is never postponed. An input command can cause a process
to wait, but only when no message is available.

We assume that an assignment x := e takes the non-negative time Ta. delay e waits
for exactly e time units if e is positive and 0 otherwise. Each communication takes a
non-negative time Tcomm and read (l;x) takes a non-negative Tr time unit.

The evaluation of the boolean b in if b then S1 else S2 fi or while b do S od takes
Tb time units and this has a fixed non-zero lower bound to guarantee finite variability (or
‘non-Zeno-ness’).

5.5.3 Proof system

The compositional proof system for this logic consists of rules and axioms that apply to
any statement and rules and axioms for the atomic and compound programming state-
ments. Fresh logical variables are assumed to be used in the rules.

General rules and axioms

The first axiom says that an assumption which satisfies certain restrictions is not affected
by the execution of any program.

Axiom 5.1 Initial invariance

hhAii S hhAii

provided A does not refer to now or the program variables (loc(A) = ø).

Similarly, a variable which does not occur in program S is not affected by any termi-
nating computations of S.

Axiom 5.2 Variable invariance

hhAii S hhnow < ∞! Aii

provided now does not occur in A and loc(A)\ loc(S) = ø.

A program S never performs an action which does not syntactically occur in S.

5.5. PROGRAMMING LANGUAGE 125

Axiom 5.3 Observables invariance

hhnow = t0ii S hh
^

O2oset

:O during [t0;now)ii

provided oset is a finite set of observables with oset\obs(S) = ø.

Example 5.5 The following examples illustrate the invariance axioms.

(a) By the Initial Invariance axiom, for any program S,

hhrec(c;5)@t^ send(d;v)@(t+7)ii S hhrec(c;5)@t^ send(d;v)@(t+7)ii
(b) Applying the Variable Invariance axiom,

hhx = 5ii while y 6= 0 do c?y ; d!!f (y) od hhnow < ∞! x = 5ii
For non-terminating computations, it is not possible to prove in the commitment that pro-
gram variables have a particular value.

(c) By the Observables Invariance axiom,

hhnow = t0ii c?x hh(:send(c)) during [t0;now)
^(:rec(d)) during[t0;now)ii

since obs(c?x) = fwaitrec(c); rec(c)g.
A program which follows a non-terminating computation has no effect.

Axiom 5.4 Non-termination

hhA^now = ∞ii S hhA^now = ∞ii
The substitution rule allows a logical variable in the assumption to be replaced by any
expression provided the variable does not occur in the commitment.

Rule 5.5.1 Substitution

hhAii S hhCii
hhA[exp=t]ii S hhCii

provided t does not occur free in C.

The rules for conjunction and disjunction are identical to those used for traditional
triples.

Rule 5.5.2 Conjunction

hhA1ii S hhC1ii; hhA2ii S hhC2ii
hhA1 ^A2ii S hhC1 ^C2ii

Rule 5.5.3 Disjunction

hhA1ii S hhC1ii; hhA2ii S hhC2ii
hhA1 _A2ii S hhC1 _C2ii

126 CHAPTER 5. ASSERTIONAL SPECIFICATION AND VERIFICATION

Axiomatization of the programming constructs
A skip statement terminates immediately and has no effect.

Axiom 5.5 skip

hhAii skip hhAii

The next axiom for an assignment x := e expresses that to obtain commitment C the
assumption C[e=x;now+Ta=now]^now<∞ is required (this is the weakest assumption).
Note that, in addition to the traditional rule, we also update the time to express that the
termination time equals the initial time plus Ta time units.

Axiom 5.6 Assignment

hhC[e=x;now+Ta=now]^now < ∞ii x := e hhCii

Example 5.6 Show the correctness of the following triple:

hhx = 5^now = 6^ rec(c;0)@3ii
x := x+7

hhx = 12^now = 6+Ta^ rec(c;0)@3ii
From the Assignment axiom,

hhx+7 = 12^now+Ta = 6+Ta^ rec(c;0)@3^now < ∞ii
x := x+7

hhx = 12^now = 6+Ta^ rec(c;0)@3ii
Then the Consequence rule yields the required triple, since x= 5^now= 6^rec(c;0)@3
implies x+7 = 12^now+Ta = 6+Ta^ rec(c;0)@3^now < ∞.

The axiom for the delay statement is similar.

Axiom 5.7 delay

hhC[now+max(0;e)=now]^now < ∞ii delay e hhCii

In the rule for asynchronous output, c!!e, now in Assumption A^now < ∞ is replaced
by t0, which is the starting time of the statement, and send(c;e)@t0 denotes that it starts
sending at t0. For completeness, there is a term expressing that no transmission is started
after t0 until it terminates, i.e. :send(c) during (t0;now), where now is the termination
time, equal to t0 +Tcomm.

Rule 5.5.4 Asynchronous output

(A^now < ∞)[t0=now]^ send(c;e)@t0^:send(c) during (t0;now)^
now = t0+Tcomm! C

hhA^now < ∞ii c!!e hhCii

5.5. PROGRAMMING LANGUAGE 127

Similarly, in the rule for the input statement c?x, now in A^ now < ∞ is replaced by
t0, to represent the starting time. An input statement will need to wait if a message is not
available, i.e. the corresponding output statement has not begun sending a value. But to
make the proof system compositional, no assumption should be imposed upon the envi-
ronment. So the rule includes an arbitrary waiting period (including an infinite wait) and,
if a communication takes place, any value can be received.

In the rule below, the commitment is split into Cnt, representing a non-terminating
computation with infinite waiting, i.e. waitrec(c) during [t0;∞), and a commitment C
for the properties of terminating computations; in the latter case there is a point t in time
at which a value v is received and until that time the statement waits to receive it (thus
also asserting that no message was available earlier). After t, and until the termination
time represented by now, the statement does not wait or start receiving a message, as ex-
pressed by

comm(c;v)(t0; t)�waitrec(c) during [t0; t)^ rec(c;v)@t
^ (:waitrec(c)^:rec(c)) during (t;now).

The value v is assigned to x at the termination time t+Tcomm.

Rule 5.5.5 Input

(A^now < ∞)[t0=now]^waitrec(c) during [t0;∞)^now = ∞! Cnt

(A^now < ∞)[t0=now]^9 t 2 [t0;∞) : comm(c;v)(t0; t)^now = t+Tcomm

! C[v=x]

hhA^now < ∞ii c?x hhCnt _Cii
provided loc(Cnt) = ø.

Example 5.7 By the Input rule we can derive

hhnow = 5ii c?x hh (waitrec(c) during [5;∞)^now = ∞)
_ (9 t 2 [5;∞) : waitrec(c) during [5; t)^ rec(c;x)@t
^now = t+Tcomm) ii

since

t0 = 5^waitrec(c) during [t0;∞)^now = ∞
! waitrec(c) during [5;∞)^now = ∞

and

t0 = 5^9 t 2 [t0;∞) : comm(c;v)(t0; t)^now = t+Tcomm

implies

9 t 2 [5;∞) : waitrec(c) during [5; t)^ rec(c;v)@t^now = t+Tcomm

i.e.

(9 t 2 [5;∞) : waitrec(c) during [5; t)^ rec(c;x)@t^now = t+Tcomm)[v=x]

128 CHAPTER 5. ASSERTIONAL SPECIFICATION AND VERIFICATION

The following rule defines the effect of reading a line l.

Rule 5.5.6 Read

(A^now < ∞)[t0=now]^ read(l;x)@t0^now = t0 +Tr! C

hhA^now < ∞ii read(l;x) hhCii

The rule for sequential composition is straightforward.

Rule 5.5.7 Sequential composition

hhAii S1 hhBii; hhBii S2 hhCii
hhAii S1; S2 hhCii

Note that assertion B may describe non-terminating executions of S1. This part of B is
not affected by S2 and can be included in C, as illustrated in the following example.

Example 5.8 Consider a program c?y ; y := y+1 with

A�now = 7 and
C� (now = ∞^waitrec(c) during [7;∞))
_ (9 t 2 [7;∞) : now = t+Tcomm+Ta^ rec(c;y�1)@t)

To prove hhAii c?y ; y := y+1 hhCii, define

B�(now = ∞^waitrec(c) during [7;∞))
_ (9 t 2 [7;∞) : now = t+Tcomm+Ta^ rec(c;y)@t)

Note that we can derive hhAii c?y hhBii and, using the Non-termination axiom 5.4 and
the Disjunction rule, hhBii y := y+1 hhCii. Hence the Sequential Composition rule leads
to hhAii c?y ; y := y+1 hhCii.

The rule for the choice statement has a delay of Tb time units added to represent the
time taken to evaluate the boolean expression.

Rule 5.5.8 Choice

hhAii delay Tb hhA0ii
hhA0 ^bii S1 hhCii; hhA0 ^:bii S2 hhCii
hhAii if b then S1 else S2 fi hhCii

The select statement sel c?x then S1 or delaye then S2 les has two possible outcomes.
First, a communication on c may occur within e time units after the starting time t0, lead-
ing to assertion A1, after which S1 is executed, leading to C1. Alternatively, there may be
a wait in order to communicate on c during e time units (assertion A2) and S2 is executed,
leading to C2.

5.5. PROGRAMMING LANGUAGE 129

Rule 5.5.9 Select

(A^now < ∞)[t0=now]^9 t 2 [t0; t0+ e) : comm(c;v)(t0; t)
^now = t+Tcomm! A1[v=x]

(A^now < ∞)[t0=now]^waitrec(c) during [t0; t0+ e)
^now = t0+max(0;e)! A2

hhA1ii S1 hhC1ii; hhA2ii S2 hhC2ii
hhA^now < ∞ii sel c?x then S1 or delaye then S2 les hhC1 _C2ii

The rule for the while statement has clauses to deal with non-terminating computations
and a delay statement has been included to model the time Tb taken for the evaluation of
the boolean expression.

Rule 5.5.10 While

hhI^now < ∞ii delay Tb hhI0ii
hhI0 ^b^now < ∞ii S hhIii
I! I1; loc(I1) = ø; (8 t1 < ∞ 9 t2 > t1 : I1[t2=now])! Cnt

hhIii while b do S od hh(Cnt ^now = ∞)_ (I0^:b)ii

Example 5.9 Consider the program

while x 6= 0 do in?x ; out!!f (x) od

Clearly this program maintains the relation

8t < ∞ 8v : rec(in;v)@t! send(out; f (v))@(t+Tcomm)

between input and output. We shall not prove this here (see Section 5.6 for similar proofs)
but, rather, will concentrate in this example on the question of termination. The aim is
to show

hhnow = 0^ x 6= 0ii
while x 6= 0 do in?x ; out!!f (x) od
hh (now = ∞^9t < ∞ : waitrec(in) during [t;∞))
_ (now = ∞^8t < ∞ : :rec(in;0)@t)
_ (now < ∞^9t < ∞ : rec(in;0)@t)ii

Thus the program either

� does not terminate because there is a deadlock on input channel in, i.e. the program
waits forever to receive input along in after a certain point in time, or

� does not terminate because it never receives value 0 along in, or
� terminates because it receives 0.

The While rule is used to prove this, with

130 CHAPTER 5. ASSERTIONAL SPECIFICATION AND VERIFICATION

Cnt�(9 t < ∞ : waitrec(in) during [t;∞))_ (8 t < ∞ : :rec(in;0)@t)
I �(now = ∞^9 t < ∞ : waitrec(in) during [t;∞))

_ (now < ∞^8t < now; t 6= now�2Tcomm : :rec(in;0)@t
^ (x = 0$ rec(in;0)@(now�2Tcomm)))

I0 � now < ∞^8t < now; t 6= now�2Tcomm�Tb : :rec(in;0)@t
^ (x = 0$ rec(in;0)@(now�2Tcomm�Tb))

I1 � (9 t < ∞ : waitrec(in) during [t;∞))_ (8 t < now�2Tcomm : :rec(in;0)@t)

To apply the While rule, we must prove the following:

� hhI^now < ∞ii delay Tb hhI0ii
This formula is easily derived using the proof system.

� hhI0 ^ x 6= 0^now < ∞ii in?x ; out!!f (x) hhIii
Note that I0^ x 6= 0^now < ∞ implies

now < ∞^8t < now : :rec(in;0)@t

Let B� (now = ∞^9t < ∞ : waitrec(in) during [t;∞))
_ (now < ∞^8t < now; t 6= now�Tcomm : :rec(in;0)@t

^ (x = 0$ rec(in;0)@(now�Tcomm)))
Then we can easily derive

hhnow < ∞^8t < now : :rec(in;0)@tii in?x hhBii
hhBii out!!f (x) hhIii

which leads to the required formula by the Sequential Composition and Conse-
quence rules:

� I! I1, which holds trivially. Further note that loc(I1) = ø.
� (8 t1 < ∞ 9 t2 > t1 : I1[t2=now])! Cnt.
Observe that 8t1 < ∞ 9 t2 > t1 : I1[t2=now] is equivalent to 8t1 < ∞ 9 t2 > t1 :

(9 t < ∞ : waitrec(in) during [t;∞))_ (8t < t2�2Tcomm : :rec(in;0)@t)

implying

(9 t < ∞ : waitrec(in) during [t;∞))_ (8t < ∞ : :rec(in;0)@t)

i.e., Cnt.

Then the While rule leads to

hhIiiwhile x 6= 0 do in?x ; out!!f (x) od hh(Cnt ^now = ∞)_ (I0^ x = 0)ii
Note that now = 0^ x 6= 0! I. Further, (Cnt^now = ∞)_ (I0^ x = 0) is equivalent to

((9 t < ∞ : waitrec(in) during [t;∞)_8t < ∞ : :rec(in;0)@t)^now = ∞)
_(now < ∞^ rec(in;0)@(now�2Tcomm�Tb))

which implies

(now = ∞^9 t < ∞ : waitrec(in) during [t;∞))
_(now = ∞^8t < ∞ : :rec(in;0)@t)
_(now < ∞^9t < ∞ : rec(in;0)@t)

Hence the Consequence rule leads to the triple to be proved.

5.6. THE MINE PUMP EXAMPLE: FINAL IMPLEMENTATION 131

5.6 The mine pump example: final implementation

We can now implement component MContr which was specified in Section 5.4.2:

hhnow = 0ii MContr hhCMCii
Recall that CMC� CMC1^CMC2 ^CMC3 ^CMC4^CMC5 ^CMC6, with

CMC1 � 8t < ∞ :read(mOK) in [t; t+∆read)
CMC2 � 8t < ∞ : send(pch)@t! t � Init^ (:send(pch)) during (t�Period; t)
CMC3 � 8t < ∞ : await�δws

rec(wch) in [t; t+δwr)
CMC4 � 8t0; t1 < ∞ : t0 +δwc � t1^ rec(wch;v)@t0^ v � HSWL� εws

^ (rec(wch) � HSWL� εws) during [t0; t1]
^:read(mOK;0) during [t0; t1]
!9 t2 � t0 +δwc : send(pch;1)@t2^:send(pch;0) during (t2; t1]

CMC5 � 8t0; t1 < ∞ : t0 +δwc � t1^ rec(wch;v)@t0^ v � LSWL+ εws

^ (rec(wch) � LSWL+ εws) during [t0; t1]
!9 t2 � t0 +δwc : send(pch;0)@t2^:send(pch;1) during (t2; t1]

CMC6 � 8t0; t1 < ∞ : t0 +δml� t1^ read(mOK;0)@t0
^:read(mOK;1) during [t0; t1]
!9 t2 � t0 +δml : send(pch;0)@t2^:send(pch;1) during (t2; t1]

To simplify the proof of the implementation, we rewrite the last three, somewhat com-
plicated, commitments as the conjunction of six simpler assertions. That is, we replace
CMC by

CC� 8t < ∞ :
V9

i=1 CCi(t), where
CC1(t) � read(mOK) in [t; t+∆read)
CC2(t) � send(pch)@t! t� Init^ (:send(pch)) during (t�Period; t)
CC3(t) � await�δws

rec(wch) in [t; t+δwr)
CC4(t) � rec(wch;v)@t^ v� HSWL� εws

^:read(mOK;0) during [t; t+δwc]! send(pch;1) in [t; t+δwc]
CC5(t) � rec(wch;v)@t^ v � LSWL+ εws! send(pch;0) in [t; t+δwc]
CC6(t) � read(mOK;0)@t! send(pch;0) in [t; t+δml]
CC7(t) � send(pch;1)@t!9 t0 2 [t�δwc; t];v :

rec(wch;v)@t0^ v� HSWL� εws ^:rec(wch) during (t0; t)
CC8(t) � send(pch;1)@t

!9 t0 2 [t�δml; t] : read(mOK;1)@t0^:read(mOK) during (t0; t)
CC9(t) � send(pch;0)@t

! [(9 t0 2 [t�δwc; t];v : rec(wch;v)@t0^ v� LSWL+ εws

^:rec(wch) during (t0; t))
_ (9 t0 2 [t�δml; t] : read(mOK;0)@t0^:rec(wch) during (t0; t))]

Lemma 5.11 If

LSWL� εws < HSWL+ εws (5.12)

then CC! CMC

132 CHAPTER 5. ASSERTIONAL SPECIFICATION AND VERIFICATION

Proof: Since, for i = 1;2;3, 8 t < ∞ : CCi(t)$CMCi it remains to prove CMC4, CMC5,
and CMC6.

To prove CMC4, assume it is given that

t0+δwc � t1; rec(wch;v)@t0
v� HSWL� εws; (rec(wch)� HSWL� εws) during [t0; t1] and
:read(mOK;0) during [t0; t1]

As t0+δwc� t1, we obtain :read(mOK;0) during [t0; t0+δwc]. Hence CC4(t0) implies
send(pch;1) in [t0; t0+δwc], i.e. there is a t2 2 [t0; t0+δwc] such that send(pch;1)@t2. It
remains to show :send(pch;0) during (t2; t1]. Suppose send(pch;0)@t3, for some t3 2
(t2; t1]. Then by CC9(t3) there are two possibilities:

� There exist t4 2 [t3� δwc; t3] and v0 with rec(wch;v0)@t4, v0 � LSWL+ εws and
:rec(wch) during (t4; t3).
Since rec(wch)@t0 and t3 > t2 � t0, this implies that t4 � t0. Further, t4 � t3 �
t1, thus t4 2 [t0; t1]. By (rec(wch) � HSWL� εws) during [t0; t1] we obtain v0 �
HSWL� εws. Using (5.12), this leads to a contradiction with v0 � LSWL+ εws.

� There is some t4 2 [t3�δml; t3] such that read(mOK;0)@t4 and:rec(wch) during
(t4; t3). Then, as above, we can show t4 2 [t0; t1], which leads to a contradiction
with :read(mOK;0) during [t0; t1].

To prove CMC5, let t0 +δwc � t1, rec(wch;v)@t0, v � LSWL+ εws, and (rec(wch) �
LSWL + εws) during [t0; t1]. By CC5(t0), send(pch;0) in [t0; t0 + δwc], i.e., there is a
t2 2 [t0; t0+δwc] such that send(pch;0)@t2. It remains to prove :send(pch;1) during
(t2; t1]. Suppose send(pch;1)@t3, for some t3 2 (t2; t1]. Then by CC7(t3) there exist t4 2
[t3�δwc; t3] and v0 such that rec(wch;v0)@t4, v0�HSWL�εws, and :rec(wch) during
(t4; t3). As above, we can prove t4 2 [t0; t1]. Then it is easy to see that (rec(wch) �
LSWL+ εws) during [t0; t1] and (5.12) lead to a contradiction with v0 � HSWL� εws.

To prove CMC6, assume

t0+δml � t1; read(mOK;0)@t0; and:read(mOK;1) during [t0; t1]

By CC6(t0)we obtain send(pch;0) in [t0; t0+δml]; i.e. there exists a t2 2 [t0; t0+δml]with
send(pch;0)@t2. It remains to prove:send(pch;1)during (t2; t1]. Let send(pch;1)@t3,
for t3 2 (t2; t1]. By CC8(t3) there exists

t4 2 [t3�δml; t3] such that read(mOK;1)@t4 and:read(mOK) during (t4; t3)

Since read(mOK)@t0 and t3 > t2� t0, this implies that t4� t0. Further, t4� t3� t1. Thus
t4 2 [t0; t1] and read(mOK;1)@t4 which contradicts :read(mOK;1) during [t0; t1]. 2

By Lemma 5.11 it remains to implement MContr according to the specification

hhnow = 0ii MContr hhCCii
We show that component MContr can be implemented by the program:

5.6. THE MINE PUMP EXAMPLE: FINAL IMPLEMENTATION 133

while true do
sel wch?x then skip or delayδws then x := timeoutval les ;
read(mOK;mOKvar) ;
if mOKvar = 1^ x � HSWL� εws then pch!!1
else if mOKvar = 0_ x � LSWL+ εws then pch!!0 fi fi

od

Let S be the body of the while construct above, i.e. MContr�while true do S od.
The program has a select statement which sets an upper bound of δws on the waiting

period for a message along wch (conform CC3). This allows us to prove CC1, which
specifies a maximum delay between read actions on mOK. An alternative is to obtain
this bound from commitment CWSens1 of the water level sensor, but then this informa-
tion would need to have been incorporated in the specification of MContr (e.g. in the
assumption).

To prove hhnow = 0ii while true do S od hhCCii we use the While rule with

I�
9̂

i=1

Ii

where

I1 � 8t� now�Tr�2Tb�Tcomm : CC1(t)
I2 �maxsend(pch; Init;Period) during [0;now�Tcomm]
^ (:send(pch)) during (now�Tcomm;now)

I3 � 8t� now�max(Tcomm;Ta)�Tr�2Tb�Tcomm : CC3(t)

and

Ii �8 t < now : CCi(t); i = 4; : : :;9

Let I0 �
V9

i=1 I0i, where

I01 �8t� now�Tr�3Tb�Tcomm : CC1(t)
I02 �maxsend(pch; Init;Period) during [0;now�Tcomm�Tb)

^ (:send(pch)) during (now�Tcomm�Tb;now)^now� Tb

I03 �8 t� now�max(Tcomm;Ta)�Tr�3Tb�Tcomm : CC3(t)
I0i� Ii, for i = 4; : : :;9

Then it is easy to derive

hhIii delay Tb hhI0ii
Let Î1 � I. Then I! Î1 and loc(Î1) = ø. Further, 8t1 < ∞ 9 t2 > t1 : Î1[t2=now]! CC
can be proved rather easily. For instance,

8t1 < ∞ 9 t2 > t1 : I1[t2=now]
�8 t1 < ∞ 9 t2 > t1 : (8 t� t2�Tr�2Tb�Tcomm : read(mOK) in [t; t+∆read))

134 CHAPTER 5. ASSERTIONAL SPECIFICATION AND VERIFICATION

which implies

8t < ∞ : read(mOK) in [t; t+∆read); i.e. 8t < ∞ : CC1

Then, assuming hhI0^now < ∞ii S hhIii, the While rule leads to

hhIii while true do S od hhCC^now = ∞ii
Since now = 0! I (recall that Tcomm > 0), the Consequence rule leads to

hhnow = 0ii while true do S od hhCCii
Hence it remains to prove hhI0 ^now < ∞ii S hhIii. By the conjunction rule, this can be
divided into the proofs of

hhI0i^now < ∞ii S hhIiii; for i = 1; : : :;9

Proof of Ii requires the intermediate assertions Ai, Bi, Ci, and Di where

hhI0i^now < ∞ii
sel wch?x then skip or delayδws then x :=timeoutval les hhAiii (1i)
hhAi ^now < ∞ii read(mOK;mOKvar) hhBiii (2i)
hhBi ^now < ∞ii delay Tb hhCiii (3i)
hhCi^mOKvar = 1^ x� HSWL� εws^now < ∞ii pch!!1 hhIiii (4i)
hhCi^ (:(mOK = 1)_ x < HSWL� εws)^now < ∞ii delay Tb hhDiii (5i)
hhDi^ (mOKvar = 0_ x� LSWL+ εws)^now < ∞ii pch!!0 hhIiii (6i)

The proofs of these invariants have a similar structure and we shall illustrate the basic
idea by giving the proof of I05, i.e. 8 t < now : CC5(t). Define

A5 � I05_ (8t < now; t 6= now�Tcomm : CC5(t)^ rec(wch;x)@(now�Tcomm))
B5 � I05_ (8t < now; t 6= now�Tcomm�Tr : CC5(t)

^ rec(wch;x)@(now�Tcomm�Tr�Tb))
C5 � I05_ (8t < now; t 6= now�Tcomm�Tr�Tb : CC5(t)

^ rec(wch;x)@(now�Tcomm�Tr�Tb))
D5 � I05_ (8 t < now; t 6= now�Tcomm�Tr�2Tb : CC5(t)

^ rec(wch;x)@(now�Tcomm�Tr�2Tb))

Finally, recall that I5 �8 t < now : CC5(t). Then using i = 5, properties (15) to (65) can
be derived provided, for (65),

δwc � Tcomm+Tr +2Tb

The following constraints are required to prove the other invariants:

I01: ∆read = Tr +3Tb+Tcomm+δws +Ta

I02: Init = 3Tb+Tcomm+Tr and Period = 3Tb+2Tcomm+Tr

I03: δwr = max(Tcomm;Ta)+Tr +3Tb+Tcomm

I04: δwc � Tcomm+Tr +Tb
I06: δml � Tr +2Tb
I07: δwc � Tcomm+Tr +Tb and timeoutval < HSWL� εws

I08: δwc � Tr +Tb
I09: δwc � Tcomm+Tr +2Tb, δml � Tr +2Tb , timeoutval > LSWL+ εws

5.6. THE MINE PUMP EXAMPLE: FINAL IMPLEMENTATION 135

5.6.1 Conclusion: mine pump example

Finally, we can combine the design steps of the mine pump system and derive the con-
straints that are needed to ensure correctness. The previous section showed a program
which correctly implements MContr with

∆read = Tr +3Tb+Tcomm+δws +Ta

Init = 3Tb+Tcomm+Tr

Period= 3Tb+2Tcomm+Tr

δwr = max(Tcomm;Ta)+Tr +3Tb+Tcomm

δwc = Tcomm+Tr +2Tb
δml = Tr +2Tb

and provided

LSWL+ εws < timeoutval < HSWL� εws

The design steps of preceding sections were proved to be correct, provided the following
held:

� For Lemma 5.3, LSWL� LWL+δsc λmax
out , HSWL� HWL�δsc λmax

in

and λmax
in < λmin

out .
� For Lemma 5.8, δsc � δpc+δp.
� For Lemma 5.9, δpc � δws +δwr +δwc.
� For Lemma 5.10, (∆read +δml +δp)λmax

ml � CML�SML.
� For Lemma 5.11, LSWL� εws < HSWL+ εws.

These can be combined into the following list of constraints:

LSWL+2εws < HSWL

LSWL � LWL+(δws +δwr +δwc+δp)λmax
out

HSWL � HWL� (δws +δwr +δwc+δp)λmax
in

λmax
in < λmin

out

(∆read+δml +δp)λmax
ml � CML�SML

To represent the reaction time we define an auxiliary parameter

∆react= δws +δwr +δwc+δp

= δws +δp+max(Tcomm;Ta)+2Tr +5Tb+2Tcomm:

To satisfy these requirements, define

LSWL = LWL+∆react λmax
out (5.13)

HSWL = HWL�∆react λmax
in (5.14)

SML = CML� (∆read+δml +δp)λmax
ml (5.15)

= CML� (2Tr +5Tb+Tcomm+Taδws +δp)λmax
ml (5.16)

136 CHAPTER 5. ASSERTIONAL SPECIFICATION AND VERIFICATION

Note that the constraint LSWL+2εws < HSWL then corresponds to

LWL+∆react λmax
out +2εws < HWL�∆react λmax

in

Combining the constraints leads to the correctness of

hhnow = 0ii SumpkPumpkWSenskAir kMSenskMContr hhCTLii
provided

λmax
in < λmin

out

LWL+∆react(λmax
out +λmax

in)+2εws < HWL

where MContr is the program given at the start of this section, with timeoutval such that
LSWL + εws < timeoutval < HSWL� εws (note that by (5.13) such a value exists) and
given the specifications of:

� Sump with LSWL and HSWL and a given maximum inflow λmax
in ,

� Pump with Init = 3Tb+Tcomm+Tr, Period = 3Tb+2Tcomm+Tr and given values
of δp and minimal outflow λmin

out ,
� WSens for given values of δws and εws,
� Air for a given value of λmax

ml and with SML as defined above,
� MSens with SML as defined above.

5.7 Further work

The proof system described in this chapter can be extended and used in different ways.
We shall consider briefly a few of these: scheduling, protocol verification and mechanical
verification.

5.7.1 Scheduling

With maximal parallelism, each process has its own processor. This model can be gener-
alized to multi-programming where several processes share a one processor and schedul-
ing is based on priorities. Execution on a single processor is modelled as an interleaving
of the atomic actions of the processes assigned to it. This interleaving can be restricted
by the programmer by assigning priorities to statements. Then a processor only starts
the execution of a statement when no other statement with a higher priority is ready to
execute. In this extended formalism, the correctness of a program is based on a fixed
(priority-based) scheduling algorithm (Hooman, 1991).

It might, however, be more convenient to have an intermediate level between schedul-
ing theory and formal top-down system design in which the scheduling strategy is not yet
fixed but requirements on the scheduler are specified. For instance, the implementation
of the mine pump control system can be split into two parts. First we derive a set of tasks
with periods and deadlines of the form

5.7. FURTHER WORK 137

schedule (wch?x) with period 2 [0;δws]
schedule (read(mOK;mOKvar)) with period 2 [0;∆read]
schedule (T) with period 2 [∆1;∆2] deadline 2 [0;∆3]
where T � if mOKvar = 1^ x� HSWL� εws then pch!!1

else if mOKvar = 0_ x� LSWL+ εws then pch!!0 fi fi

Scheduling theory (see Chapters 3 and 4) can then be used to construct a feasible schedule
for these tasks.

Alternatively, timing requirements can be specified explicitly by annotating programs
with timing expressions (as was done in the Dedos project (Hammer et al., 1994)). No
assumptions are made about the execution time of statements but with the timing annota-
tions requirements can be expressed for the execution time of statements. It is then left to
a scheduler to guarantee that these timing requirements are satisfied. The formalization
of this approach is a topic of current research.

5.7.2 Protocol verification

In Hooman (1993; 1994a), a distributed real-time arbitration protocol based on an algo-
rithm of the IEEE 896 Futurebus specification (IEEE, 1988) for networks of processes
P1k � � �kPn using a general strategy:

1. Formulate a top-level specification for the network P1k � � �kPn, say
hhAii P1k � � �kPn hhCii

2. Axiomatize the communication mechanism between the processes P1; : : :;Pn by
an axiom COMAX.

3. Find a suitable specification for each process Pi, for i = 1; : : :;n,
hhAiii Pi hhCiii

in terms of the external communication interface of Pi only.
4. Prove A! A1^ : : :^An and Comb(C1; : : :;Cn)^COMAX!C.
5. Derive a correct implementation of process Pi, for i = 1; : : :;n, using the proof

method extended with rules for domain specific programming constructs.

This allows the development of a distributed program which satisfies the top-level speci-
fication. In Step 4, the protocol is verified at an abstract level using the compositionality
of the parallel composition rule. Similar verification could be performed in another logic,
e.g. a real-time version of temporal logic (Abadi & Lamport, 1994) or the duration cal-
culus (Zhou et al., 1991a) (see Chapter 7). The triples find use in Step 5, where their
structure is very convenient for the formal derivation of programs.

Step 2 requires the communication mechanism to be axiomatized. For this, the as-
sertion language is extended with suitable primitives (e.g. to denote send and receive
actions) and the proof system is given axioms for these primitives (such as the relation
between send and receive actions) and rules to relate communication statements of the
programming language to the corresponding primitives of the assertion language.

138 CHAPTER 5. ASSERTIONAL SPECIFICATION AND VERIFICATION

Zhou and Hooman (1995) apply the first four steps of the method mentioned above
to an atomic broadcast protocol (Cristian et al., 1989) which requires timing correctness
and fault-tolerance. The reliability of real-time systems requires the use of techniques
that ensure the correct functioning of the system despite failures in some components.
But providing such fault-tolerance usually influences the timing behaviour of a system.
Given this strong relation between real-time and fault-tolerance, it would be desirable to
extend our real-time framework to deal with fault-tolerance (see Chapter 8).

5.7.3 Mechanized support

Most of the work mentioned here has been based on manual, deductive verification but it
is obvious that for a system of reasonable size some mechanized tool support is essential.
This would allow proofs to be constructed interactively and checked mechanically so that
simple verification conditions can be discharged automatically.

The Prototype Verification System PVS (Owre et al., 1992) has been used to verify de-
sign steps during top-down design in the assumption–commitment framework presented
in this chapter. The PVS specification language is a strongly typed higher-order logic.
Specifications are structured into a hierarchy of parameterized ‘theories’ and some theo-
ries are built-in (e.g., reals, lists, sets, ordering relations, etc.). There is a mechanism to
automatically generate theories for abstract data types. The PVS system has an interac-
tive proof checker with induction rules, automatic rewriting and decision procedures for
arithmetic. PVS proof steps can be composed into proof strategies.

To use the PVS specification language, a slight reformulation (Hooman, 1994b) was
made in the framework to obtain a mixed formalism in which programs and specifica-
tions are unified (similar to, e.g. the mixed terms of Olderog (1985) and Zwiers (Zwiers,
1989)). In such a framework, assertional specifications can be freely mixed with con-
structs from the programming language. This makes it possible to formalize the process
of program design and to describe the intermediate stages.

Use of this tool was demonstrated for the top-down derivation of a distributed real-time
control system (a chemical batch processing system). Simple details are proved automat-
ically using the PVS decision procedures. This improves the speed of the design and the
verification and allows the user to concentrate on the essential structure of proofs. Fur-
ther, the possibility of building hierarchies of parameterized theories is also very useful.

5.8 Historical background

5.8.1 Semantics

The programming language of this chapter and its semantics are to a large extent influ-
enced by the work of Koymans et al. (1988) who defined a denotational real-time seman-
tics for the maximal parallelism model. In Huizing et al. (1987), a fully abstract version

5.8. HISTORICAL BACKGROUND 139

of this semantics was developed. These semantic models are based on the linear history
semantics of Francez et al. (1984).

The approach was extended to communicating shared resources by Gerber and Lee
(1989; 1990). To obtain a calculus for shared resources a priority-based process algebra
was presented. The computation model was defined by an operational semantics in which
priorities are not taken into account but were incorporated later using an equivalence.
Global, discrete time is obtained by assuming that all actions take one time unit.

An alternative, topological, approach can be found in Reed and Roscoe (1986), where
the real-time behaviour of CSP programs is defined by means of complete metric spaces
(see Chapter 6).

5.8.2 Hoare logic

Our formalism is based on classical Hoare triples (Hoare, 1969). These correctness for-
mulae have been used for the specification and verification of many non-real-time pro-
gramming languages. A good survey was given by Apt (1981; 1984) and an extensive
formal treatment can be found in de Bakker (1980).

Usually, verification methods such as that by Manna and Pnueli (1982) for temporal
logic and others by Owicki and Gries (1976), Apt et al. (1980) and Levin and Gries
(1981) for the verification of parallel programs using Hoare triples, require the complete
program text to be available. In contrast with these methods, we have formulated com-
positional proof systems which allow reasoning with the specifications of components
without knowing their implementation. Compositionality can be considered to be a pre-
requisite for hierarchical, structured program derivation. A separation of concerns is then
possible between the use of (and the reasoning about) a module and its implementation
(Dijkstra, 1976; Lamport, 1983). With a compositional proof system, design steps can
be verified during the process of top-down program construction. An overview of the
transition from non-compositional proof methods towards compositional proof systems
can be found de Roever (1985) and Hooman and de Roever (1986; 1990). The compo-
sitional proof system for our modified Hoare triples was inspired by the work of Zwiers
(1989) and preliminary accounts can be found in Hooman (1987; 1990; 1991).

Related work was done by Haase (1981) who introduced real-time as a variable in the
data space of the program and derived assertions using Dijkstra’s weakest precondition
calculus (Dijkstra, 1976). Bernstein (1987) discusses several ways of modelling message
passing with time-out in the non-compositional framework of Levin and Gries (1981).
A non-compositional approach can be found in Schneider et al. (1992), where a logic
of proof outlines with control predicates is extended to concurrent real-time programs
by adding a primitive to express the time at which a control predicate last became true.
A similar extension of Hoare Logic was given by Shankar (1993) using a more general
primitive to express the time that has elapsed since an assertion last held.

PVS (Owre et al., 1992) and its predecessor, EHDM, have been used for a number of
applications. EHDM was used to model digital flight-control systems (Rushby, 1993),
for proof of an interactive convergence clock synchronization algorithm (Rushby & von

140 CHAPTER 5. ASSERTIONAL SPECIFICATION AND VERIFICATION

Henke, 1993) and Byzantine fault-tolerant clock synchronization (Shankar, 1993). An
application of PVS was described by Lincoln and Rushby (1993), where an algorithm
for interactive consistency has been verified.

5.8.3 Related work

Traditional linear time temporal logic (Pnueli, 1977; Manna & Pnueli, 1982; Owicki &
Lamport, 1982) has been shown to be valuable in the specification and verification of
the non-real-time behaviour of programs. It allows the expression of safety and live-
ness properties by using a qualitative notion of time. For instance, for an assertion ϕ,
this logic can express the safety property ‘henceforth ϕ will hold’ (2ϕ) and the liveness
property ‘eventually ϕ will hold’ (3ϕ). To specify real-time constraints, a quantitative
notion of time has to be introduced. As already observed (Pnueli & Harel, 1988; Harel
et al., 1990), there are two main approaches to defining real-time versions of temporal
logic. In the first, this logic is extended with a special variable which explicitly refers
to the value of a global clock, the so-called Explicit Clock Temporal Logic. Descrip-
tions of non-compositional proof methods using Explicit Clock Temporal Logic based
on Manna and Pnueli (1982), can be found in Harel (1988) and Ostroff (1989), where
decision procedures for this logic are given. A compositional proof method using Ex-
plicit Clock Temporal Logic was formulated by Hooman et al. (1991).

An alternative approach uses an extension proposed by Koymans et al. (1983) and
Koymans and de Roever (1985), in which the scope of temporal operators is restricted by
using time-bounds. Then we can express, for instance, ‘during the next seven time units ϕ
will hold’ (2<7 ϕ) and ‘eventually within five time units ϕ will hold’ (3<5 ϕ). This logic
is called Metric Temporal Logic (MTL), since in general it extends temporal logic by a
metric point structure with a distance function to measure time; Koymans (1990; 1992)
has a detailed discussion on MTL and several examples to illustrate its application to the
specification of real-time systems. An early use of temporal operators with time-bounds
can be found in Bernstein and Harter (1981), where a quantitative ‘leads to’ operator was
introduced to verify real-time applications. In Koymans et al. (1983) a version of MTL
was applied to the specification of real-time communication properties of a transmission
medium. A temporal logic with statements about time intervals has been used by Shasha
et al. (1984) to prove the correctness of local area network protocols. Hooman (1991)
formulated a compositional proof system for formulae of the form S sat ϕ, where S is a
program and ϕ a (real-time) property expressed in MTL. This proof system is based on
compositional proof methods for classical temporal logic (Barringer et al., 1984; Nguyen
et al., 1986) and a preliminary version, for a simplified language, appeared in Hooman
and Widom (1989).

Logics for reasoning about real-time systems were classified by Alur and Henzinger
(1990) according to their complexity and expressiveness. A tableau-based decision pro-
cedure is given for a version of metric temporal logic. For decidability, a discrete time
domain is used. In a decidable version of the explicit clock approach (called TPTL),
special variables represent values of a global clock and a ‘freezing’ quantification binds

5.9. EXERCISES 141

a variable to the value of the clock in a certain state. In Harel et al. (1990) a decision
procedure and a model checking algorithm are given for a suitably restricted version of
Explicit Clock Temporal Logic. The expressibility of this logic is shown to be incompa-
rable with TPTL. Similar to the extension of linear time temporal logic to MTL, branch-
ing time temporal logic, also called Computation Tree Logic (CTL), can be extended to
real-time by adding time-bounds to the modal operators. For instance, in Emerson et al.
(1989), algorithms for model checking and satisfiability analysis are presented for a logic
with discrete time. It is shown in Alur et al. (1990) that model checking results can be
extended to CTL over a dense time domain. Finally, the logic defined by Hansson and
Jonsson (1989) extends CTL with discrete time and probabilities.

Lamport’s temporal logic of actions (TLA) is a formal specification language and a
refinement method to support the top-down design of systems (Lamport, 1994). It has
been extended to real-time by adding a special variable now to represent time (Abadi &
Lamport, 1994). The extended notation was applied to a hybrid system – the gas burner
– and to a solution of the Byzantine generals problem (Lamport, 1993; Lamport & Merz,
1994).

Zwarico and Lee (1985) adapted Hoare’s trace model to real-time. Jahanian and Mok
(1986) defined a real-time logic to analyze safety properties based on a function which
assigns a time-value to each occurrence of an event. Real-time properties of sliding win-
dow protocols were verified by Shankar and Lam (1987) using special state variables,
called timers, to measure the passage of time.

5.9 Exercises

Exercise 5.1 Consider, for asynchronous channels in, c, and out, the processes

S1 � in?x ; x := x+1 ; c!!x;
S2 �while true do sel c?y then y := y+2 ; out!!y

or delay5 then alarm!!1 les od

and the specification

hhnow = 0ii S1kS2 hhrec(in;4)@0! send(out;7) 2 [δ1;δ2]ii

Give constraints on the parameters and determine δ1 and δ2 such that this triple can be
derived. Give the main steps of this derivation.

Exercise 5.2 Consider a real-time system M which reacts on input v along asynchronous
channel in by sending the value f2(f1(v)) via asynchronous channel out in less than ∆ time
units. With the parameters ∆1, ∆2, ∆3, and ∆4 we have fwaitrec(in); rec(in); send(out)g
� obs(M) and the specification

hhnow = 0 ii M hhq0^q1^q2 ii

142 CHAPTER 5. ASSERTIONAL SPECIFICATION AND VERIFICATION

where

q0 � maxsend(out;∆1;∆2) during [0;∞)

q1 � minwait(in;∆3;∆4) during [0;∞)

q2 � 8t < ∞ : rec(in;v)@t! send(out; f2(f1(v))) in [t; t+∆)

(a) Suppose we have an environment E with

fsend(in);waitrec(out); rec(out)g � obs(E)

satisfying

hhnow = 0 ii E hh r1 ^ r2ii
where

r1 � maxsend(in;∆3;∆4) during [0;∞)

r2 � minwait(out;∆1;∆2) during [0;∞):

Prove

hhnow = 0 ii MkE hhq ii
with q� 8t < ∞ : send(in;v)@t! rec(out; f2(f1(v))) in [t; t+∆).

(b) Implement M by two parallel components M1 and M2 which compute f1 and f2,
respectively, and communicate internally via the asynchronous channel mid. Com-
ponent M1 is given by fwaitrec(in); rec(in); send(mid)g � obs(M1) and

hhnow = 0 ii M1 hhq1^q3 ii
where q3 �8 t < ∞ : rec(in;v)@t! send(mid; f1(v))@(t+δ1). M2 is specified as
fwaitrec(mid); rec(mid); send(out)g � obs(M2) and

hhnow = 0 ii M2 hhq0^q4^q5 ii
where

q4 � 8t < ∞ : await rec(mid) in [t; t+δ2)

q5 � 8t < ∞ : (mid;v0)@t! send(out; f2(v0)) in [t; t+δ3)

Prove, under certain requirements on the parameters δ1, δ2, δ3 and ∆, that

hhnow = 0 ii M1kM2 hhq0^q1^q2 ii
(c) Construct programs that satisfy the specifications of M1 and M2 and formulate
the required constraints on the parameters.

Exercise 5.3 Consider an asynchronous channel c and a parameter T 2 TIME. Prove
the following implication:

5.9. EXERCISES 143

(9 t0 : waitrec(c) during [0; t0)^ (rec(c)@t0_ t0 = T))
^ (9 t1 < T : :send(c) during [0; t1)^ send(c;v)@t1)! rec(c;v) in [0;T)

(Informally this says that if a process waits to receive input on c until either a message has
been received or time T has been reached, and if another process sends v along c before
T, then v is received along c in less than T time units.)

Exercise 5.4 Consider the program S1kS2 with asynchronous channels in, mid, out and
alarm. For S1 we have obs(S1) = fwaitrec(in); rec(in); send(mid)g and

hhnow = 0ii S1 hhq1ii
with

q1 � 8t < ∞ : rec(in;v)@t!9 t1 < 10 : :send(mid) during [0; t1)
^ send(mid;v+1)@t1

S2 is specified by obs(S2) = fwaitrec(mid); rec(mid); send(out); send(alarm)g and

hhnow = 0ii S2 hhq2 ^q3^q4ii
with

q2 � 8t < ∞ : rec(mid;v)@t! send(out;v+2) in [t; t+25)

q3 � 9 t0 : waitrec(mid) during [0; t0)^ (rec(mid)@t0_ t0 = 10)and

q4 � waitrec(mid) during [0;0+10)! send(alarm)@10

(a) Prove that, under a certain condition on the parameter ∆,

hhnow = 0ii S1kS2 hhrii
with r� rec(in;v)@0! send(out;v+3) in [0;∆). Hint: use Exercise 5.3.

(b) Derive programs that satisfy the specifications of S1 and S2, given certain con-
ditions on the parameters Ta, Tcomm, etc.

Exercise 5.5 Process P, specified below, used the asynchronous channels in, out and
alarm:

fwaitrec(in); rec(in); send(out); send(alarm)g � obs(P)
hhnow = 0ii P hhq1 ^q2^q3ii

with

q1 � 8t < ∞ : rec(in;v)@t! send(out; f (v)) in [t; t+2)
q2 � 8t < ∞ : await rec(in) in [t; t+3)and
q3 � 8t < ∞ : waitrec(in) during [t; t+10)! send(alarm) in [0; t+11)

Consider the following two possible specifications of the environment E of P:

(a) Suppose E satisfies the following specification:

144 CHAPTER 5. ASSERTIONAL SPECIFICATION AND VERIFICATION

�
�
�
�

Pn

re1

ren

W

P1

al

Figure 5.5 Watchdog timer network

fsend(in);waitrec(out); rec(out);waitrec(alarm); rec(alarm)g � obs(E)
hhnow = 0ii E hhr1ii

with r1 � 8t < ∞ : send(in)@t! t� 3^ (:send(in)) during [t�3; t). Prove

hhnow = 0ii PkE hhq4ii
with q4 � 8t < ∞ : send(in;v)@t! send(out; f (v)) in [t; t+2).

(b) Now suppose E satisfies

fsend(in);waitrec(out); rec(out);waitrec(alarm); rec(alarm)g � obs(E)
hhnow = 0ii E hhr2ii

where r2 � (:send(in)) during [4;17). Then prove

hhnow = 0ii PkE hhq5ii
where q5 � send(alarm) in [0;18).

(c) Derive a program satisfying the specification of P, given certain conditions on
the parameters Ta, Tg, Tcomm, etc.

Exercise 5.6 Design a ‘watchdog’ process W whose job is to check whether the pro-
cesses P1; : : :;Pn are functioning properly. The network is shown in Figure 5.5, where
re1; : : :; ren, and al are asynchronous channels.

Ignore the actual task to be performed by each Pi but assume that it is functioning cor-
rectly iff it sends a reset signal to W on channel rei at least once every ten time units.
As long as all processes Pi send a reset signal in time, the watchdog timer W does not
communicate on the alarm channel al. But if W has to wait for a reset signal on a partic-
ular rei for ten time units or more, it will send an alarm message on channel al within K
time units. Ignore the behaviour of W after a communication on al. W can therefore be
specified by

hhnow = 0ii W hhCwii
where

5.9. EXERCISES 145

�
�
�
�

W
al

�
�
�
�

P1

Wn

W1

Pn

an

a1

re1

ren

Figure 5.6 Refinement of the watchdog timer network

Cw � 8t < ∞ :((9 i : waitrec(rei) during [t; t+10))
!9 t0 < t+10+K : send(al)@t0)
^(send(al)@t
!9 i 2 f1; : : :;ng 9 t1 < ∞ : waitrec(rei) during [t1; t1+10))

(a) Prove that if each Pi sends a signal on channel rei at least once every ten time
units then no signal is sent on al. To specify that the Pi are functioning properly,
assume

hhnow = 0ii Pi hh8 t < ∞ : send(rei) in [t; t+10)ii

Then prove that an alarm message never occurs in the network, i.e.

hhnow = 0ii P1k � � �kPnkW hh:send(al) during [0;∞)ii

(By compositionality, the properties of the network P1k � � �kPnkW can be verified
using the specifications of the components, without knowing their implementa-
tions.)

(b) Design a program to implement the watchdog process W and satisfy the com-
mitment Cw. Since the reset signals of any of the processes P1; : : :;Pn may arrive
at the same time, implement W as a parallel composition W �W1k � � �kWnkA (in
Figure 5.6 the a1; : : :;an are synchronous channels). Process Wi is the watchdog
for Pi and signals process A via channel ai as soon as there is no communication
on rei for at least ten time units; process A waits for a signal on any of the ais; after
receipt of a signal it sends a message on al.
Since the exact timing requirements for Wi and A may not be clear at this level, use
parameters Ki and Ka in their specifications. This leads to

hhnow = 0ii Wi hhCwi ii

where

146 CHAPTER 5. ASSERTIONAL SPECIFICATION AND VERIFICATION

Cwi � 8t < ∞ :(waitrec(rei) during [t; t+10)
! (waitsend(ai)_ send(ai)) in [t+10; t+10+Ki))
^ ((waitsend(ai)_ send(ai))@t
!9 t2 < ∞ : waitrec(rei) during [t2; t2+10))

Process A is specified by

hhnow = 0ii A hhCaii
where

Ca �(Vn
j=1 waitrec(aj) during [0;∞)^ (:send(al)) during [0;∞))

_ (9 i2 f1; : : :;ng 9 t3 < ∞ :
Vn

j=1 waitrec(aj) during [0; t3)
^ rec(ai)@t3^ send(al) in [t3; t3+Ka))

Prove

hhnow = 0ii W1k � � �kWnkA hhCwii
provided certain constraints on K, Ki and Ka hold.

Chapter 6

Specification and Verification in Timed
CSP

Steve Schneider

Introduction

Communicating sequential processes (CSP) is a language designed to describe formally
the patterns of communication behaviour of system components or processes and how
these components may be combined. The theory of CSP enables the formal description
of system specifications and supports their analysis, judging them against the require-
ments. A theory of refinement allows CSP descriptions at a high level of abstraction to
be refined to a level of description more appropriate for implementation. This allows ab-
stract CSP processes to act as specifications, describing the behaviour expected of any
implementation.

Timed CSP is a direct extension of the original CSP, and includes explicit timing con-
structs enabling the description of quantitative timing behaviour. A theory of timewise
refinement allows mappings between untimed and timed processes. We will use the ab-
breviation CSP to refer to the timed extension of the language.1

6.1 The language of real-time CSP

The CSP language describes processes in terms of their communication behaviour, re-
moving internal state information that does not affect the communication behaviour. This
abstraction is appropriate for real-time systems since they are reactive and interact contin-
ually with their environment. The requirements of such systems are concerned primarily
with the interactions between a component and its environment.

1The reader should be aware that this is not the usual practice: the timed language is more commonly
called real-time CSP.

147

148 CHAPTER 6. SPECIFICATION AND VERIFICATION IN TIMED CSP

6.1.1 Events and processes

A process is modelled in terms of the possible interactions it can have with its environ-
ment, which may be thought of as another process or set of processes, the ‘outside world’,
or a combination of these. The first step in the description of a process is to decide on
the ways in which interactions can take place.

Interactions are described in terms of instantaneous atomic synchronizations, or
events. This kind of synchronization is sufficiently simple to model asynchronous and
shared memory communication. A process cooperating with its environment for some
length of time is described in terms of a single event occurring at the point at which they
agree to cooperate. A process can be considered as a ‘black box’ with an interface con-
taining a number of events through which it interacts with other processes. The set of all
events in the interface of a process is called its alphabet. In this set, interface events are
treated as synchronizations between the participating processes and not as autonomous
actions under the control of a single process. A process containing an event in its in-
terface is required to participate in the occurrence of that event. The refusal of a single
participant to cooperate will block its occurrence.

6.1.2 Computational model

Before we formally describe the language of CSP and how it is to be understood, we must
make explicit a number of assumptions concerning the underlying model of computation
and the nature of time:

� Maximal progress: A synchronization event occurs as soon as all participants are
ready to perform it.

� Maximal parallelism: Every process has a dedicated processor; processes do not
compete for processor time.

� Finite variability: No process may perform infinitely many events, or undergo in-
finitely many state changes, in a finite interval of time.

� Real-time: The time domain is taken to be the non-negative real numbers. Thus
it is possible for events to occur at any non-negative real time. Since the reals are
dense, our maximal parallelism assumption above means that there is no positive
lower bound on the time difference between two independent events occurring at
different times.

� Newtonian time: Time progresses in all processes at the same rate, and all with
respect to the same unique global time frame.

The assumption of maximal progress has close connections with the treatment of pro-
cesses and the events that they may perform. In addition to the events in the interface of
a process (external events), a process description may also include internal events. The
interface of a process P will not contain its internal events as they will be performed by P

6.1. THE LANGUAGE OF REAL-TIME CSP 149

without the participation of its environment. In practice, an internal event usually corre-
sponds to a synchronization between parallel components of P. Maximal progress means
that an internal event occurs as soon as P is ready to perform it, and this will be as soon
as all the participating components of P are ready.

External events, on the other hand, require the participation of the environment of P.
An external event a can occur only when all processes which contain a in their interface
agree to perform it. If P is one of a number of such processes which are components of
a composite process R, and the event a is external for R, then the occurrence of a will
be influenced by R’s environment. If a is internal to R, then by maximal progress it will
occur as soon as all the participants, one of which is P, are able to perform it.

6.1.3 The operators of CSP

The language of CSP is defined by the following pseudo Backus–Naur form definitions:

P ::= STOP j SKIP j P; P j a! P j sequential

P 2 P j P u P j P t
. P j choice

P j[A jA]j P j P jjj P j parallel

P n A j f (P) j f�1(P) j abstraction

X j µX � P recursion

Σ is the set of all possible events, a is in Σ, A in P (Σ), t in [0;∞), f is a function Σ! Σ
and X is a process variable. CSP processes are terms with no free process variables (i.e.
every process variable is bound by some µ expression). In a CSP process, every recursive
expression is time-guarded to ensure finite variability (i.e. there is some t > 0 for which
any execution must take at least t to reach a recursive invocation). Since the only operator

that introduces a delay is the timeout operator
t
., every occurrence of a process variable

must be guarded by a non-zero timeout.
We shall use the convention that events are written in lower case, and processes are

written in upper case.

Sequential
The process STOP is the deadlocked process, unable to engage in any events or make
any progress (this might adequately describe a surly waiter in a restaurant who refuses to
serve any customer). It might be used to describe a system which has crashed, or which
has deadlocked: no further events are possible.

The process SKIP is the immediately terminating process. This might describe the
waiter whose shift ends as soon as it starts. No events are performed, but in contrast to
STOP it can signal to its environment that it has terminated, and an appropriate environ-
ment would be able to pass control to another process.

The sequential composition P; Q behaves as P until P terminates, and then behaves as
Q. Thus WAITER1; WAITER2 initially behaves as WAITER1 until the shift finishes; the

150 CHAPTER 6. SPECIFICATION AND VERIFICATION IN TIMED CSP

subsequent behaviour is that of WAITER2.
As we might expect, SKIP; P =P for any P, and STOP; P = STOP; indeed the seman-

tic model supports these equations. The first equation states that since SKIP does nothing
except immediately pass control to P, the resulting behaviour is indistinguishable from
that of P. In the second equation, the deadlocked process STOP does not indicate termi-
nation so P will never be reached and the result is equivalent to STOP.

The prefix process a! P is ready to engage in event a (and in no other event). It will
continue to wait until its environment is also ready to perform a, at which point synchro-
nization on this event will occur. Once the event is performed, the subsequent behaviour
of a! P will be that of process P. By default, there is no delay between the occurrence
of a and the beginning of P. A waiter who is prepared to take a customer’s coat before
serving may be described by the process coat! SERVE, where the event coat models
the synchronization between customer and waiter achieved by the removal of the coat.

We later define a form of prefix which explicitly introduces a delay: a
t!P is also ready

initially to engage in a; but once that event is performed, there is a delay of t before it
behaves as P. The waiter who takes ten minutes between removing the coat and serving

would be described by coat
10! SERVE.

The behaviour of a waiter to a single customer may be described by the following pro-
cess:

WAITER = table
2! coat

5! order
20! serve

30!
pay

0:01! tip
3! coat! SKIP

The waiter is prepared to show a customer to a table, then, after a short delay, to remove
a coat, then take an order, serve, accept payment, accept a tip and finally return the coat.
Observe that each of these events indicates a readiness to interact: if the customer is not
ready to order until ten minutes after the coat is taken, the waiter will wait; if the customer
is ready after only three minutes, the waiter will not yet be ready to interact.

Choice
An external choice P2 Q is initially ready to engage in events that either P or Q is ready
to engage in. The first event performed resolves the choice in favour of the component
that was able to perform it, and the subsequent behaviour is given by this component.

A choice offered to the customer between two items on the menu could be modelled
using this choice:

duck
20! SERVEd 2 grouse

20! SERVEg

Here, a choice of two processes, duck
20! SERVEd and grouse

20! SERVEg , is offered to
the customer. Both initial events are available, and the choice is resolved at the point the
customer performs one of these events.

An internal choice P u Q behaves either as P or as Q but, unlike the external choice,
the environment cannot influence the way the choice is resolved. The choice

duck
20! SERVEd u grouse

20! SERVEg

6.1. THE LANGUAGE OF REAL-TIME CSP 151

is not made by the customer, but is made instead by the system (the restaurant in this
case), and the customer has no influence over which way it is resolved. It may be resolved
by always choosing duck, by tossing a coin, by alternating between duck and grouse or by
choosing whichever is cheaper. Any of these approaches will be acceptable to a customer
who does not mind which of the items is eventually served, as long as at least one of duck
or grouse is offered.

The timeout choice P
t
. Q initially behaves as process P. If an event is performed be-

fore time t, then the choice is resolved in favour of P, which continues to execute, and
Q is discarded. If no such event is performed, then the timeout occurs at time t, and the
subsequent behaviour is that of Q. An impatient customer may wait five minutes for a
table, but will leave the restaurant if no table becomes available in that time. This may

be described by the process CUST = (table!MEAL)
5
. LEAVE. If the event table is not

performed within five units of time (minutes in this case), then the timeout will occur,
since the first process will not have performed any events, and the customer will behave
as the exception process.

Timeout may be used to handle exceptions in a number of ways. It may provide op-
portunities for disagreement. The following fragment from the wedding service provides
an illustration:

(speak now! DISRUPTION)
10
. FOREVER HOLD PEACE

The expectation is that the timeout should occur (i.e. that the event speak now does not
occur), but an opportunity should be provided to prevent it if necessary.

More often, timeout is used to detect errors: if an expected response is not received
within a certain time, some corrective action should be taken.

Parallel
The parallel combination P j[A jB]j Q allows P to engage in events from the set A (only),
and Q to engage in events from the set B (only). The processes P and Q must synchro-
nize on all events in the intersection A\B of these two interfaces, but other events are
performed independently.

The customer CUST may have a set of possible interactions:

AC = ftable;order; serve;eat;pay; tip;coatg
Although any real customer will have other actions of interest, we are interested in mod-
elling interactions with the restaurant, and so we have abstracted all activity irrelevant to
the situation we are modelling.

Events of interest in the restaurant might be described by the set

AR = ftable;order;pay; tip;coat; serve;cookg
A waiter who has a table ready will be able to interact with the customer:

CUST j[AC jAR]j WAITER

152 CHAPTER 6. SPECIFICATION AND VERIFICATION IN TIMED CSP

But, a waiter who has a cigarette before showing a customer to a table may lose the cus-
tomer:

CUST j[AC jAR]j CIGARETTE; WAITER

If CIGARETTE takes too long to terminate, the customer may no longer wish to be shown
to a table but if it terminates sufficiently quickly, the waiter will be ready before the cus-
tomer walks out. The event table can occur only at times when both participants are pre-
pared to engage in it.

If the process MEAL is eat
15! coat! SKIP, then the customer CUST (defined in terms

of MEAL) is not prepared to offer a tip and requires the return of his coat after eating.
Since the waiter is not prepared to return the coat until a tip has been received, the parallel
combination of CUST with WAITER will deadlock: although each participant is able to
continue on some event, there is no event on which they can they can agree.

The asynchronous parallel combination P jjjQ represents the independent concurrent
execution of P and Q, with no synchronization between them on any events. A number
of separate waiters might be described using this construct:

WAITERS = WAITER jjjWAITER jjj : : : jjjWAITER

None of the waiters interacts with any other, though they may all interact with a customer.
In the combination

CUST j[AC jAR]j WAITERS

the customer can cooperate with any waiter; the choice between waiters is nondetermin-
istic: any that is prepared to perform table when the customer performs it may be chosen.

Abstraction
The hiding operator P n A makes the events in the set A internal to the process, thus re-
moving them from the control of the environment. The only participants will then be the
components of P. From the maximal progress assumption, the internal events will occur
as soon as P is ready to perform them. In general, internal events occur as soon as they
are ready, unless they are pre-empted because of conflict, such as when there is a choice
between events.

A print spooler SPOOL and PRINTER communicate via channel print:

SPOOL = in
2! print

3! SPOOL

PRINTER = print
30! out! PRINTER

The parallel combination SPOOL j[in;print jprint;out]j PRINTER has print as a visible
channel and further processes may participate in it. Since only SPOOL and PRINTER
should participate in that synchronization, we make print internal:

(SPOOL j[in;print jprint;out]j PRINTER) n print

6.1. THE LANGUAGE OF REAL-TIME CSP 153

and the event print will occur as soon as both processes are ready to perform it.
The renaming operators f (P) and f�1(P) change the names of events through the al-

phabet mapping function f . This allows a generic pattern of communication to be defined
for use with different events. For example, a waiter responsible for table i might be de-
scribed by a generic WAITER process and a renaming fi which maps any event a to ai.
Thus f1(WAITER) is prepared to show a customer to table 1, but to no other table.

Renaming using the inverse function f�1 allows a number of events to trigger a partic-
ular communication. If function g has g(credit card) = pay and g(cash) = pay, then the
process g�1(WAITER) is prepared to engage in a credit card event or a cash event when-
ever WAITER is prepared to accept a pay event. The function h satisfying h(tablei) =
table allows h�1(WAITER) to show a customer to any table:

g�1(WAITER) = table
2! coat

5! order
20! serve

30!
(credit card

0:01! tip
3! coat! SKIP

2 cash
0:01! tip

3! coat! SKIP)

h�1(WAITER) = (table1
2! coat

5! order
20! serve

30!
credit card

0:01! tip
3! coat! SKIP)

2 (table2
2! coat

5! order
20! serve

30!
credit card

0:01! tip
3! coat! SKIP)

...

2 (tablen
2! coat

5! order
20! serve

30!
credit card

0:01! tip
3! coat! SKIP)

Recursion
A recursive term µX � P behaves as P, with every occurrence of X in P representing an
immediate recursive invocation. Thus we will have the usual law

µX � P = P[µX � P=X]

Every recursive term of the form µX � P that has P must be t-guarded for X for some
t > 0 — so that every occurrence of X in P requires the passage of at least t units of time
before it can be reached.

A waiter who deals with customers repeatedly may be described by the recursive pro-
cess µX �WAITER; X, or alternatively by a recursive definition.

RWAITER = table
2! coat

5! order
20! serve

30!
pay

0:01! tip
3! coat! RWAITER

154 CHAPTER 6. SPECIFICATION AND VERIFICATION IN TIMED CSP

6.1.4 Generalized operators

The delay process Wait t is a timed form of SKIP which does nothing for t units of time
and then terminates successfully:

Wait t = STOP
t
. SKIP

The timeout choice will wait for t units of time, but the process STOP cannot perform
any event and at time t control is passed to SKIP, which then terminates immediately.

A delayed form of prefixing can be defined as

a
t! P = a! (Wait t; P)

After the event a, there is a delay of t before control reaches P.
Generalizing choice to allow infinite choices is often useful. The prefix choice

a : A! Pa

remains willing to perform any event from set A until one is chosen. Its subsequent be-
haviour, given by Pa, is dependent on that event. Thus a construct can be defined to allow
the input on channel in of any item x in a set M, and the value x determines the subsequent
behaviour:

in?x : M! Q(x) = a : in:M! Pa

where the set in:M = fin:m j m 2 Mg and Pin:m = Q(m) for every m 2 M. The atomic
synchronization events here are of the form in:m. The complement is the output prefix
which has the form out!x! P and this is simply shorthand for out:x! P.

Thus a one-place delaying buffer might be described by the recursive process

DBUFFER = in?x
1! out!x! DBUFFER

There is a one-second delay between in? and out!, but no delay is enforced between out!
output and the subsequent in?.

Infinite nondeterministic choice may also be defined. The process u
j2J

Pj for some

indexing set J may behave as any of its arguments Pj. Thus, for example, a nondeter-
ministic delay over some interval I may be defined:

Wait I = ut2I
Wait t

The delay may be for any time in the interval I. If each Pi is t-guarded for X, then so is
their infinite choice and if P is t-guarded for X, then Wait I; P is (t+ infI)-guarded for
X.

Alphabet parallel composition generalizes as expected. The processkAi
Pi gives inter-

face Ai to each process Pi. To perform an event a, all processes with a in their interface
must participate.

6.1. THE LANGUAGE OF REAL-TIME CSP 155

A form of parallel composition which allows synchronization on some events and in-
terleaving on others may be defined by the use of event renaming. Define

fA(x) = a:x if x 62 A
x otherwise

gA(x) = b:x if x 62 A
x otherwise

h(y) = x if y = a:x or y = b:x
y otherwise

The process P j[A]jQ synchronizes on events in A, and interleaves on all other events.

P j[A]jQ = h(fA(P) j[A[a:Σ jA[b:Σ]j gA(P))

If two runners are defined as

RUNNER1 = start
t1! finish! STOP

RUNNER2 = start
t2! finish! STOP

then a race between the two runners may be modelled as

RUNNER1 j[start]jRUNNER2

They must both start at the same time (so they synchronize on start) but they may finish
at different times.

Exercise 6.1.1 Write CSP processes which describe the following situations. Decide
first which events are to be used (the alphabet of the process), and then provide a CSP
description:

1. A vending machine which is initially ready to accept a coin, and is then always
ready to accept a coin within two seconds of the last item being dispensed; and it
offers the customer the choice of a biscuit or a chocolate five seconds after insertion
of a coin.
Its interface will be the set of events fcoin;bisc;chocg.

2. A transmitter which sends a message every five seconds until an acknowledgement
is received.

3. An oven with a timer set to T which rings after T minutes of being switched on, if
not switched off beforehand.

4. A baby who wakes up nondeterministically between one and eight hours after go-
ing to sleep.

5. A baby who needs to be rocked for five minutes to get to sleep. If rocking stops
before then, she cries; otherwise she sleeps.

6. A baby who starts to cry if not fed within two minutes of waking.
7. A baby who has all of the above characteristics. (Hint: use a parallel combination

of the CSP processes you have already defined.)

156 CHAPTER 6. SPECIFICATION AND VERIFICATION IN TIMED CSP

6.2 Observations and processes

The language of CSP has a formal meaning and the behaviour of a CSP process is pre-
cisely defined. This makes it possible to judge CSP descriptions against specifications
which characterize desired behaviour. Such specifications may be written in a language
oriented towards expression of properties (such as temporal logic), or even as a CSP pro-
cess which describes the desired behaviour.

6.2.1 Notation

Let Σ be the set of events, variables t and t0 represent times and range over R+ and vari-
able s range over Traces, the finite and infinite sequences of timed events (t;a). We use
ℵ to range over sets of timed events in IRSET, the set of refusals, defined below.

The following operations will be used on sequences of events: #s is the length of the
sequence s; s1

a s2 denotes the concatenation of s1 and s2. The beginning and end of a
sequence is defined as follows: begin(h(t;a)ias) = t, end(sah(t;a)i) = t, first(h(t;a)ia
s) = a, last(sa h(t;a)i) = a. The notation s1 4 s2 means that s1 is a subsequence of s2
and s1 6 s2 means that s1 is a prefix of s2. The following projections on sequences are
defined by list comprehension, where

hf (x) j x s;P(x)i
is the maximal subsequence of s whose elements all satisfy P, with f applied to each term:

s� t = h(t0;a) j (t0;a) s; t0 6 ti
s " I = h(t0;a) j (t0;a) s; t0 2 Ii
s # A = h(t0;a) j (t0;a) s;a 2 Ai
s� t = h(t0� t;a) j (t0;a) s; t0 > ti

The set of events occurring in a trace is extracted by a set comprehension:

σ(s) = fa j s # fag 6= hig
s� t is that part of the trace that occurs no later than time t and s " I is the part that occurs
during interval I. s # A is the subsequence of the trace whose events occur in the set A.
In s� t, the trace s is moved backward through t units of time (and truncated so no event
occurs before time 0), and σ(s) is the set of events which occur in s.

There are similar projections on refusal sets:

ℵ� t = f(u;a) j (u;a) 2ℵ;u < tg
ℵ # A = f(u;a) j (u;a) 2ℵ;a 2 Ag
ℵ� t = f(u� t;a) j (u;a) 2ℵ;u> tg
σ(ℵ) = fa j (u;a) 2ℵg

6.2. OBSERVATIONS AND PROCESSES 157

ℵ � t is the set of events in ℵ occurring strictly before time t. ℵ # A is that part of ℵ
containing events from the set A and ℵ� t is the set ℵ moved backward through t units
of time. σ(ℵ) is the set of events occurring at some time in ℵ.

6.2.2 Observations

The formal semantics of CSP is defined in terms of timed failures. Each timed failure
corresponds to a record of an execution of the system and consists of a timed trace and
a timed refusal.

Any observation of an execution of a process must include a record of the events that
were performed and the times at which they occurred. A timed trace is a finite sequence
of timed events from the set [0;∞)�Σ such that the times associated with events appear
in non-decreasing order.

Traces :P(seqω(R+�Σ))

s 2 Traces,
h(t1;a1); (t2;a2)i 4 s) t1 6 t2
^
#s = ∞) supft j h(t;a)i 4 sg= ∞

Real-time systems are reactive and it is important to know when a process is willing to
interact with its environment and when this is not possible. For deterministic systems,
this information can be obtained from the trace but for nondeterministic systems the trace
information is not sufficient. For example, the traces of

a! STOP and STOP u a! STOP

are the same but the first must always respond in an environment in which a is ready,
whereas the second may refuse to respond.

We will therefore also record timed refusal information. A timed refusal contains the
events (with times) which the process refused to engage in during an execution. From the
assumption of finite variability, only finitely many state changes are possible in a finite
time. Since a process will continue to refuse an event while it remains in the same state,
a timed refusal can be considered as a step function from times to sets of events. The
set IRSET is the set of all such refusals. It is defined in terms of RSET, those sets which
record refusal information only for some finite time:

RSET : P(R+�Σ)
IRSET :P(R+�Σ)

ℵ 2 RSET,
9b1 : : :bn;e1 : : :en : R+; A1 : : :An :P(Σ) �

ℵ =
Sn

1([bi;ei)�Ai)
ℵ 2 IRSET,8t �ℵ\ [0; t)�Σ2 RSET

158 CHAPTER 6. SPECIFICATION AND VERIFICATION IN TIMED CSP

a
b refusal
c

- trace
a b a

- time
0 1 2 3 4 5

Figure 6.1 A timed observation

Refusal information at any particular time is considered to be subsequent to the events
recorded in the trace at that time. For example, in the process

a! STOP 2 b! STOP

the event b cannot be refused before any events have occurred. But when a occurs, the
possibility of b is withdrawn and so it may thereafter be refused. Thus the step function
may be considered to be closed at the lower end of a step, and open at the upper end.
Further, once a has occurred, it, too, may be refused from that instant onwards since no
further copies of a are possible for the process. Thus a timed event may occur in both a
timed trace and in a corresponding timed refusal.

A single observation will consist of a CSP timed failure, made up of a trace s2 Traces,
and a refusal set ℵ 2 IRSET from the same execution. The trace and refusal are consid-
ered to be a record of the behaviour of the process over all time, even if s and ℵ both end
at some finite time. If (s;ℵ) is an observation of P, then P has some execution during
which the events in s were performed and the events in ℵ were refused. In contrast to
the untimed failures model for CSP, this refusal contains information concerning events
that were refused both during and after the performance of s, whereas an untimed refusal
set contains only information after the end of the trace.

Figure 6.1 shows the first 5:5 seconds of one possible observation of the recursive pro-
cess:

P = a! (Wait 2; b! P
2

Wait 5; c! STOP)

Initially, event c is refused over the interval [0;1). At time 1, event a occurs and further
copies of it are refused over the interval [1;3). Event b is refused over the interval [2;3),
occurs at time 3 and then further occurrences are refused until time 5. b’s refusals up
to that time therefore consist of the interval [2;5), indicating that the occurrence of b at
time 3 must have been at the instant it was made available. c is refused over the inter-
val [3:5;5:5). During this refusal, another occurrence of a is observed, at time 4. The

6.2. OBSERVATIONS AND PROCESSES 159

diagram corresponds to the timed failure

(h(1;a); (3;b); (4;a)i; [1;3)�fag
[[2;5)�fbg
[[0;1)�fcg[[3:5;5:5)�fcg)

The refusal set could also be written in the form of a step function:

(h(1;a); (3;b); (4;a)i; [0;1)�fcg
[[1;2)�fag
[[2;3)�fa;bg
[[3;3:5)�fbg
[[3:5;5)�fb;cg
[[5;5:5)�fcg)

The refusal information is not a complete record of everything the process could have
refused – for example, it could have also refused b over the interval [0;2) – but it may
be considered as a record of what the process refused in an environment which made
particular offers.

The set of all possible observations is given by

OBS = TT� IRSET

Any pair (s;ℵ) is a possible observation of some execution, so OBS consists of all pairs.
Processes are associated with subsets of OBS. The notation MTI denotes the space of all
such subsets of OBS.

6.2.3 The semantic function

The semantic function

FTI : CSP ! MTI

is defined by giving an equation for each of the operators of the language.

FTI [[STOP]] b= f(hi;ℵ) jℵ 2 IRSETg

No event may ever be performed by the process STOP and any set of events may be re-
fused at any time.

FTI [[SKIP]] b= f(hi;ℵ) jX 62 σ(ℵ)g
[
f(h(u;X)i;ℵ) jX 62 σ(ℵ � u)g

The special event X denotes termination in the semantics of processes but it is not an
event in syntactic CSP expressions. There are two possibilities for SKIP: either it has
not yet terminated, in which case it cannot refuse to do so (though anything else may
be refused), or it has terminated at time u, in which case it may refuse anything after
termination but could not have refusedX before u.

160 CHAPTER 6. SPECIFICATION AND VERIFICATION IN TIMED CSP

FTI [[P; Q]] b= f(s;ℵ) jX 62 σ(s) ^ (s;ℵ[([0;∞)�fXg)) 2 FTI [[P]]
_

s = sP
a sQ ^X 62 σ(sP)

^ (sQ;ℵ)�u 2 FTI [[Q]] ^ begin(sQ) > u

^ (sP
a h(u;X)i;ℵ� u[([0;u)�fXg)) 2 FTI [[P]]g

There are two possibilities for an execution of a sequential composition P; Q: either it
is an execution of P, in which case it must have refused to terminate throughout the ex-
ecution, or it is some terminating execution of P followed by an execution of Q; again P
must have refused to terminate throughout its execution until it actually did so.

FTI [[a! P]] b= f(hi;ℵ) j a 62 σ(ℵ)g
[

f(h(u;a)ia s;ℵ) j a 62 σ(ℵ� u)
^ (s;ℵ)�u 2 FTI [[P]]g

The prefix process a ! P is unable initially to refuse a, which is the first event it must
perform. Either a does not occur, in which case anything except a may be refused, or a
occurs at some time u, having previously not been refused, and the subsequent behaviour
is that of P starting at time u rather than at time 0.

FTI [[P2 Q]] b= f(hi;ℵ) j (hi;ℵ) 2 FTI [[P]]\FTI [[Q]]g
[
f(s;ℵ) j s 6= hi ^ (s;ℵ) 2 FTI [[P]][FTI [[Q]]

^
(hi;ℵ� begin(s)) 2 FTI [[P]]\FTI [[Q]]g

In an external choice P2Q, initial events are available from either process; events can be
refused only if both processes are able to refuse them. Once the choice has been resolved
(at the time of the first event) in favour of one of the processes, the subsequent behaviour
is given by that process.

FTI [[P u Q]] b= FTI [[P]][FTI [[Q]]

An execution of an internal choice is an execution of one of the component processes.

FTI [[P
u
. Q]] b= f(s;ℵ) j begin(s) 6 u ^ (s;ℵ) 2 FTI [[P]]g

[

f(s;ℵ) j begin(s) > u ^ (hi;ℵ� u) 2 FTI [[P]]
^
(s;ℵ)�u 2 FTI [[Q]]g

In an execution of a timeout process P
u
. Q, either P performs its first event before time

u, in which case the execution is simply one of P, or no event occurs before time u, and
the timeout passes control to Q. In the second case, the refusal up to time u is governed

6.2. OBSERVATIONS AND PROCESSES 161

by P, and the behaviour after u is that of Q translated to start at time u instead of at time
0.

FTI [[P j[A jB]j Q]] b= f(s;ℵ) j 9ℵP;ℵQ �

ℵ # (A[B) = (ℵP # A)[(ℵQ # B)
^ s = s # (A[B)
^ (s # A;ℵP) 2 FTI [[P]]
^ (s # B;ℵQ) 2 FTI [[Q]] g

In the parallel combination P j[A jB]j Q, the execution projected onto the set A is due to
P, and that onto the set B is due to Q. Where A and B intersect, both P and Q must agree
on events in the trace, but if any of them refuses an event the combination will refuse it.

FTI [[P jjj Q]] b= f(s;ℵ) j 9sP; sQ � s 2 sP jjj sQ
^ (sP;ℵ) 2 FTI [[P]]
^ (sQ;ℵ) 2 FTI [[Q]]g

where sP jjj sQ is the set of timed traces consisting of an interleaving of sP and sQ: in an
interleaved combination, each event requires the participation of precisely one compo-
nent so both processes must refuse an event for the combination to refuse it.

FTI [[P n A]] b= f(s n A;ℵ) j (s;ℵ[([0;∞)�A)) 2 FTI [[P]]g

In an encapsulated process P n A, the events in A are made internal to the process (they
do not appear in the trace) and no longer require the participation of the environment:
they are autonomous events under the control of P. By the maximal progress assump-
tion, this means they should occur as soon as they are enabled. This corresponds to the
condition that A should be refusible for P over the entire execution: if this were not the
case, then there would be some period during which an event from A was enabled but
had not occurred, violating maximal progress.

FTI [[f (P)]] b= f(f (s);ℵ) j (s; f�1(ℵ)) 2 FTI [[P]]g

FTI [[f
�1(P)]] = f(s;ℵ) j (f (s); f (ℵ)) 2 FTI [[P]]g

Processes whose alphabets are renamed have similar behaviour, but the names of the
events are transformed by the renaming function f .

FTI [[ui2I
Pi]] b= [

i2I

FTI [[Pi]]

The possible executions of a general choice are those of its components.

FTI [[a : A! Pa]] = f(hi;ℵ) j A\σ(ℵ) = øg
[f(h(u;a)ia s;ℵ) j

a 2 A ^ A\σ(ℵ � u) = ø
^ (s;ℵ)� t 2 FTI [[P(a)]]g

162 CHAPTER 6. SPECIFICATION AND VERIFICATION IN TIMED CSP

An execution of a prefix choice a : A!Pa takes one of two forms: either no event occurs,
in which case nothing in A may be refused, or some event a 2 A is chosen at some time
u, in which case no event in A may be refused before u, and the subsequent behaviour is
that of the chosen process Pa, translated through u time units.

The recursive process µX � P is a solution of the equation X =P; this is the fixed point
of the semantic mapping corresponding to P with the most timed failures. The fixed point
will exist for time-guarded recursive equations. Recursive equations may be process def-
initions: the equation P = F(P) defines P to be the process µX � F(X).

Exercise 6.2.1 Consider the process P = (a
4
! b! STOP)2 c! STOP. Which of the

following are failures of P?

1. (h(1;a)i;ø) 2. (h(3;b); (1;a)i;ø)
3. (h(6;b); (1;a)i;ø) 4. (h(1;a); (3;b)i;ø)
5. (h(1;a); (5;b)i;ø) 6. (h(1;a); (5;b); (6;c)i;ø)
7. (h(6;c)i;ø) 8. (hi;ø)
9. (hi; [0;1)�fbg) 10. (h(1;a)i; [0;1)�fbg)
11. (h(1;a)i; (0;1)�fbg) 12. (h(1;a)i; [0;1)�fag)
13. (h(1;a); (5;b)i; [0;10)�fcg) 14. (h(1;a); (5;b)i; [1;10)�fcg)
15. (h(1;a); (5;b)i; [1;2)�fag) 16. (h(6;c)i; [0;4)�fbg)

Exercise 6.2.2 Give a single process which has all of the following behaviours:

(hi; [0;2)�fag[[5;8)�fag)
(h(3;a)i; [0;2)�fag)
(h(1;b)i; [0;2)�fag)

Give a process which has both of the following behaviours:

(hi; [0;∞)�fag)
(h(1;a)i;ø)

6.3 Specification

A specification is a predicate S on timed failures. It describes the behaviour required of
the system. Process P meets specification S (written P sat S) if S holds for every timed
failure in the semantics of P:

P sat S(s;ℵ) , 8(s;ℵ) 2 FTI [[P]] � S(s;ℵ) (6.1)

For example, the following specification requires the first event observed to be start:

S(s;ℵ) = (s = hi _ first(s) = start)

In any execution, either no event is observed (the trace will be empty) or the first event
is start.

6.3. SPECIFICATION 163

The requirement that P performs ons and off s alternately is represented by the speci-
fication

S(s;ℵ) = 8u6 s � 06 #(s # on)�#(s # off)6 1

In every prefix of the trace s, the number of on events is equal to or one more than the
number of off events. The specification says nothing about the presence or absence of
other events.

If on should be available initially,

S(s;ℵ) = (s # fon;offg= hi) on 62 σ(ℵ))

When neither on nor off have yet been performed, P cannot refuse to perform on.
Writing specifications directly as predicates upon traces s and refusals ℵ can become

cumbersome. Also, there are many similar specification patterns for safety, liveness and
commonly occurring assumptions about the environment of the process. It is convenient
to define a number of specification macros or idioms as a shorthand for these patterns and
for use with proof rules to reason about specifications at a higher level of abstraction:

a at t (s;ℵ) b= h(t;a)i 4 s (6.2)

a live t (s;ℵ) b= a at t _ (t;a) 62ℵ (6.3)

a live from t until A (s;ℵ) b= [t;begin(s " [t;∞) # A))�fag\ℵ = ø (6.4)

a open t (s;ℵ) b= a at t _ (t;a) 2ℵ (6.5)

a closed t (s;ℵ) b= :a at t (6.6)

a at I (s;ℵ) b= 9 t 2 I � a at t (6.7)

a open I (s;ℵ) b= 8 t 2 I � a open t (6.8)

a closed I (s;ℵ) b= :a at I (6.9)

The first is straightforward: a at t for a particular execution whenever the timed event
(t;a) appears in the trace. In a live t, the process is prepared to perform a at time t and
in a live from t until A will remain so until disabled by some event from the set A. Gen-
erally, the event a is in the set A: if it is not, then no CSP process could meet the speci-
fication.

a open t states that the event a is open to the process at time t, i.e. the environment
of the process is ready to see a performed. If a is not actually performed at that time,
the process must have been unwilling to perform it because of the maximal progress as-
sumption (so the event appears in the refusal set). In a closed t, the environment was not
ready to perform the event a at time t. The last three definitions are generalizations for
intervals.

For example, if a is initially available, then

a live from 0 until Σ

164 CHAPTER 6. SPECIFICATION AND VERIFICATION IN TIMED CSP

A process which will perform event a whenever it is offered, is specified by

8t � a open t) a at t

No CSP process could meet such a specification, as the implementation must be finitely
variable. A process which performs a when offered if it has not performed one within
the last time unit is specified by

8t � :(a at [t�1; t)) ^ a open t) a at t

A specification that requires output to be offered from one time unit after input, until it
occurs, might be expressed as

8t � in at t) out live from t+1 until out

For a process to meet such a specification, all observations of the process must satisfy
the predicate.

Exercise 6.3.1 Formalize the following requirements, using the specification macro
language where appropriate.

1. out can only occur exactly five units after in.
2. out cannot occur exactly five units after in.
3. choc is available until choc or bisc occurs.
4. fire never occurs.
5. on occurs at time 5.
6. If the environment offers on at time 5, then it will occur.
7. If in occurs, then out is enabled five seconds later.
8. Between any up and down there must be a mid.
9. Deadlock-freedom.

10. in is always available.

Which of these specifications cannot be satisfied by any CSP process?

6.4 Verification

It is possible to prove that a CSP implementation meets a specification by checking that
every timed failure meets the specifying predicate. But it is usually more convenient to
use a more structured approach to verification.

6.4. VERIFICATION 165

6.4.1 Proof rules for processes

The semantic equations allow the definition of a set of proof rules using a satisfaction
relation. The equations for a composite process built using an operator can be deduced
from the specifications of the components.

The rule for delayed prefix has the following form:

Rule 1

P sat S(s;ℵ)

a
d! P sat s = hi ^ 8t � a live t

_
s = h(t;a)ia s0 ^ begin(s0)> t+d
^ 8t0 2 [0; t) � a live t0 ^ S(s0� (t+d);ℵ� (t+d))

If P sat S, then for any behaviour of the process a
d! P, either no event has yet occurred

(it is live on a) or a occurred at time t (it is live on a up to t) and the behaviour after time
t+ d meets predicate S, since it came from P. No event occurs between t and t+ d and
there is no constraint on the refusal over that interval (so anything could be refused).

A delayed process has a simpler rule:

Rule 2

P sat S(s;ℵ)

Wait d; P sat begin(s)> d ^ S(s�d;ℵ�d)

No event can occur before d; and the behaviour after d is produced by P, so it must meet
S, but it is shifted by d units of time because P began execution at time d.

The rule for external choice again directly reflects the semantic equation for that op-
erator.

Rule 3

P sat S(s;ℵ)
Q sat T(s;ℵ)

P2 Q sat (S(s;ℵ) _ T(s;ℵ))
^ s� t = hi) S(s� t;ℵ� t) ^ T(s� t;ℵ� t)

Any behaviour of P2Q is a behaviour of P or Q and before the first event is performed,
it must be a behaviour of both, since both processes are available.

If P and Q are defined recursively by the functions F and G, a recursion induction rule
can be used.

166 CHAPTER 6. SPECIFICATION AND VERIFICATION IN TIMED CSP

Rule 4

8X;Y �
X sat S
^ Y sat T

�
)

F(X;Y) sat S
^ G(X;Y) sat T

2
4 P = F(P;Q)

Q = G(P;Q)
S,T admissible

3
5

P sat S
Q sat T

If F and G satisfy the specifications S and T, respectively, the mutual fixed points of F
and G meet those specifications.

A specification is admissible (or continuous, or closed) if (8t � S(s � t;ℵ � t)))
S(s;ℵ): S holds for an infinite behaviour if it holds for the finite approximations to that
behaviour. For example, the predicate specifying a’s availability from time 0 is admis-
sible, whereas a predicate specifying that there are a finite number of events in the trace
is not.

6.4.2 Proof rules for macros

The preceding proof rules simply expand the semantic definitions so on their own they
do not offer any advantage over using the semantic equations directly. But use of the
sat operator can reduce the complexity of each stage of verification by breaking a large
verification into smaller units whose results can be combined using logical operators.

Rule 5

P sat S
P sat T

P sat S ^ T

Rule 6

P sat S
S) T

P sat T

Rule 5 uses logical conjunction to combine two smaller verifications. Rule 6 allows a
specification to be weakened, so that unnecessary information about a process can be
removed.

Use of Rule 6 requires showing that S) T. Since S and T are written using the speci-
fication macros, rules are provided for reasoning at this level. The soundness of the rules
follows from the definitions in terms of traces and refusals. An advantage of this ap-
proach taken here is that new macros, and new rules, can be defined to suit particular ap-
plications, and consistency is guaranteed by the underlying model. Some sample rules
follow and they will be used later in the chapter.

6.4. VERIFICATION 167

Rule 7

a live t (s;ℵ)
a open t (s;ℵ)

a at t (s;ℵ)

If both the process and its environment are willing to perform an event at a particular
time, then it will occur.

The next two rules follow directly from the definitions.

Rule 8

a live from t until a
a open t+ t0

a at [t; t+ t0]

Rule 9

a live from t until fa;bg
b at t0) a live from t0 until fa;bg

a live from t until a

6.4.3 Proof rules for compound behaviours

The rules in this section have specific application for the verification of the mine pump
controller specification and use the parallel operator.

The proof rule for the parallel operator P j[A]jQ relates behaviours of the combined
process with behaviours of P and Q:

Rule 10

P sat S(s;ℵ)
Q sat T(s;ℵ)

P j[A]jQ sat 9sP; sQ;ℵP;ℵQ �
S(sP;ℵP) ^ T(sQ;ℵQ)
^ (s;ℵ) 2 (sP;ℵP) j[A]j(sQ;ℵQ)

(sP;ℵP) j[A]j(sQ;ℵQ) is the set of all compound behaviours of P j[A]jQ that can arise
from those concurrent behaviours of P and Q.

The following rules deduce information about s and ℵ from the component specifica-
tions.

168 CHAPTER 6. SPECIFICATION AND VERIFICATION IN TIMED CSP

Rule 11

a live t (sP;ℵP)
(s;ℵ) 2 (sP;ℵP) j[A]j(sQ;ℵQ)

[a 62 A]
a live t (s;ℵ)

If the processes do not synchronize on event a and one of them is live on a, then so is the
combination.

Rule 12

a live t (sP;ℵP)
a live t (sQ;ℵQ)
(s;ℵ) 2 (sP;ℵP) j[A]j(sQ;ℵQ)

[a 2 A]
a live t (s;ℵ)

If they do synchronize on a, then the parallel combination will be ready to participate on
a when both components are.

Rule 13

a open t (s;ℵ)
(s;ℵ) 2 (sP;ℵP) j[A]j(sQ;ℵQ)

[a 62 A;a 62 σ(sQ)]
a open t (sP;ℵP)

If Q does not perform event a, and the processes do not need to synchronize on a, then
if the environment offers a to the whole process it is offered to P.

Rule 14

a closed t (s;ℵ)
(s;ℵ) 2 (sP;ℵP) j[A]j(sQ;ℵQ)

a closed t (sP;ℵP)

If a is not offered to the combined process, it is not offered to either component.

Rule 15

:a at t (s;ℵ)
(s;ℵ) 2 (sP;ℵP) j[A]j(sQ;ℵQ)

:a at t (sP;ℵP)

If a does not occur in the combined process, it does not occur in either component.
Other rules allow projections of events from the combined process to the components.

6.5. CASE STUDY: THE MINE PUMP 169

Rule 16

(s;ℵ) 2 (sP;ℵP) j[A]j(sQ;ℵQ)

s # B = hi) sP # B = hi ^ sQ # B = hi
last(s # B) = b) last(sP # B) = b _ last(sQ # B) = b

If no events from B have been performed, then they have not been performed by either
component; if b is the last event that was performed, then it must be the last event per-
formed by one of the components.

Finally, if the set B is completely independent of anything Q has performed, and P and
Q do not interact on any events from B, and the specification S depends only on events
from B, then it will be true if and only if it is true for P’s contribution.

Rule 17

(s;ℵ) 2 (sP;ℵP) j[A]j(sQ;ℵQ)
S(s;ℵ), S(s # B;ℵ # B)

[B\ (A[σ(sQ)[σ(ℵQ)) = ø]
S(s;ℵ), S(sP;ℵP)

6.5 Case study: the mine pump

Using the specifications in Chapter 1 to describe the problem, we verify the CSP descrip-
tion of the pump used to keep water levels safe in a mine.

� The pump is used to remove accumulated water in the mine.
� The pump can be used only when the methane level is not dangerous.
� At most one shift in 1000 should be lost due to dangerous water levels.

The problem is to produce a control system for the Pump Motor which meets this require-
ment.

6.5.1 A CSP pump controller

PumpControl describes relationships between states. In designing a control system to
meet these relationships, it is necessary to decide how and when the changes between
states will occur.

The state-based definitions of Chapter 1 must be converted to event-based (or state-
transition-based) definitions in order to consider an implementation which performs state
transitions at different points of time. For the system to be in one state at time t1 and
another at time t2, the implementation must change the state at some time between t1 and
t2.

170 CHAPTER 6. SPECIFICATION AND VERIFICATION IN TIMED CSP

The following assumptions capture the relationship between the events that may be
performed within the system and the states of the sensors and actuators as described in
Chapter 1.

A correctly working sensor must give some reading at any time:

HW1 : 8t � (water:high open t _ water:low open t)

The readings provided by the sensor are related to the actual water level in the shaft.

HW2 : HW(t))water:high open t ^ water:low closed t

HW3 : :HW(t)) water:low open t ^ water:high closed t

The methane level sensor is specified by DM1–DM3.

DM1 : 8t � methane:danger open t _ methane:safe open t

DM2 : DML(t)) (methane:danger open t ^ methane:safe closed t)

DM3 : :DML(t)) (methane:safe open t ^ methane:danger closed t)

The pumping unit is under the control of the system and it may be switched on and off
by sending the messages pump:on and pump:off respectively.

The actuator should be ready to accept any signal sent to it:

PU1 : 8t � pump:on open t ^ pump:off open t

The following ‘reality check’ confirms that the pump state is on only when the most re-
cent signal sent to it was pump:on. This is captured for a trace s as SysPumping(s; t).

PU2 : PumpOn(t), last(s # fpump:on;pump:offg� t) = pump:on

, SysPumping(s; t)

In the following CSP implementation, there is a component to monitor the behaviour
of the water and another the behaviour of the methane:

WATERlow = water:high
d
!WATERhigh

2

Wait ε; pump:off !WATERlow

(6.10)

WATERhigh = water:low
d0

!WATERlow
2

Wait ε; pump:on!WATERhigh

(6.11)

METHANEsafe = methane:danger
d00

!METHANEdanger
2

Wait ε; pump:on!METHANEsafe

(6.12)

METHANEdanger = methane:safe
d000

!METHANEsafe
2

Wait ε; pump:off !METHANEdanger

(6.13)

6.5. CASE STUDY: THE MINE PUMP 171

These components must agree on when the pump is to be switched on, but either of them
can switch it off, independently of the state of the other:

CONTROL = (WATERlow j[pump:on]jMETHANEsafe) (6.14)

The delays ε and ds will be constrained as we proceed through the verification.
The requirement on the control system CONTROL, based on that given in Chapter 1,

is to ensure PumpControl, the conjunction of the following (where React is the response
time required for safety):

(1) 8∆ : (HW ^ :DML) on ∆) Pumping on (inf ∆+React; sup∆)
(2) 8∆ : DML on ∆) (:Pumping) on (inf ∆+React; sup∆)

where P on I b= 8t 2 I : P(t) for intervals I.
To verify that this CSP implementation meets the specification, it is required that

CONTROL sat Ass) PumpControl (6.15)

where

Ass = HW1 ^ HW2 ^ HW3 ^ DM1 ^ DM2 ^ DM3 ^ PU1 ^ PU2 (6.16)

We prove this by contradiction: assume that there is some behaviour (s;ℵ) of CONTROL
for which Ass holds but not PumpControl. Let HW and DML be defined as in Chapter
1.

If PumpControl does not hold, then either

1: 9∆ : (HW ^ :DML) on ∆ ^ :(Pumping on (inf ∆+React; sup∆)) (6.17)

or

2: 9∆ : (DML on ∆) ^ :((:Pumping) on (inf ∆+React; sup∆)) (6.18)

To establish that case (1) leads to a contradiction, we will need some preliminary results.
The following specification of CONTROL, that the pump remains on for at least ε, will
be useful:

CONTROL sat SPECpumping (6.19)

where

SPECpumping = pump:on at t):pump:off at [t; t+ ε] (6.20)

This follows from the fact that WATER and METHANE must both participate in the event
pump:on; since both processes satisfy SPECpumping, neither can perform pump:off over
the interval [t; t+ ε].

The process WATER must meet the specification SPECwater:

water:high open [T�React;T](s;ℵ)
water:low closed [T�React;T](s;ℵ)
:pump:on at [T� ε;T](s;ℵ)

9=
;) pump:on live T(s;ℵ) (6.21)

172 CHAPTER 6. SPECIFICATION AND VERIFICATION IN TIMED CSP

Verification of WATER sat SPECwater follows in Section 6.5.2.
Let ∆ be an interval whose existence is asserted by statement (6.17). Then

9 t 2 (inf ∆+React; sup∆);δ > 0 � (6.22)

(t�δ; t+δ)� (inf ∆+React; sup∆) ^ :Pumping(t) (6.23)

Now

:Pumping(t)) :SysPumping(s; t) (6.24)

There is some T with t < T < t+δ for which s " (t;T] = hi. Thus, :SysPumping(s;T),
since the system state remains constant over this interval. Further, HW(t0) and :DML(t0)
for all t0 2 [T�React;T]. Then from HW2 and DM3, respectively,

water:high open [T�React;T](s;ℵ) (6.25)

^ water:low closed [T�React;T](s;ℵ) (6.26)

and

methane:safe open [T�React;T](s;ℵ) (6.27)

^ methane:danger closed [T�React;T](s;ℵ) (6.28)

Now

(s;ℵ) 2 (sW ;ℵW) j[pump:on]j (sM;ℵM) (6.29)

for behaviours (sW ;ℵW) of WATER and (sM;ℵM) of METHANE. HW(t), from (6.25)
and so using proof rules 13 and 14:

water:high open [T�React;T](sW;ℵW) (6.30)

water:low closed [T�React;T](sW;ℵW) (6.31)

From :SysPumping(s;T) and (6.20), :pump:on at [T� ε;T](s;ℵ), and so, from proof
rule 15, :pump:on at [T�ε;T](sP;ℵP). In conjunction with (6.30) and (6.31) this is the
antecedent to SPECwater. It follows that

pump:on live T(sW;ℵW) (6.32)

Similar reasoning is used for the specification SPECmethane for METHANE:

methane:safe open [T�React;T](s;ℵ)
methane:danger closed [T�React;T](s;ℵ)
:pump:on at [T� ε;T](s;ℵ)

9=
;) pump:on live T(s;ℵ)

(6.33)

to obtain

pump:on live T(sM;ℵM) (6.34)

pump:on live T(s;ℵ) holds by application of Rule 12.
But from PU1 we have pump:on open T(s;ℵ), so from Rule 7 pump:on at T(s;ℵ).

This is a contradiction, since s " (t;T] = hi. So case (1) is not possible.
Case (2) may be similarly shown to yield a contradiction.
Hence PumpControl holds for all executions of CONTROL where the sensors operate

correctly:

CONTROL sat Ass) PumpControl (6.35)

6.5. CASE STUDY: THE MINE PUMP 173

6.5.2 CSP verification

Since WATER is defined to be WATERlow, we need to establish that

WATERlow sat SPECwater (6.36)

This is achieved by establishing three specifications that more closely follow the structure
of the recursive definition and can be done directly from the proof rules for processes
given in Section 6.4.1. Lemma 6.1 is proved in Section 6.5.3.

Lemma 6.1 WATER sat WL1, where

WL1 b= water:low at t) water:high live from t+d until water:high (6.37)

s # water:low = hi) water:high live from 0 until water:high (6.38)

Lemma 6.2 WATER sat WL2, where

WL2 b= water:high at t ^ :water:low at [t; t+d0+ ε] (6.39)

) pump:on live from t+d0+ ε until fwater:low;pump:ong

Lemma 6.3 WATER sat WL3, where

WL3 b= pump:on at t ^ :water:low at [t; t+ ε) (6.40)

) pump:on live from t+ ε until fwater:low;pump:ong

These three lemmas are sufficient to establish that WATER sat SPECwater.
First, assume the antecedents of SPECwater:

water:high open [T�React;T](s;ℵ) (6.41)

water:low closed [T�React;T](s;ℵ) (6.42)

:pump:on at (T� ε;T] (6.43)

Now consider sl = s " [0;T] #water:low.
If sl = hi then water:high live from tl+d until water:high (from WL1) (where we say

tl =�d).
If sl 6= hi, then end(sl) = (tl;water:low) for some tl < T�React, as water:low closed

[T �React;T]. So water:high live from tl + d until water:high (from WL1). In either
case, from the antecedent water:high open [T�React;T], if d 6 React we may deduce
that water:high open T�React+d. So Rule 8 yields water:high at [tl+d;T�React+d].
Thus there is some th 2 [tl +d;T�React+d] for which water:high at th.

This provides a constraint on the relationship between the delay d and the reaction time
React.

Then WL2 and the second antecedent of SPECwater yield

pump:on live from th +d0+ ε until fwater:low;pump:ong

Now consider sp = s " [th+d0+ ε;T] # pump:on.

174 CHAPTER 6. SPECIFICATION AND VERIFICATION IN TIMED CSP

If sp = hi then pump:on live from th +d0+ ε until fwater:low;pump:ong implies
pump:on live T. To make this final step we require that th+d0+ ε6 T, i.e. d+d0+ ε6
React.

This provides a stronger constraint on the relative values of some of the delays with
respect to React. (The constraint d00+d000+ ε6 React is obtained by the corresponding
verification for METHANE.)

If sp 6= hi, then end(sp) = (tp;pump:on) for some tp 6 T� ε (by the third antecedent).
But then pump:on live from tp + ε until fwater:low;pump:ong follows from WL3. So
the second antecedent and the definition of tp yield pump:on live T.

The conclusion follows in each case.

6.5.3 Verifying mutually recursive processes

To prove a specification W of the process WATER, we require two satisfiable specifi-
cations, WL and WH. If from the assumptions X sat WL and Y sat WH we can prove
F(X;Y) sat WL and G(X;Y) sat WH (where F and G are the defining equations for the
two processes respectively), then from Rule 4 for mutual recursion WATERlow sat WL
and WATERhigh sat WH. Since WATER is defined to be WATERlow, we require finally
that WL)W.

Assume the two following satisfiable specifications:

X sat WL (6.44)

Y sat WH (6.45)

Two functions are used in the defining equations of these two processes:

F(X;Y) = (water:high
d
! Y)2 (Wait ε; pump:off! X) (6.46)

G(X;Y) = (water:low
d0

! X) 2 (Wait ε; pump:on! Y) (6.47)

Then if we can show that

F(X;Y) sat WL (6.48)

and

G(X;Y) sat WH (6.49)

from the two assumptions (6.44) and (6.45), then by recursion induction we may con-
clude WATERlow sat WL ^WATERhigh sat WH.

Without knowing anything further about WL and WH, we may still derive the proof
obligations for F(X;Y) and G(X;Y).

Using rule 1 for the event prefix we obtain

water:high
d
! Y sat s = hi ^ 8 t � water:high live t

_

s = h(t;water:high)ia s0 ^ begin(s0)> t+d
^ 8t0 2 [0; t) � water:high live t0

^ WH(s0� (t+d);ℵ� (t+d))

(6.50)

6.5. CASE STUDY: THE MINE PUMP 175

Using Rule 1 for event prefix (with delay 0) we obtain

pump:off! X sat s = hi ^ 8t � pump:off live t
_

s = h(t;pump:off)ia s0 ^ begin(s0)> t
^ 8t0 2 [0; t) � pump:off live t0 ^WL(s0� t;ℵ� t)

(6.51)

Now apply Rule 2 for delay to (6.51):

Wait ε; pump:off! X sats� ε = hi ^ 8t0 � pump:off live t0(s� ε;ℵ� ε)
_
begin(s)> ε
^ s� ε = h(t0;pump:off)ia s0 ^ begin(s0) > t0
^ 8t0 < t0 � pump:off live t0(s� ε;ℵ� ε)
^WL(s0� t0;ℵ� t0)

(6.52)

This may be recast in a more usable form using t = t0� ε:

Wait ε; pump:off! X sat s = hi ^ 8t> ε � pump:off live t
_

s = h(t;pump:off)ia s0 ^ begin(s0)> t > ε
^ 8t0 2 [ε; t) � pump:off live t0

^ WL(s0� t;ℵ� t)

(6.53)

Combining (6.50) and (6.53) using Rule 3 we have finally shown that

water:high
d
! Y

2

Wait ε; pump:off! X

meets the specification

WL0 b= s = hi ^ 8t> 0 � water:high live t ^ 8t> ε � pump:off live t
_

s = h(t;water:high)ia s0^ 8t0 2 [0; t) � water:high live t0

^ 8t0 2 [ε; t) � pump:off live t0

^ begin(s0)> t+d
^WH(s0� (t+d);ℵ� (t+d))

_

s = h(t;pump:off)ia s0^ 8 t0 2 [ε; t) � pump:off live t0

^ 8 t0 2 [0; t) � water:high live t0

^ begin(s0) > t
^WL(s0� t;ℵ� t)

(6.54)

Using entirely similar reasoning, it may also be derived that

water:low
d0

!WATERlow
2

Wait ε; pump:on!WATERhigh

176 CHAPTER 6. SPECIFICATION AND VERIFICATION IN TIMED CSP

meets the specification

WH0 b= s = hi ^ 8t � water:low live t ^ 8t> ε � pump:on live t
_

s = h(t;water:low)ia s0^ 8t0 2 [0; t) � water:low live t0

^ 8t0 2 [ε; t) � pump:on live t0

^ begin(s0)> t+d0

^WL(s0� (t+d0);ℵ� (t+d0))
_

s = h(t;pump:on)ia s0^ 8t0 2 [ε; t) � pump:on live t0

^ 8t0 2 [0; t) � water:low live t0

^ begin(s0)> t
^WH(s0� t;ℵ� t)

(6.55)

Up to this point, we have needed to know nothing about the specifications WL and WH!
However, we now need to prove that WL0) WL, and that WH0) WH. Our choice of
WL and WH should also be strong enough to entail the required specification: for each
Lemma 6.i we want WL)WLi.

To prove Lemma 6.1, we choose WL and WH as follows:

WL = water:low at t (6.56)

) water:high live from t+d until fwater:high;pump:offg

s # water:low = hi (6.57)

) water:high live from 0 until fwater:high;pump:offg

pump:off at t (6.58)

) water:high live from t until fwater:high;pump:offg

WH = water:low at t (6.59)

) water:high live from t+d until fwater:high;pump:offg

pump:off at t (6.60)

) water:high live from t until fwater:high;pump:offg

Then WL0)WL by straightforward case analysis on the three component clauses of WL0;
each possibility yields WL. We obtain WH0)WH in a similar way.

Finally, we show WL)WL1. Using Rule 9 with (6.57) and (6.59) we obtain (6.37);
and using that rule with (6.58) and (6.59) we obtain (6.38). Thus both clauses of WL1
are obtained from the three clauses of WL.

Lemmas 6.2 and 6.3 are established in a similar way. To prove Lemma 6.2 choose WL
and WH as follows:

WL = WL2 (6.61)

WH = WL2
^ s # water:high = hi ^ :water:low at [0;ε]
) pump:on live from ε until fwater:low;pump:ong

(6.62)

6.5. CASE STUDY: THE MINE PUMP 177

To prove Lemma 6.3, use the following definitions:

WL = WL3 (6.63)

WH = WL3
^ s # pump:on = hi ^ :(water:low at [0;ε))
) pump:on live from ε until fwater:low;pump:ong

(6.64)

To show how a CSP description of the control system for a mine pump can be verified
with respect to its specification, states of the system were related to corresponding se-
quences of events that might be observed until some particular time. The CSP description
produces possible traces which correspond to system states that can be checked against
their requirements. The interaction between the quantities being measured and the inter-
nal states of the system is obtained from the specifications of the sensors.

The proofs presented in this example have been more detailed than would generally
be desirable in a verification of such a system, but they illustrate the foundations of this
method of verification. It would be desirable for much of the routine work to be auto-
mated, so that the insight that SPECwater is the property required of WATER in this par-
ticular case could be checked with machine assistance, as could the claim that WATER sat
SPECwater.

This example confirms that one of the most difficult refinement steps in moving from
specification to implementation of real-time systems is the transition from a state-based
to an event-based description. This is a part of the development process that cannot be
avoided, but it can be cumbersome when done rigorously.

The CSP description is an abstract implementation of the process CONTROL, but the
choice of the CSP description was not entirely constrained by the specification in Chap-
ter 1. For example, there is flexibility in when the pump should be switched off when
the water is low and the methane is safe. We chose to switch it off as soon as possible
(an energy-efficient solution!) but we could have chosen to allow the pump to run for
a while longer, or even to leave it running until the methane became dangerous. These
possibilities are represented in an alternative description of WATERlow:

WATERlow = water:high
d
!WATERhigh

2

u
t2[ε;∞]

Wait t; pump:off !WATERlow

(6.65)

where any delay (and we treat Wait ∞ as STOP) may be chosen before the pump is to be
turned off. An implementation need not contain this degree of nondeterminism but the
implementor is free to resolve the nondeterminism at a later point in the development
process.

This chapter has illustrated how complementary approaches to specification can be for-
mally integrated. Decisions concerning the required maximum power of the pump should
be made by reasoning at the level of the abstract description. The minimum delay React
is determined by the minimum values of delays such as ε and d physically allowed in
this CSP implementation. (If a smaller reaction time is required, then perhaps a different

178 CHAPTER 6. SPECIFICATION AND VERIFICATION IN TIMED CSP

implementation should be developed.) The water level HighWater should then be low
enough that the constraint on React can be met; the calculations required to achieve this
are again performed at the most abstract level. A formal approach is required to support
the interplay between information obtained by calculations at different levels of abstrac-
tion.

6.6 Historical background

The seminal paper on communicating sequential processes (Hoare, 1978) defined a lan-
guage for describing systems as high-level parallel combinations of low-level communi-
cating sequential components. Subsequently, an abstract process algebra version of the
language was produced, which gave rise to the failures model (Brookes et al., 1984) and
the failures/divergences model (Brookes & Roscoe, 1985) for CSP processes. This is the
language presented in the book by Hoare (1985).

Reed (1988; 1990) and Reed and Roscoe (1986; 1987; 1991) developed a hierarchy
of timed and untimed models for CSP. This mathematical hierarchy supports a uniform
treatment of concurrent processes at different levels of abstraction: in reasoning about
complex systems, we may use the simplest semantic model that is sufficient to express
the current requirement, safe in the knowledge that the argument remains valid in the
other models of the hierarchy. The proof system for the timed failures model was pre-
sented in Davis and Schneider (1990), Schneider (1990b) and Davies (1993). It gives a
complete set of rules for verifying process descriptions compositionally, in the style of
the rules given here. A more detailed study of single and mutual recursion is presented in
Davis and Schneider (1993), where the metric space approach to the fixed point theory is
reviewed, and a number of proof techniques for verifying recursively defined processes
are given.

Work on providing the specification macro language for timed CSP began with the
presentation of the specification macros in Davies (1993). Concurrently, the use of tem-
poral logic as a specification language was investigated by Jackson (1990; 1992), where a
complete proof system for such specifications was developed consistent with the existing
timed semantics. The atomic statements are Oa (‘a is offered’) and Pa (‘a is performed’).
These may then be used with standard logic and real-time temporal logic connectives
to write real-time specifications. For example, the specification 2(265:Pa)3=5Oa)
states that whenever five units of time pass without a being performed it will be offered
at the end of that five unit period.

A theory of timewise refinement was presented in Schneider (1990b; 1994). It pro-
vides a way of exploiting the links between various models in the hierarchy, notably be-
tween untimed and timed models, to allow results established in untimed models (such
as deadlock-freedom) to be retained provided timing information is added to a process
description in a suitable way.

An operational semantics has been given for the language of timed CSP (Schneider,
1995), describing processes in terms of how they are to be executed, rather than in terms

6.6. HISTORICAL BACKGROUND 179

of the more abstract timed failures that they might exhibit; these two views are consis-
tent. The operational semantics was used to underpin the fixed point theory for a model
of processes in terms of potentially infinite executions (Schneider, 1991; Mislove et al.,
1995) which are more appropriate for specification. This is the model presented here; its
projection to finite executions yields the original timed failures model, but it also enables
analysis of infinite non-terminating executions.

The theory of timed CSP has also been extended in other directions. A timed prob-
abilistic model for CSP developed by Lowe (1993) allows descriptions and analysis of
probabilistic aspects of a system’s behaviour and extensions include an element of broad-
cast concurrency (Davies, 1993; Davies et al., 1992).

CSP has been successfully applied to many examples: the alternating bit protocol,
a sliding window protocol (Schneider, 1990b), Fischer’s protocol (Schneider, 1993), a
watchdog timer and a railroad crossing (Davies & Schneider, 1995). It has also been used
for other case studies such as the design of control software for aircraft engines (Jack-
son, 1989), real-time robotics (Scattergood, 1990; Stamper, 1990; Wallace, 1991), the
specification of a realistic telephone switching network (Kay & Reed, 1990; Superville,
1991), the verification of a local area network protocol (Davies, 1993), the specification
of asynchronous neural nets (Gibbins et al., 1993) and the verification of the Futurebus+
distributed arbitration protocol (Howles, 1993).

Research continues both into broadening the theoretical foundations of timed CSP, and
into its application. One area of current research involves the development of a normal
form, which will underpin a complete set of algebraic laws for processes. This in turn will
enable the transformation of complex processes into other descriptions that may be easier
to reason about, or whose validity with respect to a given specification is clear. Another
use concerns new operators such as those included in the language of timed CSP when
case studies demonstrate their utility; a normal form would make it possible to define
these operators algebraically, without the need to give a new semantic equation. It further
allows a translation from an appropriate subset of timed CSP into occam (Scott, 1994),
another form of refinement in which properties proved about the timed CSP descriptions
remain valid in the occam programs.

Another area of current research involves extending the language to allow unguarded
recursion. Although no such recursion could ever be implemented, it would allow timed
CSP to be used more cleanly as a specification language, since the need to include an
artificial non-zero time-guard is often distracting when expressing requirements. For ex-
ample, the constraint that the only possible events a and b alternate is naturally expressed
as C = µX � a ! b ! X. To constrain a process P to this alternation it is sufficient to
place it in parallel: P j[a;b]jC. The requirement that there should be some non-zero de-
lay round the loop is distracting and obscures the intention of the constraint. However,
the semantic model required to handle such instant recursions will be significantly more
complicated than any of the models in the existing hierarchy.

The applicability of the theory to the emerging timed LOTOS standard is under inves-
tigation, with encouraging results. It appears that much of the theory developed within
the context of timed CSP is applicable to many of the features suggested for inclusion
within a timed version of LOTOS, and that it may be considered to provide a semantic

180 CHAPTER 6. SPECIFICATION AND VERIFICATION IN TIMED CSP

theory for timed LOTOS.
In the longer term, it seems clear that performing large scale verifications will require

some form of machine assistance, perhaps in the form of model-checking (which has
proved extremely successful in untimed CSP (Roscoe, 1994)), or else in the use of a proof
assistant. The theory is now sufficiently mature to support investigation into this promis-
ing area for future research.

6.7 Exercises

Exercise 6.1 Write CSP processes which describe the following situations. Decide first
which events are to be used (the interface of the process), and then provide a CSP descrip-
tion:

1. A watchdog timer, which will accept up to one reset per second, and raises the
alarm if there is a ten second period in which it is not reset.

2. A talk described by process TALK which will be stopped in 30 minutes if it has not
already finished.

3. A single place lossy channel, which is ready to accept input when empty, and is
prepared to output its contents when non-empty. However, it will erase its contents
and revert to being empty precisely two seconds after input, if the message has not
already been output.

4. A buffer which inputs messages initially at a maximum rate of one every two sec-
onds; but if no input arrives over a period of 20 seconds then its maximum input
rate reduces to one message every six seconds. It returns to its initial input rate
either when empty, or when the user resets it. The maximum output rate remains
constant at one message per second.

Exercise 6.2 Consider the processes

P = a! STOP2 b! STOP

Q = a! STOP
2
. b! STOP

Show that P and Q are different by giving a behaviour of P that is not a behaviour of Q.
Show also that neither refines the other by giving a behaviour of Q that is not a behaviour

of P. Is a! STOP the same as a
2
! STOP? Is a! SKIP the same as a

2
! SKIP?

Exercise 6.3 Given the definitions

P = a
2
! b! STOP

Q = b
3
! c! STOP

R = a! STOP
5
. b! STOP

Rewrite the following processes so that they contain no parallel operator:

6.7. EXERCISES 181

1. P j[b]jQ
2. P j[a;b;c]jQ
3. Q j[b]jR
4. Q j[a;b]jR

Rewrite P j[b]jQ n b so that it contains no parallelism or hiding.

Exercise 6.4 A component of the system not presented in this chapter is an alarm, which
should sound when danger is present:

� Specify formally when the alarm should sound.
� Provide a CSP implementation ALARM which meets this specification.
� Use the proof rules to establish that ALARM meets the specification.

Exercise 6.5 It is observed that if the water level oscillates around the high water mark,
then the pump may switch on and off repeatedly. It is decided to introduce a sensor to
detect when the water reaches a lower level, and to leave the pump on until the water
recedes below this point:

� Specify the new sensor: give the assumptions the controller can make about read-
ings from it.

� Modify the CSP description of the pump controller to reflect the new intention.
� Does your new pump controller meet the original specification?
� Does it refine the old pump controller?

Chapter 7

Specification and Verification in the
Duration Calculus

Zhiming Liu

Introduction

The duration calculus is an interval temporal logic which allows formal description of the
dynamic properties of a system. It is well suited for the specification of the requirements
of embedded systems. A distinctive feature of the logic is that, without explicit mention
of absolute time, it permits reasoning about the durations of different states in a given
time interval.

This chapter introduces the duration calculus and demonstrates how the behaviour of
a system is defined in terms of its states. To implement a requirement, assumptions must
be made about the environment of the system and the physical components used in the
implementation. We also illustrate how the specification and the design of the system
can be described in the same notation, and how to reason about the validity of a design
in relation to the requirement.

The basic duration calculus is described in terms of its syntax and an informal but rig-
orous semantic explanation; the axioms and rules are described and their use is illustrated
for proving some theorems. We show how the logic can be used for specification and re-
finement, using the mine pump example, and for the specification of real-time scheduling
of shared processors. Finally, the duration logic is extended into a probabilistic logic to
allow formalization and reasoning about the reliability requirements of a system.

7.1 Modelling real-time systems

The first step in formalizing the requirements of a system is to agree on a system model.
The duration calculus uses a time-domain model in which a system is described by a col-
lection of states which are functions of time. Time is represented by the non-negative
real numbers. A state variable is a function from time to the real numbers; a boolean
state variable takes the values 1 (for true) and 0 (for false) and can therefore be used in
integrals over time.

182

7.1. MODELLING REAL-TIME SYSTEMS 183

H2OSensor CH4Sensor

Monitor

Controller

Pump

H2OFlag CH4Flag

Water Methane

Mine Shaft

Figure 7.1 Physical components of the mine pump

HighH2O

0

DH2O

HH2O

H2O

DangerH2O

0

1

0

1

t

t

t

Figure 7.2 Sample timing diagram for water levels

Consider the diagram in Figure 7.1, showing the components connected to the mine
pump controller. The arcs denote possible interaction between components and labels
denote the information being exchanged: e.g. Water and Methane represent the water
and methane levels in the mine shaft. H2OFlag and CH4Flag are boolean state variables.

The water level inside the mine shaft is measured using the sensor H2OSensor. The
pump controller is required to keep the water level below a critical level denoted by the
real constant DangerH2O. Let the boolean state variable DH2O be set to 1 if the water
level is higher than DangerH2O (Figure 7.2).

In order to work towards an implementation, a water level HighH2O slightly lower

184 CHAPTER 7. SPECIFICATION AND VERIFICATION IN DC

than the danger level is used to give the control system time to react. Let the boolean
variable HH2O be set to 1 when the water level exceeds HighH2O; when this occurs for
at least a period δ of time, the monitor sets the boolean variable H2OFlag (see Figure 7.2).

A high level of methane can make use of the pump hazardous and the control process
must then turn off the pump. The sensor CH4Sensor measures the methane level and the
boolean valued state variable DCH4 is set to 1 if the methane level is higher than the
critical level DangerCH4.

As in the case of water levels, let the boolean variable HCH4 be set to 1 when the
methane level reaches a high level HighCH4 which is slightly lower than the critical level
DangerCH4. The monitor sets the boolean variable CH4Flag when the methane level ex-
ceeds HighCH4 for at least a period δ of time.

An alarm Alarm is set when either the water level or the methane level stays above its
critical level for a period δ of time.

The pump controller uses the values of H2OFlag and CH4Flag to decide when to turn
the pump on or off. When the system has been stable for δ time units in a state in which
H2OFlag^:CH4Flag holds, i.e. H2Oflag is up and CH4Flag is down, the pump must
be turned on. We denote this state by SafePump. When the system has been stable for δ
time units in a state in which SafePump does not hold, the pump should be turned off.

Note that when the condition SafePump is changing, nothing is specified about the
pump and it could even be in the process of being switched on or off for up to δ time
units.

PumpOn denotes that the pump is on and water is being pumped out, reducing the wa-
ter level in the mine shaft.

The states H2OFlag, CH4Flag, Alarm, PumpOn, DH2O, HH2O, DCH4 and HCH4 are
treated as basic state variables, while SafePump is a composite state defined in terms of
the basic state variables H2OFlag and CH4Flag.

Behaviour
A behaviour or trajectory of a system is given by an assignment, called an interpretation,
of state functions to the basic state variables.

Observation of a behaviour for a bounded interval is illustrated by the timing diagram
in Figure 7.3 where boolean values are represented by 0 and 1.

7.2 Requirements

A requirement is a property expected of the system. A property is expressed as a con-
straint over the system behaviours, i.e. the states of the system over time. For the mine
pump system, the following properties must hold for the water level controller and the
monitor.

Safe water: In any period of up to 1000 shifts, the total time when the water level is
dangerous must not exceed one shift.

7.2. REQUIREMENTS 185

DH2O

HH2O

H2OFlag

DCH4

HCH4

CH4Flag

SafePump

Alarm

PumpOn

1
0

Figure 7.3 Observation of a behaviour

Set flags: The flags H2OFlag and CH4Flag, respectively, must be set (or 1) when the
water or methane levels have been high for at least a period δ of time.

Reset flags: The flags H2OFlag and CH4Flag, respectively, must be cleared (or 0)
when the water or methane levels have not been high for at least a period δ of time.

Safe water
For an observation of the mine pump system behaviour in a bounded interval [b;e] of
time, the duration of DH2O is measured by the integral

R e
bDH2O(t)dt, shown shaded in

the timing diagram in Figure 7.4.
This duration is the total time for which the water level is dangerous. Thus the property

Safe water for an interval [b;e] is

(e�b)� 1000) R e
bDH2O(t)dt � 1

To simplify reasoning, it is always desirable to avoid explicit reference to time in formu-
las; thus, the use of t and the bounding points b and e together with universal quantifica-
tion over the interval should be avoided. Let the symbol

R
DH2O denote the duration of

186 CHAPTER 7. SPECIFICATION AND VERIFICATION IN DC

Time0

DH2O

1

b e

Figure 7.4 A duration of DH2O

DH2O. Let ` be the length of the interval. Then the property Safe water can be expressed
without explicit mention of time as

`� 1000) RDH2O� 1

For a given behaviour of the mine pump and a given bounded interval (an observation),
this formula is either true or false. A formula holds for a behaviour if it is true for any
prefix interval [0; t], t � 0, of the behaviour. Thus, the formula tells us that a behaviour
of the mine pump is safe if for any prefix interval [0; t], t � 1000, the duration of DH2O
in that interval is not more than 1. But Safe water does not require the system to be safe
for only the first 1000 shifts. So we need to express this property over any observation
interval [b;e], b� 0.

The modal operator 2 is used to denote that a formula holds for any subinterval of a
given observation. The property Safe states that for any subinterval of a given observa-
tion, the duration of DH2O is at most 1.

Safe
∆
=2(` � 1000) RDH2O� 1)

The property holds for a behaviour when the constraint on DH2O holds for any subinter-
val of any prefix interval, i.e. any bounded interval.

Set flags
The requirement for the water level flag is that for an observation interval longer than δ,
H2OFlag must be set to 1 when the water level has been high for at least a period δ of
time. So the constraint is that HH2O is true for a period δ of time, or more.

To express such properties, we need some notation to describe when a state P has been
true in a non-point interval. The operator d�e lifts a state to a predicate (or a property).
For state P, the property dPe holds for an interval [b;e] iff b < e and there are only finite
many t in this interval such that P(t) = 0. The formula dPe can be read as ‘P is true almost
everywhere in the non-point interval’. The value of P is ignored at possible points of dis-
continuity and these will be a finite set for any finite observation. In particular, we avoid
discussion of the values at end points, making it irrelevant whether we choose closed,
open, or half-open intervals as the durations remain the same. Taking closed intervals
may be intuitively a little bit clearer, because a point is an interval.

7.2. REQUIREMENTS 187

Time
b

F2

m e

F1

F1; F2

Figure 7.5 The chop operator

Exercise 7.2.1 Define dPe in terms of
R

P and `.

The property that HH2O holds for a period δ of time can now be written as

dHH2Oe^ (` = δ)

Similarly, if H2OFlag is 0 in an interval we have d:H2OFlage. These two formulas can
be combined to express the property Set flags using the binary modal operator chop. The
formula (F1 ; F2) is read as ‘F1 chop F2’: it holds in an interval [b;e] iff this interval can
be divided into an initial subinterval [b;m] in which F1 holds, and a final subinterval [m;e]
in which F2 holds, b� m� e. This is illustrated by the timing diagram in Figure 7.5.

The property Set flags is defined using the chop operator as:

:((dHH2Oe^ `= δ); d:H2OFlage)

which states that it is not the case that the observation starts with DH2O holding for δ
units of time followed by the water flag being off for a non-point subinterval.

The property should hold for all observations, so to complete the specification we have

2:(dHH2Oe^ `= δ) ; d:H2OFlage)

The formula can be rewritten using an abbreviation: for a formula F and a state P,

F t
�! dPe

∆
=2:(F ^ (`= t); d:Pe)

which is read as ‘F for time t leads to state P’; it is defined by stating that it is never the
case that F holds for time t and P does not then hold. A similar abbreviation reads ‘F
for up to time t leads to state P’ and is defined below:

F �t
�! dPe

∆
=2:(F ^ (`� t) ; d:Pe)

Thus F can go to state P only after it has held for up to t time units.
The setting of the flag to indicate a high water level is then specified as

SetWaterFlag
∆
= dHH2Oe

δ
�! dH2OFlage

188 CHAPTER 7. SPECIFICATION AND VERIFICATION IN DC

Down flags
This property is analogous to Set flags. For the water flag, it states that if the observation
interval is longer than δ, the flag H2OFlag must be 0 if HH2O has been 0 for δ:

ResetWaterFlag
∆
= d:HH2Oe

δ
�! d:H2OFlage

We can similarly obtain formulas for SetMethaneFlag, ResetMethaneFlag, SetAlarm and
ResetAlarm and complete the specification of the mine pump monitor.

Exercise 7.2.2 Write formulas for the following requirements:
SetMethaneFlag: the flag CH4Flag must be set when the methane level has been high

for a period δ of time.
ResetMethaneFlag: the flag CH4Flag must be cleared when the methane level has

been not high for a period δ of time.
SetAlarm: the alarm must be raised when the water level has been dangerous for a

period δ of time.
ResetAlarm: the alarm must be turned off when the water level has been below the

critical level for a period δ of time.

7.3 Assumptions

For a design to implement a requirement, it is necessary to make assumptions about both
the environment in which the system will operate and the physical properties of the im-
plementation. The assumptions may be made initially, or as the design develops.

For the mine pump, assume that each component takes some time to react: e.g. for
simplicity we assume that the monitor takes δ time units from the onset of a high water
level to set H2OFlag, the controller also takes δ time units to turn on the pump and, as-
suming that there is limited inflow of water, the pump takes some time, say ε time units,
to bring the water level down. Therefore, to meet the safety requirement Safe, the high
water level HighH2O should be set low enough to allow for these reaction times before
water reaches the critical level DangerH2O:

As1
∆
=2(dDH2Oe) dHH2Oe)

This states that in any non-point interval, if the water level is dangerous it is high. Further,
after the water level becomes high, it will not reach the critical level for w units of time:

As2
∆
= (d:HH2Oe ; dHH2Oe

�w
�! d:DH2Oe)

w depends on the reaction times of the monitor and the controller, and on the capacity of
the pump. This assumption is valid only if the rate at which water flows into the mine
shaft is bounded.

7.4. DESIGN 189

7.4 Design

Design involves making choices and taking decisions about how requirements are to be
met. For example, to meet the safety requirement Safe according to the assumptions As1
and As2, it is necessary to bring a high water level down within w time units, i.e. before
it reaches the critical level:

2(dHH2Oe) `�w) or, equivalently, dHH2Oe
w
�! d:HH2Oe

But this may not always be possible as a high methane level may make it unsafe for the
controller to turn on the pump. The property Safe allows limited occurrences of danger-
ous water levels provided they do not last too long or occur too often. Let

Failure
∆
= dHH2Oe^ ` > w

Since each occurrence of Failure takes at least time w and at most time 1, the following
two design decisions can be made:

� A Failure can only occur in an interval not longer than one time unit.
� Any two occurrences of Failure must be separated by at least 1001 time units; in

other words, Failure occurs at most once in any interval that is not longer than
1000.

The first decision can be easily formalized as

Des11
∆
=2(Failure) `� 1)

The second decision says that if an observation interval can be divided into three adja-
cent subintervals such that Failure holds in the first and last subintervals, and somewhere
in the middle subinterval Failure does not hold, then the observation interval must be at
least 1001 time units long.

This needs some notation to describe a property that holds somewhere in an interval,
and the conventional modal operator 3 (read as ‘somewhere’) serves the need. For a
formula F ,3F holds in an interval [b;e] iff there is a subinterval [b0;e0], b� b0 and e0 � e,
such that F holds in [b0;e0]. This is illustrated by the following diagram:

Time
b eb0 e0

F

3F

The second design decision then becomes

Des12
∆
=2((Failure ; 3:Failure ; Failure)) `� 1001)

190 CHAPTER 7. SPECIFICATION AND VERIFICATION IN DC

At all times, if Failure is followed at some time by :Failure and then by Failure, the
length l of the observation interval must be at least 1001.

Let Des1
∆
= Des11^Des12. To verify that Des1 guarantees the safety requirement we

must prove the implication

Des1) Safe

But the implication does not hold without the assumptions As1 and As2 about the high
water level. So what we must prove is that the implication does hold under these as-
sumptions:

As1^As2 ^Des1) Safe

Exercise 7.4.1 Give arguments for the validity of this implication in the context of the
mine pump.

In general, proving that the conjunction of assumptions and design decisions implies a
requirement is called the verification of the correctness of the design with respect to the
requirement. Such an implication has the form

A ^D) C

where A is the specification of the assumption, D is the specification of the design, and
C is the specification of the requirement (i.e. commitment).

Note that A ^D) C is equivalent to D) (A) C). Thus, A) C is sometimes
called the requirement, i.e. ‘the requirement is a commitment under the assumption’.

A design decision can be refined into lower level design decisions. For example, Des1
can be refined into the following control plans:

1. The pump must be on when the water level has been high and the methane level
has been low for δ time units:

StartPump
∆
= dSafePumpe δ�! dPumpOne

2. The pump must be off when the water level has been low or the methane level has
been high for δ time units:

StopPump
∆
= d:SafePumpe δ�! d:PumpOne

Let Des2
∆
= StartPump^ StopPump. To prove the correctness of this refined design

with respect to Des1, we need the following assumptions (these will be formalized in
Section 7.6):

As3: assumption about the capacity of the pump.
As4: assumption about the duration of a high methane level.
Monitor: the full specification of the monitor as an assumption.
As5: assumption about the choice of the constants w and δ.

7.5. THE BASIC DURATION CALCULUS (DC) 191

Then, the goal is to prove

As3^As4 ^As5^Monitor^Des2) Des1

This kind of refinement procedure can be repeated until an implementation of the system
is obtained. The correctness of the implementation is guaranteed by the transitivity of the
logical implication. For example, the two implications above guarantee the implication

As^Des2) Safe

where

As
∆
= As1 ^As2^As3 ^As4^As5 ^Monitor

The informal introduction in this section has provided a notation for the specification of
requirements, assumptions and designs of real-time embedded systems. The mine pump
example has been used to illustrate the steps in the formal development of such a system.
But for formal verification of properties and the correctness of a design, we need a set of
axioms and rules.

7.5 The basic duration calculus (DC)

The simplicity of temporal logic comes from the removal of explicit time. In Interval
Temporal Logic (ITL), the variables b and e, denoting the end points of an arbitrary ob-
servation interval [b;e], are removed from expressions such as Safe and SetWaterFlag
(Section 7.2). A variable v is interpreted as a function from intervals to values. A for-
mula in ITL, such as v1 � v2, holds for an interval [b;e] under a given interpretation I
of v1 and v2; i.e. if I(v1)([b;e]) � I(v2)([b;e]) holds in the value domain. ITL uses the
modal operator chop to define the usual modalities3 and 2.

DC develops on ITL by introducing integrals (i.e. durations) of states over intervals
as variables in the interval temporal logic. Thus, DC adopts primitives such as the chop
operator of ITL. We shall be concerned mainly about the axioms and rules dealing with
integrals of states. But we shall also consider some ITL axioms for the chop operator;
although they will not be called axioms or theorems, they will be used to prove properties
of durations.

7.5.1 Time

DC uses continuous time, Time, represented by the set of non-negative real numbers. t,
t1, etc. are assumed to range over the real numbers. A time interval is a closed interval
[b;e] of the real numbers, i.e. b;e 2 Time and b � e and [b;e] is the set of time points
from b to e.

192 CHAPTER 7. SPECIFICATION AND VERIFICATION IN DC

7.5.2 States

A basic state is a state variable. An interpretation I assigns a basic state P to a function
I(P) from Time to the set f0;1g of boolean values. I(P)(t) = 1 means that state P is ‘on’
at time t, and I(P)(t) = 0 that it is ‘off’ at time t, under the interpretation I. In the mine
pump example, DH2O, DCH4, HH2O and HCH4 are basic states. An observation of a
behaviour of this system, such as the one illustrated by the diagram in Figure 7.3, gives
an interpretation for these states over the observation interval.

States will be ranged over by P, Q, P1, Q1, etc., and will consist of expressions formed
by the following rules:

� Each basic state P is a state.
� If P and Q are states, then so are :P, (P^Q).

A composite state is interpreted as a function from Time to the set f0;1gwhich is defined
by the interpretation for the basic states and the boolean operators. For example,

SafePump
∆
= HH2O^:HCH4

is a composite state. For an interpretation I and some t 2 Time,

I(SafePump)(t) = I(HH2O)(t)^:I(HCH4)(t)

The timing diagram in Figure 7.3 gives an illustration of an interpretation for SafePump.
The conventional boolean operators_,) and, can be defined from: and^ in the usual
way. Specifically, the constant state 0 and 1 can be defined as P^:P and:0 respectively.

7.5.3 Duration terms

The duration of a state P is denoted by
R

P. Given an interpretation I of states, the dura-
tion

R
P is interpreted over time intervals and denotes the accumulated time when P is ‘on’

within the time interval. So, for an arbitrary interval [b;e], the interpretation I(
R

P)([b;e])
is defined as the integral of the function I(P) over the interval [b;e], i.e.

I(
R

P)([b;e])
∆
=
R e

bI(P)(t)dt

which is a real number. An interpretation for the duration
R

DH2O was illustrated by the
timing diagram in Figure 7.4.

Let R denote the set of real numbers and be ranged over by logical variables x, y, z,
with or without subscripts. The set of basic duration terms consists of variables and con-
stants over the real numbers R, such as x and 5, and durations of states, such as

R
P. A

duration term is either a basic duration term or an expression formed from duration terms
using the usual operators on real numbers, such as + (addition) and � (multiplication).
For example,R

SafePump and 5� (RHCH4)� (
R

SafePump)

are duration terms.

7.5. THE BASIC DURATION CALCULUS (DC) 193

7.5.4 Duration formulas

A basic duration formula is an expression formed from duration terms using the usual
relational operators on real numbers, such as = (equality) and < (inequality), with their
standard meanings. The set of duration formulas, ranged over by F , G, etc., consists of
expressions formed by the following rules:

� Each basic duration formula is a duration formula.
� If F and G are duration formulas, so are :F , F ^G.
� If F is a duration formula and x is a logical variable over the real numbers, then
9x:F is a duration formula.

� If F and G are duration formulas, so is (F ; G).

As before, the first-order logic operators_,) and, can be defined in terms of the given
operators : and ^; the universal quantifier 8 can be defined in terms of the given quan-
tifier 9 and the operator : in the usual way.

In these definitions, we use the conventional rules of precedence for each first-order
operator; e.g. : has the highest precedence and the precedence of conjunction^ is higher
than that of disjunction _. In addition, the precedence of the chop operator is higher than
that of implication and lower than that of disjunction.

A duration formula F is satisfied by an interpretation I over an interval [b;e] when it
evaluates to true. This satisfaction relation is written as

I; [b;e] j= F

For example, if I1 assigns HH2O to 1 over [0;2], and assigns HCH4 to 0 over [0;1) and
to 1 over (1;2], we have

I1; [0;2]j=(2� R SafePump) =
R

HH2O I1; [0;1] j=
R

SafePump = 1
I1; [1;2]j=

R
SafePump = 0 I1; [0:5;1]j=

R
HH2O =

R
SafePump

Exercise 7.5.1 For the interpretation I1 for HH2O and HCH4, find two subintervals of
[0;2] such that 3� R SafePump <

R
HH2O holds in one subinterval but not in the other.

The ‘chopped’ formula (F ; G) is true for an interpretation I within interval [b;e] if
there exists m such that b � m � e and F and G are true for I with [b;m] and [m;e] re-
spectively; i.e.

I; [b;m] j= F and I; [m;e] j= G

The timing diagram in Figure 7.5 illustrates the semantics of the chop operator. As an
example, considering again interpretation I1 for HH2O and HCH4 over [0;2], we have

I1; [0;2] j= (
R

SafePump = 1) ; (
R

SafePump = 0)

194 CHAPTER 7. SPECIFICATION AND VERIFICATION IN DC

Exercise 7.5.2 Under the interpretation I1, find a subinterval of [0;2] for which

true ; (
R

SafePump =
R

1); true

holds but the following formula does not hold:

:(true ; :(R SafePump =
R

1); true)

Give an informal meaning to these two formulas.

A duration formula is valid if it is true for any interpretation over any bounded time
interval. For example,

R
P+

R:P =
R

1

is valid. More obviously,
R

P� R 1 is valid.

7.5.5 Axioms and rules

We are now in a position to define the axioms and rules with which to calculate the du-
rations of states.

We begin by listing some simple theorems of analysis which are sufficiently useful to
be taken as axioms in the calculus.

Axiom 7.1
R

0 = 0.

Axiom 7.2 For an arbitrary state P,
R

P� 0.

Axiom 7.3 For arbitrary states P and Q,
R

P+
R

Q =
R
(P_Q)+

R
(P^Q).

Using these axioms, we can readily prove properties such as the following theorem.

Theorem 7.1 For an arbitrary state P

(a)
R

P+
R:P =

R
1 (b)

R
P� R 1

Proof: (a):
R

P+
R:P =

R
(P_:P)+

R
(P^:P) Axiom 3

=
R

1+
R

0 boolean operations
=

R
1 Axiom 1

Proof of (b) follows from (a) and Axiom 2.
2

7.5. THE BASIC DURATION CALCULUS (DC) 195

Abbreviations
For any observation interval [b;e], the integral

R
1 is the length e�b of the interval.

Definition 7.1 `
∆
=
R

1

Notice that a state P holds almost everywhere in a non-point interval [b;e] iff the inte-
gral of P over this interval equals the integral of 1 over the same interval. Thus the lifting
operator d�e can be defined in the following way.

Definition 7.2 For an arbitrary state P, dPe ∆
= (
R

P = `)^ (` > 0).

We use d e to denote formulas that are true only for point intervals.

Definition 7.3 d e ∆
= (`= 0)

It is easy then to prove that an observation interval is either a proper interval or a point
interval.

Theorem 7.2 d1e_d e
This says that the length of any interval is greater than or equals 0. The proof is very

simple but shows how the definitions can be used.

Theorem 7.3 For any state P

(a) dPe) (
R:P = 0) (b) d e) (

R
P = 0)

Exercise 7.5.3 Prove Theorem 7.3.

The following theorem expresses the monotonicity of
R

.

Theorem 7.4 For any states P and Q, dP) Qe) (
R

P� RQ).

To prove this theorem (and some others), we shall use the following ITL axiom:

9x:(v = x)

for any interval variable v. Thus, in DC we can use 9x:(
R

P = x) as an axiom for an
arbitrary state P. We shall refer to this axiom as Ax.9 in the following proofs.

Proof:
dP) Qe) R

(P) Q) =
R

1 Def. 2
) R

(:P_Q) =
R

1 Def. of)
) R:P+

R
Q� R (:P^Q) =

R
1 Axiom 3

) R
Q� R (:P^Q) =

R
1� R:P AX.9

) R
Q� R (:P^Q) =

R
P Th.1(a)

) R
P� RQ Axiom 2

2

The conventional modal operators 3 and 2 can be defined in terms of the chop oper-
ator,

Definition 7.4 For a duration formula F

3F ∆
= true ; F ; true and 2F ∆

= :3:F

196 CHAPTER 7. SPECIFICATION AND VERIFICATION IN DC

Properties of the chop operator
We now present some basic properties of the ITL chop operator which we shall use as
axioms.

The first property, referred to as the chop-unit, is that the chop operator has d e as unit.
Formally, for an arbitrary duration formula F :

(a) d e; F , F (b) F ; d e , F

The chop operator has false as zero. That is, for an arbitrary duration formula F :

(a) false; F , false (b) F ; false, false

We shall call this property chop-zero. It means that no interval can be split into two subin-
tervals such that false holds for the first or the last subinterval, since false does not hold
for any interval.

The chop operator is associative, denoted as chop-associative; i.e. for any duration
formulas F1, F2 and F3

(F1; F2); F3 , F1; (F2; F3)

and both sides of this formula can be written as F1; F2; F3.
The chop operator is distributive through disjunction; i.e. for any duration formulas

F1, F2 and F3

F1; F2_F3 , (F1; F2)_ (F1; F3)

This property is called chop-distributive.

Exercise 7.5.4 Find a counter-example to show that the chop operator does not dis-
tribute through conjunction.

The chop operator is monotonic, referred to as chop-monotonic; i.e. for any duration
formulas F1, F2 and F3

2(F1) F2))2((F1; F3) F2; F3)^ (F3; F1) F3; F2))

The basic axiom relating the chop operator and the integral operator states that the du-
ration of a state in an interval is the sum of its durations in each partition of the interval
into subintervals.

Axiom 7.4 Let P be a state and r, s be non-negative real-numbers:

(
R

P = r+ s), (
R

P = r); (
R

P = s)

With these axioms, we can prove properties such as the following theorem.

Theorem 7.5 For a state P and non-negative real numbers r, s, t and u

(r�
R

P� s); (t �
R

P � u)) (r+ t �
R

P � s+u)

7.5. THE BASIC DURATION CALCULUS (DC) 197

Proof:

r� RP ; t� RP , 9x:9y:((
R

P = x;
R

P = y)^ (r � x^ t � y)) Ax.9
, 9x:9y:((

R
P = x+ y)^ (r � x^ t� y)) Ax.4

) 9x:9y:((
R

P = x+ y)^ (r+ t � x+ y))
, r+ t� RP Ax.9

Proof of
R

P� s ;
R

P� u is similar (and is left as an exercise).
2

The next theorem is about the arbitrary divisibility of intervals, i.e. the density of time.

Theorem 7.6 For a state P

dPe; dPe , dPe

Exercise 7.5.5 Prove Theorem 7.6.

It is useful to have an induction rule which extends a hypothesis over adjacent subin-
tervals. Such a rule relies on the finite variability of states and the finiteness of intervals,
so that any interval can be split into a finite alternation of state P and state :P.

Induction rule: For a formula variable X occurring in the duration formula R(X), and
state P:

1. If R(d e) holds, and R(X _ (X ; dPe) _ (X ; d:Pe)) is provable from R(X), then
R(true) holds.

2. If R(d e) holds, and R(X _ (dPe ; X) _ (d:Pe ; X)) is provable from R(X), then
R(true) holds.

The following theorem illustrates the use of the induction rules.

Theorem 7.7 For state P:

1. (true ; dPe)_ (true ; d:Pe)_d e
2. (dPe ; true)_ (d:Pe ; true)_d e

Proof:
(1) As the induction hypothesis, let

R(X)
∆
= X) ((true ; dPe)_ (true ; d:Pe)_d e)

Then for X = d e

R(d e) ∆
= d e) ((true ; dPe)_ (true ; d:Pe)_d e)

must hold. Now R(X_ (X ; dPe)_ (X ; d:Pe)) is

X_ (X ; dPe)_ (X ; d:Pe)) ((true ; dPe)_ (true ; d:Pe)_d e)

198 CHAPTER 7. SPECIFICATION AND VERIFICATION IN DC

Assuming that R(X) holds, the following formulas hold since X) true holds and the
chop operator is monotonic:

X) ((true ; dPe)_ (true ; d:Pe)_d e)

X ; dPe) true ; dPe and X ; d:Pe) true ; d:Pe

So it must be that R(X_ (X ; dPe)_ (X ; d:Pe)). Hence, by the induction rule, we have
R(true) holds which, by definition, is

true) ((true ; dPe)_ (true ; d:Pe)_d e)

This is obviously equivalent to (1).
(2) can be proved symmetrically using the second induction rule.

2

The four axioms and the induction rules can be shown to constitute a sound formal proof
system of durations which is relatively complete with respect to the interval temporal
logic.

7.6 The mine pump

We are now ready to formally verify the correctness of the design of the mine pump sys-
tem. We first summarize the specifications given in Sections 7.1–7.4.

Specification of the safety requirement
For the mine pump system, in any observation interval that is not longer than 1000 time
units the accumulated time when the water level is dangerous is not more than one time
unit. This safety requirement is specified as

Safe
∆
=2(` � 1000) RDH2O� 1)

Specification of the monitor
The monitor is required to behave in the following way:

1. The water flag H2OFlag must be set when the water level has been high for δ time
units and cleared when it has not been high for that time; likewise for the methane
flag CH4Flag.

2. The alarm must be set when either the water level or the methane level has been
dangerous for δ time units and cleared when they have both been below the danger
level for δ time units.

7.6. THE MINE PUMP 199

The monitor is specified by the following formulas:

SetWaterFlag
∆
= dHH2Oe

δ
�! dH2OFlage

ResetWaterFlag
∆
= d:HH2Oe

δ
�! d:H2OFlage

SetMethaneFlag
∆
= dHCH4e

δ
�! dCH4Flage

ResetMethaneFlag
∆
= d:HCH4e

δ
�! d:CH4Flage

SetAlarm
∆
= dDH2Oe

δ
�! dAlarme

^ dDCH4e
δ
�! dAlarme

ResetAlarm
∆
= d:DH2O^:DCH4e

δ
�! d:Alarme

Monitor
∆
= SetWaterFlag^ResetWaterFlag

^ SetMethaneFlag^ResetMethaneFlag
^ SetAlarm^ResetAlarm

Specification of assumptions
The high water level is lower than the dangerous water level; in other words, if the water
level is dangerous, it must also be high:

As1
∆
=2(dDH2Oe) dHH2Oe)

The high water level is chosen such that, after it has been reached, the water will not reach
the critical level within w units of time:

As2
∆
= (d:HH2Oe ; dHH2Oe)

�w
�! d:DH2Oe

The capacity of the pump is sufficient to bring the water level down to a level lower than
the high level in ε units of time:

As3
∆
= dPumpOne

ε
�! d:HH2Oe

If the methane level is stable at a low level for long enough, and the methane level is high
for a sufficiently short time, it should always be possible to turn on the pump and reduce
the water level before it reaches the dangerous level. This stability and boundedness can
be specified, respectively, as

StableCH4
∆
= (dHCH4e ; d:HCH4e ; dHCH4e)) `� ξ

BoundCH4
∆
= dHCH4e) `� w�2ξ

Recall that Safe allows limited occurrences of dangerous water levels. This means that it
allows limited failure in reducing the high water levels. So we do not have to assume that
StableCH4 and BoundCH4 always hold, i.e. bad methane levels are sometimes allowed.
Let

BadCH4
∆
= :(StableCH4^BoundCH4)

200 CHAPTER 7. SPECIFICATION AND VERIFICATION IN DC

To constrain bad methane levels, we assume that they will occur only in an interval not
longer than one time unit; any two occurrences of bad methane levels must be separated
by at least 1001 time units. The conjunction of these two constraints is specified as

As4
∆
= 2(BadCH4) `� 1)

^ 2((BadCH4 ; 3:BadCH4 ; BadCH4)) `� 1001)

Finally, the constants must be chosen in the following way:

As5
∆
= (ξ � 2δ+ ε)^ (w� 2ξ)

Specification of the design
Refinements to the safety requirements were made in two steps in Section 7.4: the first
step was to make the design decision that in any interval not longer than 1000 time units,
the high water level must almost always be reduced within w time units, i.e. before it
reaches the dangerous level:

Des1
∆
= 2(Failure) `� 1)

^ 2((Failure ; 3:Failure ; Failure)) `� 1001)

where Failure
∆
= dHH2Oe^ ` > w.

The second step was to decide the control strategies of the pump:

Des2
∆
= StartPump^StopPump

where

StartPump
∆
= dSafePumpe

δ
�! dPumpOne

StopPump
∆
= d:SafePumpe

δ
�! d:PumpOne

Recall that SafePump
∆
= HH2O^:HCH4.

Proving correctness
We shall state correctness results as theorems and then provide proofs.

Theorem 7.8 As1 ^As2^Des1) Safe

This theorem is derived from the following lemma:

Lemma 7.1

1: (`� 1000)^Des1) 2Failure^ ` � 1
_ Failure^ `� 1 ; 2:Failure
_ 2:Failure ; Failure^ `� 1 ; 2:Failure

2: As1^As2 ^2:Failure^ (d:HH2Oe ; true))
R

DH2O = 0

7.6. THE MINE PUMP 201

Proof: We prove case (2) of the lemma. Recall that

:Failure = dHH2Oe) `� w

Therefore, we have to prove that

As1^As2 ^2(dHH2Oe) `� w)^ (d:HH2Oe ; true)) RDH2O = 0

Let A ∆
= As1^As2 ^2(dHH2Oe) `� w). Use the second induction rule with R(X)

defined as

R(X)
∆
= A ^ (d:HH2Oe ; X)) (

R
DH2O = 0)

^ A ^ (d:HH2Oe ; dHH2Oe ; X)) (
R

DH2O = 0)

R(d e) holds since A ^d:HH2Oe) d:DH2Oe because of As1. And, by As2,

A ^ (d:HH2Oe ; dHH2Oe^ `� w)) d:DH2Oe

Using the chop-distributive property and Theorem 7.6:

R(X_ (dHH2Oe ; X)_ (d:HH2Oe ; X))
, A ^ ((d:HH2Oe ; X)_ (d:HH2Oe ; dHH2Oe ; X))) (

R
DH2O = 0)

^ A ^ (d:HH2Oe ; dHH2Oe ; d:HH2Oe)) (
R

DH2O = 0)

We next prove that this formula holds assuming that R(X) holds. The first conjunct comes
directly from R(X). For the second conjunct:

A ^ (d:HH2Oe ; dHH2Oe ; d:HH2Oe ; X)
) d:HH2Oe ; dHH2Oe^ (`� w) ; d:HH2Oe ; X (2:Failure)
) d:DH2Oe ; d:HH2Oe ; X (As1 ^As2)
) R

DH2O = 0 ;
R

DH2O = 0 (R(X))
) R

DH2O = 0 (Axiom4)

Hence case 2 of the lemma is implied by R(true).

2

Exercise 7.6.1 Complete the proof of the lemma, and then prove Theorem 7.8.

Theorem 7.9 As3 ^As4^As5 ^Monitor^Des2) Des1

This theorem can be proved using the following lemma.

Lemma 7.2 As3^As4 ^2:BadCH4^Monitor)2:Failure

202 CHAPTER 7. SPECIFICATION AND VERIFICATION IN DC

Proof: Assume that Failure holds, i.e. dHH2Oe^ ` > w holds. By Monitor we have

dHH2Oe^ ` > w) dHH2Oe^ (`� δ) ; dH2OFlage^ (` > w�δ)

Let the consequent (right-hand side) of this implication be RH, and let α ∆
= 2δ+ε. Then

from As5 we have w � 2ξ � 2α and, since 2:BadCH4,

(` > w))
d:HCH4e^ (`� α) ; true (D1)

_ d:HCH4e^ (` < α) ; dHCH4e^ (`� w�2α) ;
d:HCH4e^ (`� α) ; true (D2)

_ dHCH4e^ (`� w�2α) ; d:HCH4e^ (`� α) ; true (D3)

By Monitor, As3 and Des2 we have

(D1)^RH) dHH2Oe^ (`� δ) ; dSafePumpe^ (`� δ+ ε) ; true
) (`� 2δ) ; dPumpOne^ (`� ε) ; true
) (`� 2δ+ ε) ; d:HH2Oe ; true
) 3d:HH2Oe

Similarly, it can be proved that Di^RH)3d:HH2Oe for i = 2;3. This gives the obvi-
ous contradiction

dHH2Oe^ (` > w))3d:HH2Oe

and so 2(dHH2Oe) `� w) holds.
2

Exercise 7.6.2 Complete the proof of the lemma and then prove Theorem 7.9.

Theorem 7.8 and Theorem 7.9 have the following corollary which states the correct-
ness of the final design.

Corollary 1 Ass^Des2) Safe, where

Ass
∆
= As1^As2 ^As3^As4 ^As5^Monitor

7.7 Specification of scheduling policies

As we have seen in Chapters 2 and 3, real-time programs are often executed on sys-
tems with limited resources (e.g. processors) that must be shared through the actions of
a scheduler. Let a real-time program P with a set of processes be specified by a duration
formula C (P) and let the scheduling policy (which is a property of the scheduler) be spec-
ified by the duration formula S (which is a constraint on the execution of the program).
Given a real-time property specified by a duration formula F , we say that execution of
program P under the scheduler S is feasible with respect to the real-time property F if it
can be proved that the following implication holds:

C (P)^S) F
This means that the time-constraint defined by F is satisfied.

We shall now show how different real-time scheduling policies can be specified in DC.

7.6. THE MINE PUMP 203

Processes and processors
For simplicity, assume that a set of processes is allocated statically to n > 0 processors.
Such an allocation defines a partition of the processes into n classes fPS1; : : :;PSng. Let
PS = fp1; : : :;pmg be an arbitrary class of this partition containing m > 0 processes shar-
ing one processor. For each process p 2 PS:

� p:rdy : is 1 when process p is ready to run on a processor, otherwise it is 0.
� p:run: is 1 when process p is running on a processor, otherwise it is 0.

We assume that when a process is running it is ready, i.e. p:run) p:rdy is always 1. This
assumption is illustrated in the following timing diagram.

Time

p.rdy

p.run

Specification
There is a physical no conflict requirement that at most one process is running on a pro-
cessor at any time:

2
^
k 6=j

(dpj:rune) d:pk:rune)

or, equivalently,

2
^
k 6=j

(
R
(Pj:run^pk:run) = 0)

Assume that if a process is ready, there must be a running process:

2(d
_

j

pj:rdye) d
_

j

pj:rune)

This means that the scheduler has no overhead, i.e. takes no time to initiate execution of
a process on a processor.

A scheduler is said to make progress if

2((∑
i

R
pi:rdy > δ)) (∑

i

R
pi:run > δ0))

where δ and δ0 are constants such that 0 � δ0 � δ. This says that at all times if the sum
of the ready time of the processes is greater than δ, the sum of their running times must
be greater than δ0. Thus, progress will always be made in the execution of the processes
in terms.

204 CHAPTER 7. SPECIFICATION AND VERIFICATION IN DC

An extremely fair scheduling policy is one where each process has equal rights and
the processes share the available processor equally; it is unlikely that a scheduler can
implement such a policy strictly:

^

j

((
R

pj:run�∑
i

R
pi:rdy) = (∑

i

R
pj:run)�

R
pj:rdy)

For non-zero running time and ready time, the ratio between pj’s total running time and
the total running time of all processes is at all times the same as that between pj’s total
ready time and the total ready time of all processes.

A first-come-first-served (or first-ready-first-run) policy is often used in operating sys-
tems. It is specified as:

2
^

j6=i

:(dpj:rdy^:pi:rune^ (d:pi:rdye ; 3dpi:rune))

This means that when pi becomes ready and eventually runs there is no other process pj

that is ready and not running.
Scheduling often makes use of the priorities of processes. Assume that pj has higher

priority than pi if j> i. A priority-based scheduling policy may then enforce the condition

2
^

i<j

(dpj:rdye) d:pi:rune)

Note that this may require the use of pre-emption (and perhaps a protocol making use of
priority ceilings – see Chapter 3).

Exercise 7.7.1 Specify a priority-based, non-pre-emptive scheduling policy.

Finally we specify a ∆-fair policy, where ∆ > 0:

^

i

0
@

(dpi:rune ; dpi:rdy^:pi:rune) `� ∆)
^ 2((d:pi:rune ; dpi:rune ; dpi:rdy^:pi:rune)) `� ∆)
^ 2((dpi:rdye^ `� 2m∆))3dpi:rune)

1
A

In a ∆-fair policy, a process is guaranteed an execution ‘slice’ of at least ∆ when it is
running; when it is ready and not running, it will wait for at most 2m∆ before running (m
is the number of processes).

We have seen that both programs and scheduling policies can be specified in DC and
the properties of programs and schedulers can be kept separate. This allows a division of
concerns when a program executed under a particular scheduler has to be shown to meet
hard real-time constraints. The advantage of this approach is that the schedulability of a
program can be considered at the specification level without going into implementation
level details of either the program or the scheduler.

7.8. PROBABILISTIC DURATION CALCULUS (PDC) 205

7.8 Probabilistic duration calculus (PDC)

The requirements for an embedded, real-time system include functional and safety prop-
erties. For the mine pump, we proved that the design decisions Des1 and Des2 guarantee
the requirement Safe. But, in practice, we cannot expect an actual implementation to sat-
isfy this requirement at all times. For example, any physical component such as a sensor,
the monitor, or the pump may fail to react in time.

Within any given period, an actual implementation can only satisfy the design deci-
sions with a certain probability. How then can we model the physical limitations of an
implementation? How can we define and reason about the probability of satisfaction of
a duration formula? The solution here, as in other fields, is to analyze the probability of
failure using probability theory.

Assume that we consider not only the correct system behaviours BC = fb1; : : :g but
also some incorrect, but plausible, failure behaviours BF = ff1; : : :g. The model for an
implementation is then B =BC[BF and probabilities can be assigned to subsets of B. In
this section, we consider how to calculate the probability of a subset specified by some
duration formula D for some finite initial segment [0; t] of the behaviours. This proba-
bilistic extension of DC makes it possible for designers of real-time systems to reason
about and calculate the probability that safety and functionality requirements are satis-
fied in practical implementations.

In the probabilistic duration calculus (PDC), it is assumed that requirements are ex-
pressed as formulas in DC, and that imperfect (i.e. failure-prone) designs can be modelled
using probabilistic automata with fixed transition probabilities. Then discrete Markov
chains can provide the basis for PDC.

The calculus provides a notation and a set of rules for determining the probability that
a given duration formula D holds for a given probabilistic automaton over a specified
time interval [0; t]. This probability, called the satisfaction probability µ(D)[t], is defined
as the sum of the probabilities of all behaviours of the automaton which satisfy D over
the time interval.

DC uses continuous time represented by non-negative real-numbers. In order to have
a simple, well-understood probabilistic model (see Section 7.8.1), discrete time is used
in PDC; thus, Time is the set of all non-negative integers. For this discrete time domain,
axiom 4 of Section 7.5 must be modified.

For a state P and non-negative integers r, s, t and u:

(r�
R

P� s) ; (t �
R

P � u)) (r+ t �
R

P� s+u)

Accordingly, Theorem 7.6 is also modified; for any state P:

`� 2) (dPe , dPe ; dPe)

No other axioms or rules of DC need to be changed.
In this section, we define the reliability of two simplified versions of the mine pump.

In both cases, we ignore the methane levels. The satisfaction probability µ(D)[t] is then
defined as the sum of probabilities of all behaviours that satisfy D in the time interval

206 CHAPTER 7. SPECIFICATION AND VERIFICATION IN DC

p22

negPumpOk
p2(= 0)

p11

PumpOk
p1(= 1)

p12

P21

Figure 7.6 Failure-prone mine pump with unreliable detector

[0; t]. When the basic rules of the probabilistic calculus are applied directly, the result
can be a recursive, rather problem-dependent solution. A more systematic solution tech-
nique is to develop and apply high-level theorems to express the satisfaction probability
of specific important duration formulas in terms of probability matrix products.

7.7.1 Imperfect systems and probabilistic automata

Consider a finite probabilistic automaton as a mathematical model of the behaviour of
an imperfect system in a discrete time domain. Such an automaton is well described by
its transition graph.

Mine pump with failing pump and unreliable detector
For a simple mine pump system, assume that HH2O (i.e. the water level is high) and
activation of the pump are ‘on’ at t = 0 and that the HH2O remains ‘on’. The activation
is assumed to be instantaneous, i.e. the pump is ‘on’ at t = 0 or whenever activation is re-
applied. When the pump is ‘on’, it may fail (i.e. go ‘off’) at any time. Detection of a pump
failure may be delayed by any number of time units, but, once detected, re-activation
takes place immediately.

For this mine pump system, let PumpOn be the only basic state. This leads to a two-
state model with states PumpOn and :PumpOn. However, since the pump is assumed to
have failed when it is off, Ok (= PumpOn) could also be taken as the basic state and the
system states can then be called Ok and :Ok (see the transition graph in Figure 7.6).

The probabilities of starting in the states Ok and :Ok are p1 and p2 respectively; ac-
cording to the assumptions, p1 = 1 and p2 = 0. The probability that the pump remains
‘on’ for one time unit is p11 and that it fails within one time unit is p12. The probability
that the pump failure remains undetected for one time unit is p22 and the probability that
the failure is detected within one time unit is p21. These probabilities are all non-negative
and are governed by the equations: p1 +p2 = 1, p11+p12 = 1, p21+p22 = 1. Assume,
as for Markov chains, that the transition probabilities are independent of the transition
history.

Mine pump with unreliable activation, unreliable detector and failing pump
Assume now that when the water level is high (i.e. HH2O is ‘on’), the pump is activated
for a very short period. Detection of pump failure may then be delayed for any number

7.7. PROBABILISTIC DURATION CALCULUS (PDC) 207

of time units. When HH2O is ‘on’, the pump may be off on account of activation failure
or pump failure. Assume that when HH2O is ‘off’, the pump is also off.

The transition graph for this system is shown in Figure 7.7 There are two basic states:
HH2O (water level is high) and PumpOn (pump is on).

At any time, the system is in one of the following mutually exclusive states:

V = f:HH2O^:PumpOn ; HH2O^PumpOn ; HH2O^:PumpOng

i.e. we assume that

:HH2O^PumpOn = 0

and

:HH2O^:PumpOn_HH2O^PumpOn_HH2O^:PumpOn = 1

The system probabilities are defined below:

� The system starts in the idle state :HH2O^:PumpOn: p1 = 1, p2 = p3 = 0.
� It remains idle with probability p11 for one time unit.
� HH2O becomes ‘on’ (water level becomes high) in one time unit with probability
(p12+p13) and the pump is activated. p12 is the probability that activation succeeds
and p13 that it fails.

� HH2O becomes ‘off’ within one time unit with probability p21.
� The pump remains on for one time unit with probability p22.
� The pump fails within one time unit with probability p23.
� Pump failure is detected in one time unit with probability p32.
� Pump failure remains undetected for one time unit with probability p33.

Notice that p31 is assumed to be zero. This means that when the pump fails, the water
level cannot be reduced.

These probabilities are non-negative and are related by the following equations: p1 +

p2 + p3 = 1 and pi1 + pi2 + pi3 = 1, (i = 1;2;3). Ok is now a composite state: Ok
∆
=

:HH2O_PumpOn.

Probabilistic automaton
We end with a general definition of a probabilistic automaton (PA). First define a minterm
of a set A of basic states as a conjunction of the states in A which contains every state in
A or its negation, but not both.

Definition 7.5 A PA is a tuple G = (A;V;τ0;τ) where the following hold:

� A is a finite, non-empty set of basic states.
� V = fv1; : : :;vmg is a non-empty set of states; each vi in V is a minterm of A and

V is ranged over by v, v0, vi, etc.

208 CHAPTER 7. SPECIFICATION AND VERIFICATION IN DC

HH20 PumpOn

p22

p2(=0)

p11

p1(=1)
HH2O PumpOn

p31(=0)

p13

p33

p3(=0)
HH2O PumpOn

p21p12 p23 p32

Figure 7.7 Mine pump with unreliable activation, unreliable detector and failing pump

� τ0 : V ! [0;1] is called the initial probability mass function and it satisfies

∑
v2V

τ0(v) = 1

where τ0(v) is the probability that the system starts in state v.
� τ : V�V ! [0;1] is called the single-step probability transition function: for every

v 2 V it satisfies

∑
v02V

τ(v;v0) = 1

For example, in Figure 7.6, A= fOkg, V = f:Ok;Okg. The initial probability mass func-
tion is τ0(Ok) = p1 = 1, τ0(:Ok) = p2 = 0, and the transition probability function is

τ(Ok;Ok) = p11 τ(Ok;:Ok) = p12
τ(:Ok;Ok) = p21 τ(:Ok;:Ok) = p22

7.8.2 Satisfaction probability

For a given automaton G = (A;V;τ0;τ), we now define behaviour, satisfaction and sat-
isfaction probability.

7.7. PROBABILISTIC DURATION CALCULUS (PDC) 209

Behaviour
Given a non-negative integer t, the sequence of states in V,

σ[t] : v1; : : :;vt

defines a possible behaviour of G for its first t units of operation. Thus the system per-
forms t�1 state transitions such that it is in state vi at time i�1, (i = 1; : : :; t).

For a specified sequence of states, v1; : : :;vt the probability that the system enters state
v1 at time 0 is τ0(v1), and, given that it is in state vi at time i�1, the probability that it is
in state vi+1 at time i is τ(vi;vi+1). Therefore, τ0 and τ together determine the probability
of the behaviour σ[t] for the first t time units.

For example, σ[1] =:Ok is a behaviour of length 1 of the PA of Figure 7.6. According
to this, the system starts with :Ok. But τ0(:Ok) = p2 = 0, so the system cannot start
with :Ok. So the probability of σ[1] is zero. Let µ(σ[1]) denote the probability of σ[1]

with respect to the given PA; then µ(σ[1]) = 0.

σ[5] : Ok;Ok;:Ok;:Ok;Ok

is another behaviour of this PA, with length 5. For this behaviour,

µ(σ[5]) = p1 �p11 �p12 �p22 �p21

In general, if σ[t] = v1; : : :;vt,

µ(σ[t])
∆
= τ0(v1)�

t�1

∏
i=1

τ(vi;vi+1)

where µ(σ[t]) = 1 when t = 0 and µ(σ[t]) = τ0(v1) when t = 1. Let Vt be the set of all
state sequences of V with length t. Then, Vt defines all the possible behaviours of G with
length t. From the definitions of τ0 and τ, it is easy to prove the following theorems.

Theorem 7.10 For any non-negative integer t and any behaviour σ[t] 2 Vt of length t,

0� µ(σ[t])� 1

Theorem 7.11 For any non-negative integer t, ∑σ[t]2Vt µ(σ[t]) = 1.

Thus, for every non-negative integer t there is a probability space hVt;µi with Vt, the
set of behaviours of length t, as the set of samples.

210 CHAPTER 7. SPECIFICATION AND VERIFICATION IN DC

Satisfaction
A behaviour σ[t] of G determines the presence and absence of the basic states in V at each
of the first t time units, and thus defines an interpretation Iσ[t] of duration formulas with
A as the basic states for the first t time units. This interpretation is defined by:

Iσ[t](P)(j)
∆
=

�
1 if σ(j)) P
0 if σ(j)):P

where 0� j� t.
Recalling Section 7.2, the satisfaction of a duration formula D (with A as basic states)

can be defined by a behaviour σ[t] of G.
D is satisfied by σ[t], denoted by σ[t] j= D, if and only if there is an interpretation I

which is an extension of Iσ[t] over [0; t], such that I; [0; t] j= D. An interpretation I2 over
Time is an extension of I1 over the interval [t1; t2] if for every basic state P and any time
point t 2 [t1; t2], I1(P) = I2(P).

For the PA of Figure 7.6, let σ[5] ∆
= Ok, Ok, :Ok, :Ok, Ok. Then,

σ[5] j= `= 5; σ[5] j= ROk = 3; σ[5] j=2(d:Oke) `� 2)

σ[5] 6j= `� 3; σ[5] 6j=2(d:Oke) `� 1)

where 6j= stands for ‘not satisfied’.

Satisfaction probability
The probability that a PA satisfies a duration formula over the time interval [0; t] is the
sum over all behaviours of the probability that a behaviour satisfies the formula over that
time interval. Let D be a duration formula, and let Vt(D) be a subset of Vt (the set of
behaviours of length t) such that each behaviour in that subset satisfies D in [0; t]. Then
the satisfaction probability of D by G within the time interval [0; t], denoted by µ(D)[t],
is defined by

µ(D)[t]
∆
= ∑

σ[t]2Vt(D)

µ(σ[t])

By Theorems 7.10 and 7.11, this definition guarantees that µ(D)[t] is a probability. For

example, for the PA of Figure 7.6, let D
∆
= 2(d:Oke) `� 1). Then the behaviours of

length 2 satisfying D are

V2(D) = f(Ok;Ok); (Ok;:Ok); (:Ok;Ok)g

Thus µ(D)[2] = p1 �p11+p1 �p12+p2 �p21 = p11+p12 = 1, since p1 = 1 and p2 = 0 .

7.7. PROBABILISTIC DURATION CALCULUS (PDC) 211

7.7.3 The probabilistic calculus

The probabilistic duration logic is an extension of first-order real arithmetic with the
µ(D)s as the only additional functions. For an arbitrary duration formula D, µ(D) be-
longs to N! [0;1] and assigns to each time point t the satisfaction probability µ(D)[t].
In this logic, a basic probabilistic term is µ(D)[t] or a variable x ranging over the real
numbers. A probabilistic term is a basic probabilistic term, or an expression built from
probabilistic terms using operators on real numbers, such as addition + and multiplica-
tion �, with their standard meanings. A basic probabilistic formula is an expression built
from probabilistic terms using relational operators, such as equality = and less than <,
with their standard meanings. A probabilistic formula is a basic probabilistic formula or
an expression built from probabilistic formulas using the operators of first-order logic and
quantifiers over variables (including t in the term µ(D)[t]). The standard interpretations
are assumed for the operators and quantifiers.

In this logic, we can write down and reason about probabilistic formulas such as

8t : µ(:Safe)[t]� µ(:As1)[t]+µ(:Des1)[t]

which asserts that the probability of violating the safety requirement Safe will not be
greater than the sum of the probabilities of violating the assumption and the design de-
cision. This formula tells the designer that there is a ‘trade off’ between the design deci-
sions with respect to the probabilities of their violation. It also permits these probabilities
to be analyzed separately. Satisfaction probabilities can also be calculated by reasoning
about formulas such as µ(D)[t] = p.

PDC includes the axioms and rules of real arithmetic. In the following, we present
the additional rules for the satisfaction probabilities (µ(D)s) and show how to use the
combined axioms and rules to prove simple theorems. We use the abbreviation R(f ;g)
to stand for 8 t : R(f [t];g[t]), where R is a relation between functions f and g over Time.

The duration formula true defines the set of all behaviours of G for any interval:

AR 1 µ(true) = 1

For any given interval, the set of behaviours defined by D and :D forms a partition of
all the behaviours and therefore the sum of their probabilities is 1.

AR 2 For an arbitrary duration formula D, µ(D)+µ(:D) = 1.

The following axiom formalizes the additivity rule in probability theory.

AR 3 For arbitrary duration formulas D1 and D2

µ(D1_D2)+µ(D1^D2) = µ(D1)+µ(D2)

The satisfaction probability is monotonic:

AR 4 If D1)D2 holds in DC, then µ(D1) � µ(D2) holds in PDC.

212 CHAPTER 7. SPECIFICATION AND VERIFICATION IN DC

Therefore, if D1) D2, then no more behaviours satisfy D1 than satisfy D2.
These four axioms and rules follow directly from probability theory. The following

theorem can easily be proved from them.

Theorem 7.12 For arbitrary duration formulas D, D1, D2 and D3:

1. µ(false) = 0.
2. 0� µ(D) � 1.
3. If D1 , D2 holds in DC, then µ(D1) = µ(D2) holds in PDC.
4. If D1^D2)D3 holds in DC, then (µ(D1) = 1)) (µ(D2)�µ(D3)) holds in PDC.

Proof: Proofs of (1) – (3) are trivial. (4) is proved as follows:

µ(D1) = 1) µ(D1_D2) = 1 (TH:7:3(2);AR3;AR4)
) µ(D1^D2) = µ(D2) (AR3)
) µ(D1^D2) � µ(D3) (AR4;D1^D2) D3)
) µ(D2)� µ(D3)

2

Duration formulas D and D^ (`= t) are satisfied by the same behaviours of length t.

AR 5 For an arbitrary duration formula D, µ(D)[t] = µ(D^ (`= t))[t].

Theorem 7.13 (µ(`= t)[t] = 1)^ (µ(` 6= t)[t] = 0)

A behaviour of length t, σ[t] , satisfies a duration formula D if and only if each extension
of σ[t] to a behaviour of length t+ t0 satisfies the duration formula (D ; `= t0).

AR 6 For an arbitrary duration formula D, µ(D; `= t0)[t+ t0] = µ(D)[t].

Axioms AR3, AR4, AR5, AR6 and Theorem 7.12 can be used to prove the following
theorem.

Theorem 7.14 For arbitrary duration formulas D1 and D2, if µ(D1) = 0, then

µ(D1; D2) = 0

Exercise 7.8.1 Prove Theorem 7.14.

The axioms and rules described so far are independent of the Markov properties of the
PA defined by the probability space hVt;µi. We shall consider here only PAs which are
Markov chains; for these, the following additional axioms and theorems apply.

The initial probability mass function τ0 is governed by the next axiom, where we use

the convention dve1 ∆
= dve^ (` = 1).

AR 7 For an arbitrary state v 2 V, µ(dve1)[1] = τ0(v).

7.7. PROBABILISTIC DURATION CALCULUS (PDC) 213

The transition probability function τ is governed by the next axiom.

AR 8 For an arbitrary duration formula D and states vi;vj 2 V,

µ((D^ (true; dvie1)); dvje1)[t+1] = τ(vi;vj)�µ(D^ (true; dvie1))[t]

From AR8 and the equivalence:

(D; dvie1; dvje1), ((D; dvie1)^ (true; dvie1); dvje1)

we obtain the following theorem.

Theorem 7.15 For an arbitrary duration formula D and states vi;vj 2 V:

µ(D; dvie1; dvje1)[t+1] = τ(vi;vj)�µ(D; dvie1)[t]

This provides a way of calculating the probability of behaviours by chopping them into
unit intervals. The following axiom gives a way of calculating the probability from the
middle of a behaviour.

Exercise 7.7.2 Prove Theorem 7.15.

AR 9 For arbitrary duration formulas D1 and D2, and vi;vj;vk 2 V:

τ(vi;vj)� τ(vj;vk)�µ(D1^ (`= r); dvie1; dvke1; D2)[t]

= τ(vi;vk)�µ(D1^ (`= r); dvie1; dvje1; dvke1; D2)[t+1]

Finally, it is possible to prove the following theorem using axioms AR4, AR7 and AR8
and Theorems 7.13 and 7.14.

Theorem 7.16 For arbitrary duration formulas D, D1 and D2, and v;v0 2 V:

1. (τ0(v) = 0)) (µ(dve; D) = 0).

2. (τ(v;v0) = 0)) (µ(D1; dve; dv0e; D2) = 0).

Exercise 7.7.3 Prove theorem 7.16.

214 CHAPTER 7. SPECIFICATION AND VERIFICATION IN DC

7.7.4 Example

We can now apply PDC to the simple mine pump with an unreliable detector and failing
pump (Section 7.7.1). We show how to estimate the satisfaction probability of require-
ment MP which states that the pump must not fail for more than four minutes in any pe-
riod of 30 minutes. Assuming time units of minutes, this safety requirement is specified
in DC as

MP
∆
=2(l � 30) R:Ok � 4)

or, equivalently, as

(
R:Ok � 4)

�30�! dOke
Assuming that detection of failures and subsequent recovery works perfectly, the follow-
ing design decisions can be taken:

MP1: Failure should be detected and stopped within one minute:

MP1
∆
= d:Oke 1�! dOke

MP2: Any two occurrences of failure must be separated by at least 30 minutes:

MP2
∆
= (d:Oke ; dOke) �31�! dOke

From Exercise 7.3(4), we have

MP1^MP2)MP (i.e. :MP) (:MP1 _:MP2))

From axioms AR3 and AR4, we then have

µ(:MP) � µ(:MP1 _:MP2)� µ(:MP1)+µ(:MP2)

where, from DC,

µ(:MP1) = µ(true; (d:Oke^ (` > 1)); true)

µ(:MP2) = µ(true; ((d:Oke; d:Oke; d:Oke)^ (` < 32)); true)

In what follows, we calculate µ(:MP1)[t] recursively. From DC,

:MP1^ (` � 1), false

Therefore, by Theorem 7.12.1 and Theorem 7.12.3,

t� 1) µ(:MP1)[t] = 0

Also,

(:MP1 ^ `= 2),d:Oke1; d:Oke1

7.7. PROBABILISTIC DURATION CALCULUS (PDC) 215

but τ0(:Ok) = 0. Thus µ(:MP1)[2] = 0, by Theorem 7.12 and axioms AR7 and AR8.
For any t > 1, MP1 is violated in the first t+ 1 minutes, if and only if MP1 has already
been violated in the first t minutes, or MP1 holds for the first t minutes but is violated
during the (t+1)th minute. This is written as

(:MP1 ^ `= t+1) , ((:MP1 ^ `= t); `= 1)
_((MP1; `= 1)^:MP1 ^ `= t+1)

where the two terms in the disjunction on the right are mutually exclusive. For t� 2 and
from MP1, the second term on the right-hand side is equivalent to

(MP1; dOke1; d:Oke1; d:Oke1)^ (`= t+1)

From Theorem 7.12, axioms AR3, AR5 and AR6 and Theorem 7.15 it then follows that

µ(:MP1)[t+1] = µ(:MP1)[t] +p12�p22 �µ(MP1; dOke1)[t�1]

where t � 2. To solve this recursive equation, we need an auxiliary recursive equation
for the second µ-expression on the right-hand side. This is established next.

For t � 2 and MP1 we have

((MP1; dOke1)^ `= t+1)

, ((MP1; dOke1; dOke1)^ `= t+1)
_((MP1; d:Oke1; dOke1)^ `= t+1)

, ((MP1; dOke1; dOke1)^ `= t+1)
_((MP1; dOke1; d:Oke1; dOke1)^ `= t+1)

Again, the two terms on the right hand side are mutually exclusive. From Theorem 7.12,
axioms AR3 and AR5 and Theorem 7.15 it then follows that

µ(MP1; dOke1)[t+1] = p11 �µ(MP1; dOke1)[t]
+ p12 �p21 �µ(MP1; dOke1)[t�1]

where t � 2

It is easy to show that µ(MP1; dOke1)[1] and µ(MP2; dOke1)[2] are both 1. These are
the initial values for the recursion.

In summary, if we introduce the functions P (t) and Q (t) by(
P (t)

∆
= µ(:MP1)[t]

Q (t)
∆
= µ(MP1; d:Oke)[t]

the probability P (t+1) that design decision 1 is violated in the observation interval
[0; t+1], t� 2, can be calculated by the solution of the mutually recursive equations8<:

P (t+1) = P (t)+p12 �p22 �Q (t�1)
Q (t+1) = p11 �Q (t)+p12 �p21 �Q (t�1)
where t� 2 ; P (2) = 0;Q (1) = 1 and Q (2) = 1

216 CHAPTER 7. SPECIFICATION AND VERIFICATION IN DC

The calculation of µ(:MP2)[t] is done similarly. From axiom AR2,

µ(:MP2) = 1�µ(MP2)

and, in DC,

MP2^ ` > 0, (MP2 ^ (true; d:Oke1))_ (MP2 ^ (true; dOke1))
So by axiom AR3 and Theorem 7.12, we have

µ(MP2) = µ(MP2 ^ (true; d:Oke1))+µ(MP2 ^ (true; dOke1))
Let U(t) and V (t) be functions defined as(

U(t)
∆
= µ(MP2 ^ (true; d:Oke1))[t]

V (t)
∆
= µ(MP2 ^ (true; dOke1))[t]

Then, recalling that p1 (= τ0(Ok)) = 1 and p2 (= τ0(:Ok)) = 0, we can derive the fol-
lowing recursive equations for U(t) and V (t) in the calculus:8>>>>>>><>>>>>>>:

U(t+1) = p22 �U(t)+

8<:
(p11)

28 �p12 �V (t�29) if t > 29
(p11)

t�1 �p12 if 1� t� 29
0 if t < 1

V (t+1) =

�
p21 �U(t)+p11 �V (t) if t� 1
1 if t < 1

where t� 0 and U(0) = V (0) = 0

Using these mutually recursive equations, we can calculate µ(MP2) and then µ(:MP2).
Another way of calculating µ(MP1) and µ(MP2) is described in the following section.

7.7.5 Matrix-based, calculation-oriented theorems

The simple mine pump example shows that the direct use of PDC rules in probabilistic
analysis can be rather ad-hoc. This indicates the need for high-level theorems leading
to a more systematic analysis. We now extend PDC with matrices of real numbers and
introduce the single-step transition probability matrix P and the initial state probability
vector p in order to prove some auxiliary theorems using PDC. This will enable us to
state and prove some useful calculation-oriented theorems.

Introducing matrices
An m�n matrix Mm�n of real numbers is a function

Mm�n : f1; : : :;mg�f1; : : :;ng �! R

where m and n range over the positive integers and R is the set of real numbers.

7.7. PROBABILISTIC DURATION CALCULUS (PDC) 217

Mm�n is therefore totally determined by assigning a real number mij to Mm�n(i; j) for
(i; j) 2 f1; : : :;mg � f1; : : :;ng. Such a matrix is also written as

Mm�n
∆
=

0B@ m11 : : : m1n
...

...
mm1 : : : mmn

1CA
where mij is called the (i; j)th element of Mm�n. When there is no confusion, Mm�n will
simply be written as M.

Let Mm�n denote the set of all m� n matrices and M the set of all matrices of real
numbers. Operations on matrices are defined in terms of their elements. For example,
the operation of addition ‘+’ on matrices is defined on Mm�n�Mm�n by

(M+M0)(i; j)
∆
= M(i; j)+M0(i; j)

where (i; j) 2 f1; : : :;mg�f1; : : :;ng.
Similarly, multiplication ‘�’ is defined on Mm�n�Mn�m0 by

(Mm�n �M0
n�m0)m�m0(i; j)

∆
=

n

∑
k=1

M(i;k)�M0(k; j)

where (i; j) 2 f1; : : :;mg�f1; : : :;m0g.
Predicates of matrices are defined in terms of predicates of their elements. For exam-

ple, equality ‘=’ between two matrices is defined by

Mm�n = M0
m0�n0

∆
= (m = m0)^ (n = n0)^ (

(m;n)^
(i;j)=(1;1)

(M(i; j) = M0(i; j)))

These definitions show that the arithmetic of matrices of real numbers is in first-order
real arithmetic, which is the basis of the probabilistic calculus.

Auxiliary notation
Definition 7.6 The following notation is needed:

E is the m�m identity matrix (E(i; j) = 1 for i = j and E(i; j) = 0 for i 6= j).
1c is the m�1 matrix (column vector) in which all elements are 1.

zi is the 1�m matrix (row vector) of zeros with the ith element changed from 0 to 1.
hi is the m�1 matrix (column vector) of zeros with the 1 in the ith element.

I is the index set f1; : : :;mg
Ii denotes the subset Infig of I where i 2 I.

218 CHAPTER 7. SPECIFICATION AND VERIFICATION IN DC

Probability matrices and some basic theorems
Definition 7.7 With V = fv1; : : :;vmg (Definition 7.5), the single-step transition prob-
ability matrix P is a real m�m matrix defined by

P
∆
=

0B@ p11 : : : p1m
...

...
pm1 : : : pmm

1CA where

8><>:
pij

∆
= τ(vi;vj) (0 � pij � 1)

∑
j2I

pij = 1

and the initial state occupation probability vector p is a real 1�m row vector defined by

p ∆
= (p1; : : :;pm) where:

8><>:
pi

∆
= τ0(vi) (0� pi � 1)

∑
i2I

pi = 1

The first theorem is well known from the theory of Markov chains.

Theorem 7.17 For t� 0 and with P0 defined to be the identity matrix E:

Pt � 1c = 1c

The theorem states that the sum of each row in the tth power of the single-step transition
probability matrix is 1.

Exercise 7.7.4 Prove Theorem 7.17.

Definition 7.8 Let p(t) (t � 0) denote the row vector (p(t)1 ; : : :;p(t)m) defined by p(t) ∆
=

p �Pt

The following theorem states that p(t)i is the (unconditional) probability, that the sys-
tem occupies state vi after the tth transition. This is also well known from the theory of
Markov chains, but it is expressed and proved here in terms of PDC.

Theorem 7.18 For t� 0,

(µ(true; dv1e1)[t+1]; : : :;µ(true; dvme1)[t+1]) = p(t)

Proof: We use induction on t:
For t = 0, the result follows from axiom AR7 and the fact that

p = (τ0(v1); : : :;τ0(vm))

Assume that the result holds for t = k; then from Theorem 7.15 and the definition of pji,

µ(true; dvie1)[k+2] = ∑
j2I

µ(true; dvje1; dvie1)[k+2]

= ∑
j2I

µ(true; dvje1)[k+1]� τ(vj;vi)

= ∑
j2I

µ(true; dvje1)[k+1]�pji

7.7. PROBABILISTIC DURATION CALCULUS (PDC) 219

By the induction assumption,

µ(true; dvje1)[k+1] = p(k)j

Therefore, for i 2 I,

µ(true; dvie1)[k+2] = ∑
j2I

p(k)j �pji

By the rules given in Section 7.7.5, this leads to

(µ(true; dv1e1)[k+2]; : : :;µ(true; dvme1)[k+2]) = p(k) �P
But, by Definition 7.8,

p(k) �P = (p �Pk) �P = p �Pk+1 = p(k+1)

This proves the theorem.
2

Theorems 7.17 and 7.18 imply that the initial probability vector p and the single-step
transition probability matrix P are sufficient to determine the distribution p(t). Taken to-
gether, the theorems characterize Pt as the t-step transition probability matrix. In the
theory of stochastic processes the elements of Pt, denoted by p(t)ij , are defined by

p(t)ij
∆
= P [v = vj at time n+ t j v = vi at time n] (t � 0)

The last theorem in this subsection expresses µ(true)[t+1] (known to be 1) explicitly
in terms of p, P and t. The theorem is not very useful for computation, but it provides a
semantic background for the subsequent computation-oriented theorems.

Theorem 7.19 For a non-negative integer t,

µ(true)[t+1] = p �Pt � 1c = 1

Exercise 7.7.5 Prove Theorem 7.19.

Example
For a two-state system such as the simple mine pump and for a time interval of length 3

µ(true)[3] = (p1;p2) �
�

p11 p12
p21 p22

�2

�
�

1
1

�
= p1p11p11+p1p11p12+p1p12p21+p1p12p22
+ p2p21p11+p2p21p12+p2p22p21+p2p22p22 = 1

This shows that the matrix expression for µ(true)[t+ 1] can be expanded into a sum of
symbolic products where each product defines the probability of a unique behaviour of
length t+1 and all such products are represented.

Clearly, the effect of replacing the duration formula true by a more restrictive for-
mula D must be to eliminate all products in the sum except those representing behaviours
which satisfy D. For a simple class of D formulas, this elimination is obtained by replac-
ing certain elements in P or p in the matrix expressions by zeros. This is used in the
following theorems.

220 CHAPTER 7. SPECIFICATION AND VERIFICATION IN DC

Computation-oriented theorems
The first theorem is useful for computation of the probability that a transition to a catas-
trophic state does not occur (Case a) or does occur (Case b) within the the first t+1 time
units.

Theorem 7.20 Let ppi
denote p with element pi replaced by zero and let Pci denote P

with all elements in column i replaced by zeros; then for a state vi and a non-negative
integer t:

(a) µ(2:dvie)[t+1] = ppi
� (Pci)

t �1c

(b) µ(3dvie)[t+1] = 1�ppi
� (Pci)

t �1c

To prove this theorem we need the following lemma.

Lemma 7.3 For a state vi and a non-negative integer t:

(µ(D1)[t+1]; : : :;µ(Dm)[t+1]) = ppi
� (Pci)

t

where: for k 2 I, Dk
∆
= (2:dvie)^ (true; dvke).

According to this lemma, the kth element of the row vector ppi
� (Pci)

t is the probability
that the system occupies state vk after the tth transition and that state vi does not occur
during the first t+1 time units.

Proof: We use induction on t. For t = 0 we have ppi
� (Pci)

t = ppi
�E = ppi

. The result
then follows from AR7 and the fact that

ppi
= (τ0(v1); : : :;τ0(vi�1);0;τ0(vi+1); : : :;τ0(vm))

For t� 0, assume that the result holds for t= n. Then for t = n+1 and for the kth element
of the vector:

µ((2:dvie)^ (true; dvke))[n+2] = µ((2:dvie)^ (true; dvke1))[n+2]

= ∑
j2I

µ((2:dvie)^ (true; dvje1; dvke1))[n+2]

For k = i this sum is zero by Theorem 7.12 (µ(false) = 0). For k 6= i we can rewrite the
sum, denoted Sum, as follows (notice the parentheses!):

Sum = ∑
j2I

µ(((2:dvie)^ (true; dvje1)); dvke1)[n+2]

By axiom AR8 we then obtain

Sum = ∑
j2I

µ((2:dvie)^ (true; dvje1))[n+1]� τ(vj;vk)

Replacing τ(vj;vk) by pjk and returning to the vector form, this implies:

(µ(D1)[n+2]; : : :;µ(Dm)[n+2]) = (µ(D1)[n+1]; : : :;µ(Dm)[n+1]) �Pci

By the induction assumption, the last expression is equal to

ppi
� (Pci)

n �Pci = ppi
� (Pci)

n+1

This proves the lemma.

7.7. PROBABILISTIC DURATION CALCULUS (PDC) 221

2

Exercise 7.7.6 Prove Theorem 7.20.

Notice, that if state vi is absorbing (pii = 1), then Theorem 7.20 gives the probability that
absorption in this state has occurred (b) or has not occurred (a) within the first t+1 time
units.

The next theorem is useful for computation of the probability that a transition from
a hazardous state vi to a catastrophic state vj does not occur (case a) or occurs (case b)
within the first t+1 time units.

Theorem 7.21 Let Ppij
denote P with element pij replaced by a zero. Then for states vi,

vj and a non-negative integer t:

(a) µ(2:(dvie; dvje))[t+1] = p � (Ppij
)t �1c

(b) µ(3(dvie; dvje))[t+1] = 1�p � (Ppij
)t �1c

The proof of this theorem follows exactly the same pattern as the proof of Theorem 7.20,
and is omitted. The required lemma, which resembles Lemma 7.3, is as follows.

Lemma 7.4 For states vi and vj and a non-negative integer t:

(µ(D1)[t+1]; : : :;µ(Dm)[t+1]) = p � (Ppij
)t

where: for k 2 I, Dk
∆
= (2:(dvie; dvje))^ (true; dvke).

This lemma states that the kth element of the row vector p � (Ppij)
t is the probability that

the system occupies state vk after the tth transition and no transition from state vi to state
vj occurs during the first t+1 time units.

Theorem 7.21 has the following immediate corollary.

Corollary 2 For a state vi and a non-negative integer t:

(a) µ(2(dvie) `� 1))[t+1] = p � (Ppii
)t �1

(b) µ(3(dvie^ ` > 1))[t+1] = 1�p � (Ppij
)t �1

The next theorem deals with certain chopped formulas, which generalize and unite ax-
ioms AR2 and AR8. However, before we can state the theorem a definition is needed.

Definition 7.9 For each subset J of the index set I = f1; : : :;mg, J � I, we define:

1. an auxiliary matrix PJ from the single step transition probability matrix P as fol-
lows:

PJ
∆
=

0BB@
p011 � � p01m
� �
� �

p0m1 � � p0mm

1CCA where p0ij =

�
pij if j 2 J
0 if j 2 J

and J denotes the complement In J of J.

222 CHAPTER 7. SPECIFICATION AND VERIFICATION IN DC

2. a composite state VJ as follows:

vJ
∆
=
_
j2J

vj

Notice that, according to the definition of vJ, (dvJe^ `= t) represents any sequence

(dvj1e1; dvj2e1; : : :dvjte1)

of elementary states of duration 1 such that ji 2 J for i 2 f1; : : :; tg.
The theorem makes use of the auxiliary row vector zi and column vector 1c from Def-

inition 7.7.5.

Theorem 7.22 For an arbitrary index set J � I, an arbitrary duration formula D and an
arbitrary state vi 2 V

(a) µ(D^ (true; dvie)^ (`= k); dvJe)[t+ k+1]
= µ(D^ (true; dvie)[k] � zi � (PJ)

t+1 �1c)

(b) µ(D^ (true; dvie)^ (`= k); 3dvJe)[t+ k+1]
= µ(D^ (true; dvie)[k] � (1� zi � (PJ)

t+1 �1c)

To prove this theorem, the following notation and lemma are useful:

q
∆
= µ(D^ (true; dvie))[k]

and for j 2 I

qj[t]
∆
=

�
µ((D^ (true; dvie)^ (` = k); dvJe)^ (true; dvje))[t+ k+1] if j 2 J
0 if j 2 J

We first present the lemma below.

Lemma 7.5 For q and qj[t] as defined above,

(q1[t]; : : :;qm[t]) = q � zi � (PJ)
t+1

Exercise 7.7.7 Prove Lemma 7.5 and Theorem 7.22(a).

7.7. PROBABILISTIC DURATION CALCULUS (PDC) 223

Proof: (Proof of Theorem 7.22(b)) Case (b) is proved from case (a):

q � (1�1i � (PJ)
t+1 �1c = q�q �1i � (PJ)

t+1 �1c

= q�µ(D^ (true; dvie)^ (`= k); dvJe)[t+ k+1] (Th.17(a))

= µ(D^ (true; dvie)^ (` = k); (`= t+1))[t+ k+1] (AR6)

�µ(D^ (true; dvie)^ (` = k); dvJe)[t+ k+1]

= µ(D^ (true; dvie)^ (` = k); dvJe_3dvJe)[t+ k+1] (Th.6(3))

�µ(D^ (true; dvie)^ (` = k); dvJe)[t+ k+1]

= µ(D^ (true; dvie)^ (` = k); dvJe)[t+ k+1]

+µ(D^ (true; dvie)^ (` = k); 3dvJe)[t+ k+1] (AR3)

�µ(D^ (true; dvie)^ (` = k); dvJe)[t+ k+1]

= µ(D^ (true; dvie)^ (` = k); 3dvJe)[t+ k+1]

2

Application to the mine pump example
Consider the simple mine pump of Section 7.7.1 which was analyzed in Section 7.7.4.
Let

V
∆
= fv1;v2g where: vi

∆
=

�
Ok if i = 1
:Ok if i = 2

p ∆
= (p1;p2) (where p1 = 1 and p2 = 0)

P ∆
=

�
p11 p12
p21 p22

�
A simple explicit expression for µ(:MP1)[t+1] follows directly from Corollary 2(b) of
Theorem 7.21:

µ(:MP1)[t+1] = 1�p � (Pp22
)t �1c = 1� (p1;p2) �

�
p11 p12
p21 0

�t

�
�

1
1

�
It is more difficult to express µ(:MP2)[t+1] explicitly by means of the present collection
of theorems. In DC, we can rewrite :MP2 as follows:

:MP2 , 3((d:Oke; eOke; d:Oke)^ (` � 31))
, 9k : ((true; d:Oke)^ (` = k); dOke^ (`� 29); d:Oke1; true)

224 CHAPTER 7. SPECIFICATION AND VERIFICATION IN DC

For a given t, µ(:MP2)[t] is non-zero only if t� k+h+1, where k � 1 and 1� h� 29.
Introducing

hmax = min((t� k�1);29)

we can express µ(MP2)[t] by a double summation over all possible ks and hs (this is be-
cause we can treat the existential quantification as a disjunction over all possible ks and
hs in which the disjuncts are mutually exclusive):

µ(:MP2)[t]
(by AR6)

=
t�2

∑
k=1

hmax

∑
h=1

µ(true; d:Oke)^ (` = k); dOke^ (` = h); d:Oke1[k+h+1]

(by Theorem 7.22 and Definition 7.7.5)

=
t�2

∑
k=1

hmax

∑
h=1

µ(true; d:Oke)^ (` = k); dOke^ (` = h))[k+h] � (z1 �Pf2g �1c)

(by Theorem 7.22 again)

=
t�2

∑
k=1

hmax

∑
h=1

µ(true; d:Oke)[k] � (z2 �Ph
f1g �1c) � (z1 �Pf2g �1c)

(by Theorem 7.18, Definition 7.7.5 and Definition 7.7.5)

=
t�2

∑
k=1

hmax

∑
h=1

(p �Pk�1 �h2) � (z2 �Ph
f1g �1c) � (z1 �Pf2g �1c)

7.9 Historical background

The motivation for DC originally came from the gas burner problem which was chosen
as the main case study of the ProCoS project (Bjørner et al., 1993; He et al., 1994). It
was then realized that control engineers use the properties of integrals and differentials of
functions widely in the description of requirements and for reasoning about the designs
of embedded systems. For example, the case study was required to formulate the safety
requirement of the gas burner in terms of variables denoting undesirable but unavoid-
able states such as Leak, which represents the flow of unlit gas from the nozzle: ‘The
proportion of time when gas leaks is not more than one twentieth of the elapsed time, if
the system is observed for more than one minute’.

A direct formulation of this requirement can be obtained using mathematical analysis;
for any interval [b;e] of the real-numbers:

(e�b)� 60) 20
R e

bLeak(t)dt � (e�b)

where Leak is a boolean valued step-function from the real-numbers (representing time).
But at the time of the start of the ProCoS project no calculus, apart from set theory, was
available to express and reason about the properties of integrals or differentials of func-
tions. Set theory is far too rich and thus difficult to use for system designs.

7.10. FURTHER WORK 225

Working on the formalization of integrals of boolean-valued functions, Zhou et al.
(1991a) developed the duration calculus. Integrals were considered as curried functions
from state functions and intervals to real numbers:R

: S! (I! R)

where S denotes the set of states (i.e. boolean-valued step-functions) and I the set of
bounded intervals of real numbers. Moszkowski’s ITL (1985), which uses a discrete time
domain and was developed for reasoning about hardware was extended with continuous
time and then adopted as the base logic for DC. Interval functions such as

R
P and

R
Q

then become interval variables of ITL.
As we have seen in this chapter, DC is a logic for formalizing and reasoning about a

system’s functional and safety properties. It does not provide the means for specifying
and reasoning about the reliability properties of an implementation in which imperfect
components are used. Since perfect components are not used in practice, and there is no
perfect implementation, there is a need for an extension to deal with probabilities. Liu
et al. (1993c) described a probabilistic duration calculus which is a modal logic about
prefix time intervals; this did not need reference to the time variable t in a probabilistic
term µ(D). The same authors developed a first-order logic (Liu et al., 1994b) for the
calculation of µ(D)[t] and this is the version presented in Section 7.7.

Liu et al. (1993c; 1994b) assume discrete time and model an imperfect implementa-
tion as a finite automaton with fixed history, independent of the transition probabilities.
This makes discrete Markov processes appropriate as the basis for the calculus. In com-
parison with Liu et al. (1993c), the first-order logic in Liu et al. (1994b) is easier to un-
derstand and can be used without loss of expressiveness; the latter also gives more details
and adds computation-oriented theorems to the theory, making the calculus more mech-
anizable and also more accessible to reliability engineers.

7.10 Further work

After its initial development, there has been considerable further research on DC: theo-
retical developments of the calculus, extensions and application-related work.

7.10.1 Theoretical work

Assuming finite variability of states, a formal semantics of DC was given in Hansen and
Zhou (1992). Based on this semantics, they also proved that the axioms and rules pre-
sented here in Section 7.5 constitute a relatively complete calculus for DC. Results on
decidability and undecidability of DC have appeared in Zhou et al. (1993a) and a proto-
type mechanized proof assistant has been implemented by coding the semantics of DC in
the logic of PVS (Skakkebæk & Shankar, 1994). An efficient model checking algorithm
for linear duration invariants has been given in Zhou et al. (1994). An overview on DC
and its extensions can be found in Zhou (1993).

226 CHAPTER 7. SPECIFICATION AND VERIFICATION IN DC

For PDC, parallel composition of (open) probabilistic automata is defined in Liu et al.
(1993a; 1993b). There, refinement of a probabilistic automata into another through par-
allel composition (or decomposition) is formalized, and some compositional proof rules
in terms of PDC are investigated. PDC has been extended by Dang and Zhou (1994) for
continuous time.

7.10.2 Extensions

The basic DC has several extensions, among which are the probabilistic calculi of Liu
et al. (1993c; 1994b). Another extension, called the Extended Duration Calculus (Zhou
et al., 1993b), was designed for the specification and verification of hybrid systems which
include continuous and discrete states. Here, the arguments of the lifting operator d�e are
generalized to allow not only boolean-valued functions but also properties like equality
and inequality (we have already seen these used in the mine pump example), continuity,
etc. For example, with formulas like dContinous(v)e it is possible to assert that function
v is continuous in an interval and with dv̇ = 0e to assert that v is stable (or constant) in
an interval.

Ravn (1994) uses DC and its extensions to investigate both fundamental and practi-
cal issues involved in the formal development of embedded real-time systems, including
hybrid systems. The paper links DC to the mathematical analysis of continuous func-
tions by allowing the initial and final values, b.f and e.f , of a function f to be defined,
as well as its duration

R
f over an interval. The basic DC has also been extended to the

Mean Value Calculus (Zhou & Xiaoshan, 1994) by replacing integrals of boolean-valued
functions with their mean values. In this extended calculus, both durations of states and
point values of states can be expressed, and the latter become significant when a state-
based system requirement is to be refined into a communication-based set of components,
because communications are instant actions.

The basic DC and these extensions are restricted to finite intervals and use the chop
operator as the only means of contracting subintervals to a given interval. The restric-
tion prevents the use of DC for specifying unbounded liveness and fairness properties,
such as two users who are served so fairly that they have exactly equal service durations.
To accommodate unbounded liveness and fairness, several extensions to DC have been
proposed. The first approach to extending DC for specifying unbounded liveness and
fairness was to introduce expanding modalities in DC, while keeping the restriction of
finite intervals. Pandya (1994) defined two weakest inverses of the chop operator. En-
gel and Rischel (1994) generalized the chop operator by introducing backward intervals.
Based on Venema’s (1991) interval temporal logic Skakkebæk (1994) added two expand-
ing modalities into DC, which are symmetric and designated as . and /. An interval sat-
isfies D1 .D2 iff there exists c such that c� b, [a;c] satisfies D1 and [b;c] satisfies D2.

Although these extensions can express liveness and fairness properties, they are still
unable to differentiate syntactically between a finite and an infinite system behaviour.
An infinite behaviour determines a system eternally, while a finite behaviour determines
system states up to some moment in time, possibly allowing arbitrary continuation. It is

7.11. EXERCISES 227

still difficult to define sequential composition using these finite interval based extensions
of DC. Zhou et al. (1995) addresses this problem by introducing new states, rather than
new modalities, to indicate termination, refusals or ready syntactically. This resembles
the method used for extending the finite trace based version of CSP (see Chapter 6).

Zhou et al. (1995) mainly investigates a third way of extending DC for liveness and
fairness properties by introducing infinite intervals into the calculus. The extended cal-
culus, called a Duration Calculus with Infinite Intervals (DCi), is a first-order logic of
finite and infinite satisfactions of DC. The basic formulas of DCi are Df and Di, where D
is a formula of DC. Df may hold only for finite intervals, and Di may hold only for infinite
intervals . A finite interval satisfies Df iff the interval satisfies D in terms of the semantics
of DC. An infinite interval satisfies Di iff all its finite prefixes satisfy D in terms of the
semantics of DC. It was shown that DCi could conveniently specify unbounded liveness
and fairness properties, and define sequential composition in a programming language in
a much simpler way.

7.10.3 Application work

DC has been used to define and refine requirements and designs for a number of examples
including a gas burner (Ravn et al., 1993), a railway crossing (Skakkebæk et al., 1992),
a water level controller (Engel et al., 1993) and an auto pilot (Ravn & Rischel, 1991).
It also has been used to define the real-time semantics of programming languages (Zhou
et al., 1991b; He & Bowen, 1992; Hansen et al., 1993a), to specify real-time scheduling
policies (Zhou et al., 1991b; Zhang & Zhou, 1994) and to specify the real-time behaviour
of circuits (Hansen et al., 1992). Applications of the extended duration calculus to hybrid
systems can be found in Hansen et al. (1993b) and in Yu et al. (1994a; 1994b).

7.11 Exercises

Exercise 7.1 Prove the following useful formulas:

1. (true ; true), true
2. (dP1e ; true)^ (dP2e ; true), (dP1^P2e ; true)
3. (F) G)) (3F)3G)
4. 33F ,3F
5. 3(F ^G),3F ^3G
6. 3(F ; G))3F ^3G
7. (F) G)) (2F)2G)

Exercise 7.2 For each formula with 3 in Exercise 7.1 find and prove a dual formula
using 2.

Exercise 7.3 For the abbreviation dF e t�! dPe defined in Section 7.2, prove the fol-
lowing formulas:

228 CHAPTER 7. SPECIFICATION AND VERIFICATION IN DC

1

1 1

1�p

r

p1

e

s mb

Figure 7.8 A protocol over an unreliable medium

1. dPe t�! d:Pe ,2(dPe) `� t)

2. (dP1e t�! dP2e)^ t � t0) dP1e t0�! dP2e
3. (dP1e t1�! dP2e)^ (dP1 ^P2e t1�! dP3e)) dP1e t1+t2�! dP2^P3e
4. (dPe c�! d:Pe)^ ((dPe ; d:Pe) �t�c�! d:Pe))2(`� t) RP� c)

Exercise 7.4 Specify a scheduling policy that has an overhead of δ time units whenever
a process has to be either placed on a processor for execution or removed from a proces-
sor.

Exercise 7.5 Figure 7.8 illustrates a protocol over an unreliable medium which trans-
mits a message from a process called Sender to a process called Receiver through a buffer.
s, b, m and r are states when the sender, the buffer, the medium and the receiver, respec-
tively, are active; e represents the error state of the medium. Calculate the following
probabilities using the PDC rules:

1. µ(
R

r > 0)[t]

2.
µ(D1^D2)[t]

µ(D2)[t]
, where

D1
∆
= (true; dee)^ (` = k); d:ee^ (` = k1); dee; true

D2
∆
= (true; dee)^ (` = k); true

Exercise 7.6 Use matrix-based theorems to calculate the probabilities of Exercise 7.5.

Chapter 8

Real-time Systems and Fault-tolerance

Henk Schepers

Introduction

When a component of a computer system fails, it will usually produce some undesir-
able effects and it can be said to no longer behave according to its specification. Such
a breakdown of a component is called a fault and its consequence is called a failure. A
fault may occur sporadically, or it may be stable and cause the component to fail perma-
nently. Even when a fault occurs instantaneously, a fault such as a memory fault may
have consequences that manifest themselves after a considerable time.

Fault-tolerance is the ability of a system to function correctly despite the occurrence
of faults. Faults caused by errors (or ‘bugs’) in software are systematic and can be repro-
duced in the right conditions. The formal methods described in previous chapters address
the problem of errors in software and, while their use does not guarantee the absence of
software errors, they do provide the means of making a rigorous, additional check. Hard-
ware errors may also be systematic but in addition they can have random causes. The fact
that a hardware component functions correctly at some time is no guarantee of flawless
future behaviour; in Chapter 7, the formal treatment of random faults was described using
the probabilistic duration calculus. Note that hardware faults often affect the correct be-
haviour of software. One of the reasons for introducing dynamic scheduling (see Chapter
4) is to deal with the unexpected computational load imposed when faults do occur.

Of course, it is not possible to tolerate every fault. A failure hypothesis stipulates how
faults affect the behaviour of a system. An example of a failure hypothesis is the assump-
tion that a communication medium might corrupt messages. With triple modular redun-
dancy, a single component is replaced by three replicas and a voter that determines the
outcome, and the failure hypothesis is that at any time at most one replica is affected by
faults. A failure hypothesis divides abnormal behaviour, i.e. behaviour that does not con-
form to the specification, into exceptional and catastrophic behaviours. Exceptional be-
haviour conforms to the failure hypothesis and must be tolerated, but no attempt need be
made to handle catastrophic behaviour (and, indeed, no attempt may be possible). For ex-
ample, if the communication medium mentioned earlier repeatedly sends the same mes-

229

230 CHAPTER 8. REAL-TIME SYSTEMS AND FAULT-TOLERANCE

sage, then this may be catastrophic for a given fault-tolerance scheme. It is important to
note that ‘normal’ behaviour does not mean ‘perfect’ behaviour: after a time-out occurs,
the retransmission of a message by a sender is normal but it may result in two copies of
the same message reaching its destination. Exceptional and normal behaviours together
form the acceptable behaviour that the system must tolerate. This chapter is concerned
with the following question: can we reason about acceptable behaviour in the same way
that we reason about normal behaviour?

We shall use the compositional proof method of Chapter 5 for reasoning about accept-
able behaviour, and the failure hypothesis of a system will be formalized as a relation
between its normal and acceptable behaviour. Such a relation will allow us to abstract
from the precise nature and occurrence of faults and focus on the abnormal behaviour
that might be caused. This will lead us to a proof rule by which a specification of the ac-
ceptable behaviour can be obtained from the specification of the normal behaviour and a
predicate characterizing the failure hypothesis. Given a failure hypothesis χ, Poχ stands
for ‘P under χ’ and means execution of process P under the assumption χ. The accept-
able behaviour of process P under the failure hypothesis χ is the normal behaviour of the
failure prone process Poχ.

Use of the method will be demonstrated on the mine pump problem. We shall describe
how each component can be affected by malfunctions and then devise ways to tolerate
the failures. Because we have to be particularly careful, shifts might be missed unneces-
sarily. However, we shall prove that the resulting system is safe, i.e. it will not cause an
explosion.

8.1 Assertions and correctness formulae

Let R be a special variable referring to the timed occurrence function (see Section 5.1.2)
which denotes the observable behaviour of a real-time system. Let MVAR be a set of
logical variables with typical element M ranging over timed occurrence functions. The
boolean primitive O@texp will be considered as an abbreviation of O 2 R(texp). In ad-
dition, the boolean primitive O@M texp will be used as an abbreviation of O 2M(texp)
and similarly we shall use P during M I � 8t 2 I � P@M t, and P inM I � 9 t2 I � P@M t.

Since R refers to all observables, the unrestricted occurrence of R in assertions leads
to problems when trying to apply the parallel composition rule.

Definition 8.1 (Event projection) If E is a set of observable events and ρ is a mapping,
the restriction ρ # E of ρ to E at time τ is

(ρ # E)(τ) = ρ(τ)\E

3

Define obs(R # E) = E.

Definition 8.2 (Interval projection) For an interval I � TIME and a mapping ρ, ρ # I is
the restriction of ρ with respect to I and is defined as

8.1. ASSERTIONS AND CORRECTNESS FORMULAE 231

(ρ # I)(τ) =
�

ρ(τ) if τ 2 I
ø if τ 62 I

�
3

Let x0 denote the initial state value of a variable x and let now now0 denote the starting
time. Then instead of

hhx = v� 0 ^ now = t < ∞iiSQRT hhx =
p

v ^ t+3� now < t+5ii

we may write, using now0 to refer to the starting time

hhx0 � 0 ^ now0 < ∞iiSQRT hhx =
p

x0 ^ now0 +3� now < now0 +5ii

Let var(ϕ) denote the program variables in ϕ and var0(ϕ) the variables x 2 VAR such
that x0 appears in φ. An assertion will be interpreted with respect to a 4-tuple (σ0;σ;ρ;γ).
The state σ0 gives now0 and the terms x0 their value; the state σ, the mapping ρ and the
environment γ are as defined in Chapter 5. The most important cases are:

� V [[now0]](σ0;σ;ρ;γ) = σ0(now)
� V [[x0]](σ0;σ;ρ;γ) = σ0(x)
� V [[R]](σ0;σ;ρ;γ) = ρ
� V [[M]](σ0;σ;ρ;γ) = γ(M) for M 2MVAR

Furthermore,

� (σ0;σ;ρ;γ) j= 9M � ϕ iff there is some bρ such that (σ0;σ;ρ; (γ : M 7! bρ)) j= ϕ

and if var0(ϕ) =ø then (σ0;σ;ρ;γ) j=ϕ iff (σ;ρ;γ) j=ϕ according to the definition (Sec-
tion 5.2.3).

These additions lead to a slightly different definition of the validity of a correctness
formula.

Definition 8.3 (Valid correctness formula) If X 2 VAR� is the list of all variables x 2
var(A) and X0 is the corresponding list of terms x0, the correctness formula hhAiiP hhCii
is valid, j= hhAiiP hhCii, iff for all γ and σ0 and any σ and ρ with (σ;ρ) 2M [[P]](σ0):

(σ0;σ;ρ;γ) j= A[X0=X;now0=now]! C

3

If var0(C) = ø then this reduces to the original definition. In this chapter, all program
variables are assumed to be local.

232 CHAPTER 8. REAL-TIME SYSTEMS AND FAULT-TOLERANCE

8.2 Formalizing a failure hypothesis

A failure hypothesis χ of program P is a predicate relating the normal and acceptable
executions of P. To define such a predicate, we extend the assertion language with the
special variables nownml and Rnml, and associate with each term x the term xnml.

R, now and x refer to an observation of P, possibly afflicted by faults. Since our task
is to show that a system tolerates the abnormal behaviour of its components to the ex-
tent expressed by the failure hypothesis, R, now and x refer to an observation of P that is
acceptable with respect to χ.

On the other hand, Rnml, nownml and xnml refer to a normal observation of P. For ex-
ample, xnml refers to the value of the program variable x in the final state of a normal
execution, while x denotes its value in the final state of an acceptable execution. Note
that the state in which an execution is started is not affected by faults occurring later in
the execution.

For instance, consider the program INC : x := x+1, which may be subject to a stuck-at-
zero-fault in the hardware which does not affect the execution time (i.e. now = nownml)
but causes the final value of x to be zero (i.e. x = xnml _ x = 0). This is defined in the
failure hypothesis StuckAtZero.

StuckAtZero � (x = xnml _ x = 0)^ now = nownml ^ R = Rnml

Note: This formalization does not depend on what the final value of x ought to be. 3

If the mapping R has x as an observable, the clause R=Rnml will be unrealistic. In such
a case, the failure hypothesis should show that there may be a time during the execution
at which x becomes and remains zero. As mentioned before, in this chapter program vari-
ables are not observable.

Note: We shall assume that communication channels and lines are not prone to failure
and that the axiomatization of their properties, given in Chapter 5, still applies. 3

Sentences of the extended assertion language are called transformation expressions,
typically denoted by ψ. Let varnml(ψ) denote those variables x 2 VAR for which there is
a corresponding xnml in ψ. A transformation expression is interpreted with respect to a
tuple:

(σ0;σnml;σ;ρnml;ρ;γ)

where the state σnml is used to evaluate the terms xnml, the mapping ρnml gives Rnml its
value and, as before, the state σ0 is used to evaluate the terms x0, the state σ interprets
the terms x, the mapping ρ gives R its value and the environment γ interprets the logical
variables:

� V [[xnml]](σ0;σnml;σ;ρnml;ρ;γ) = σnml(x) for x 2 VAR
� V [[x]](σ0;σnml;σ;ρnml;ρ;γ) = σ(x) for x 2 VAR
� V [[Rnml]](σ0;σnml;σ;ρnml;ρ;γ) = ρnml

8.2. FORMALIZING A FAILURE HYPOTHESIS 233

� V [[R]](σ0;σnml;σ;ρnml;ρ;γ) = ρ

O@nml t will be used as an abbreviation for O 2 Rnml(t), etc.

Since Rnml, nownml, and xnml do not appear in assertions, the following lemma is trivial.

Lemma 8.1 (Correspondence) For an assertion ϕ,

(σ0;σnml;σ;ρnml;ρ;γ) j= ϕ iff(σ0;σ;ρ;γ) j= ϕ

2

Definition 8.4 (Valid transformation expression) A transformationexpression ψ is valid,
j= ψ, iff for all σ0, σnml, σ, ρnml, ρ and γ, it is the case that (σ0;σnml;σ;ρnml;ρ;γ) j= ψ.

3

A failure hypothesis χ is a transformation expression which respects the communication
and invariance properties defined in Chapter 5. Thus, a failure hypothesis will not al-
low the derivation of properties which violate those defined earlier, e.g. send(c)@ 3^
waitrec(c)@ 3 or now = ∞! x = 5.

Definition 8.5 (Failure hypothesis) A failure hypothesis χ guarantees that the normal
behaviour is part of the acceptable behaviour and thus χ is a reflexive relation on the
normal behaviour:

j= χ ! χ[Xnml=X;nownml=now;Rnml=R]

where X is a list of the variables x 2 var(χ) and Xnml is the corresponding list of terms
xnml.

No failure can occur before the program starts execution, or after its termination. So
χ must ensure that R equals Rnml before the start of the execution and χ does not restrict
the behaviour after termination:

j= χ ! R # [0;now0] = Rnml # [0;now0]
and
j= χ ! 8M � (M # [0;now] = R # [0;now] ! χ[M=R])

3

Poχ represents the execution of program P under the assumption χ. The observations of
the failure prone process FPoχ are those that are related by χ to the observations of FP:

M [[FPoχ]](σ0) = f (σ;ρ) 2MOD j there exists a (σnml;ρnml) 2M [[FP]](σ0)
such that for all γ
(σ0;σnml;σ;ρnml;ρ;γ) j= χg

The set M [[FPoχ]](σ0) represents the acceptable behaviour of FP under the failure hy-
pothesis χ, which is the normal behaviour of the failure prone program FPoχ.

Transformation expressions can be functionally composed.

234 CHAPTER 8. REAL-TIME SYSTEMS AND FAULT-TOLERANCE

Definition 8.6 (Composite transformation expression) If X 2 VAR� is the list of all x 2
VAR such that x 2 var(χ1)\ varnml(χ2), Xnml is the corresponding list of terms xnml and
V is a list of fresh logical value variables of the same length as X, then a composite trans-
formation expression χ1 oχ2 is

χ1 oχ2 � 9 t;V;M � (χ1[V=X; t=now;M=R]^χ2[V=Xnml; t=nownml;M=Rnml])
3

Thus χ1 oχ2 means the application of χ1 and then χ2.
Consider the transformation expressions χ1 � (x = xnml_ x = 0)^ (y = ynml_ y = 3)

and χ2 � (y = ynml_ y = 1)^ (z = znml_ z = 2). By definition,

χ1 oχ2 � 9v � (x = xnml_ x = 0)^ (v = ynml_ v = 3)
^ (y = v_ y = 1)^ (z = znml_ z = 2)

that is, χ1 oχ2 � (x = xnml_ x = 0)^ (y = ynml_ y = 1_ y = 3)^ (z = znml_ z = 2)
The operator χ will also be used to compose assertions and transformation expressions,

e.g. ϕoχ, in commitments. If X 2 VAR� is a list of all x2 varnml(χ), Xnml the correspond-
ing list of terms xnml and V is a list of fresh logical value variables of the same length as
X, then the composite expression ϕoχ is equivalent to

9 t;V;M � (ϕ[V=X; t=now;M=R]^χ[V=Xnml; t=nownml;M=Rnml])

This replaces all terms xnml that occur in χ by logical value variables. And since ϕ is an
assertion, Rnml, nownml and the terms xnml do not appear in ϕ and the composite expres-
sion ϕoχ is also an assertion.

Since the interpretation of assertions has not changed, the validity of a correctness for-
mula hhAiiFP hhCii remains as defined in Section 8.1.

8.3 A proof rule for failure prone processes

An assumption A may refer to actions that occur during the execution of a program. Since
faults can affect those occurrences, assumptions should not place restrictions on observ-
able events beyond the starting time. Let

NonProphetic(ϕ) � ϕ ! 8M � (M # [0;now] = R # [0;now]! ϕ[M=R])

Then the acceptable behaviour of a process is given in terms of its normal behaviour and
a predicate representing the failure hypothesis.

Rule. 8.1 (Failure hypothesis introduction)

hhAiiFP hhCii ; NonProphetic(A)

hhAiiFP oχ hhCoχii
Soundness and completeness of this rule are proved in Section 8.5.

8.3. A PROOF RULE FOR FAILURE PRONE PROCESSES 235

Example 8.1 If the program INC terminates after three and within at most five time
units, it can be shown that it satisfies

hhnow < ∞iiINC hhx = x0 +1 ^ now0+3 < now < now0+5ii

Since NonProphetic(now < ∞), the failure hypothesis introduction rule gives

hhnow < ∞iiINCoStuckAtZero hh9 t;v � v = x0 +1
^now0 +3 < t < now0 +5
^ (x = v_ x = 0) ^ now = tii

i.e.

hhnow < ∞iiINCoStuckAtZero hh x = x0 +1_ x = 0
^now0 +3 < now < now0 +5ii

Example 8.2 Consider the program F with specification

hhtrueiiF hh8 t < ∞;v� rec(in;v)@t
! (:waitsend(out)) during [t; t+Tcomp)
^await send(out; f (v))@ t+Tcompii

Suppose, due to faults, that the computation time increases by a factor ∆. For the sake
of simplicity, let us assume that the individual inputs are far enough apart in time not to
be influenced by this (i.e. rec(in;v)@nml t$ rec(in;v)@t). Then, faults only affect the
willingness of the process to perform an out communication, i.e.

(:waitsend(out)) during nml [t1; t2)$ (:waitsend(out)) during [t1; t2+∆)

and

await send(out;v)@nml t$ await send(out;v)@t+∆)

Formally,

Slow�8t < ∞;v � (rec(in;v)@nml t$ rec(in;v)@t)
^ 8t1; t2 < ∞�(:waitsend(out)) during nml [t1; t2)

$ (:waitsend(out)) during [t1; t2+∆)
^ 8t < ∞;v �awaitsend(out;v)@nml t

$ await send(out;v)@t+∆

Notice that this formalization is transparent to the original computation time and the com-
puted function.

Since NonProphetic(true), the failure hypothesis introduction rule yields

236 CHAPTER 8. REAL-TIME SYSTEMS AND FAULT-TOLERANCE

hhtrueii
FoSlow
hh9M�8t < ∞;v�rec(in;v)@M t

!(:waitsend(out)) during M [t; t+Tcomp)
^await send(out; f (v))@M t+Tcomp

^ 8t < ∞;v � (rec(in;v)@M t$ rec(in;v)@t)
^ 8t1; t2 < ∞ � (:waitsend(out)) during M [t1; t2)

$ (:waitsend(out)) during [t1; t2+∆)
^8t < ∞;v �awaitsend(out;v)@M t

$ await send(out;v)@t+∆ii

or, equivalently,

hhtrueiiFoSlowhh8 t < ∞;v � rec(in;v)@t
! (:waitsend(out)) during [t; t+Tcomp+∆)
^await send(out; f (v))@ t+Tcomp+∆ii

8.4 Reliability of the mine pump

We shall now look more closely at the components of the mine pump system that are
prone to failure:

� The sensors may provide incorrect readings or readings.
� The pump may break down.
� The pump controller may fail to switch the pump on when the water level is high,

or off when the methane level reaches the danger threshold.
� The communication lines between various components may be broken.

Note that there is no observable difference between a component with a broken commu-
nication line and a non-responding component. (We do not consider here the communi-
cation errors that may occur in practice: see Exercises 8.3 and 8.4 for a number of fault
models that apply to communication media.)

Given these sources of failure, the most important task is to make sure that explosions
do not occur. Therefore, we have to guarantee that the pump is never working when the
methane level is high, even if this means losing a shift. We will successively deal with
unreliable sensors, unreliable pumps and unreliable pump controllers. Finally, we will
demonstrate that with the measures taken the operation of the mine is indeed safe.

8.4.1 Unreliable sensors

A defective sensor may produce incorrect readings, or no readings at all. So the only
means of failure detection is by replication and comparison. Let each sensor be replaced

8.4. RELIABILITY OF THE MINE PUMP 237

alarmw

alarms

wch

wch1

wch2

wch3

WSens1

WSens2

WSens3

WSVot

Figure 8.1 A triplicate water level sensor

by three sensors, using triple modular redundancy. A ‘voter’ component can then detect
only that a single sensor or its line has failed since these failures will be indistinguishable.

Figure 8.1 shows the resulting system for a water level sensor. Assume that the line
between the voter and the pump controller can be considered to be fault-free because of
the short distance. For simplicity, assume that the voter never fails.

An unreliable sensor can:

1. send correct readings, and in time,
2. send incorrect readings, but in time, or
3. send no readings at all.

(3) occurs also when the sensor that produced incorrect readings is being replaced. Let
the following abbreviations be used for each of these conditions. For k = 1;2;3:

SensOK(wchk)@ t � R # fwchkg(t) = Rnml # fwchkg(t)
SensFaulty(wchk)@ t� R # fwchkg(t) = ø ^ :send(wchk)@nml t

_ send(wchk)@ t ^ send(wchk)@nml t
SensNC(wchk)@ t � R # fwchkg(t) = ø

Note: These predicates do not exclude each other because it is not always possible to tell
whether or not a device is in sound working order. 3

Then the failure hypothesis UnRel is

UnRel(wchk) � 8t < ∞ � SensOK(wchk)@ t
_SensFaulty(wchk)@ t
_SensNC(wchk)@ t
^wl(t) = wlnml(t)

238 CHAPTER 8. REAL-TIME SYSTEMS AND FAULT-TOLERANCE

(Although this definition is sufficient for our purposes here, it can be easily adapted to
express quantitative requirements, such as the mean time between failures and the mean
time to repair.)

The voter should produce a reading at least once every ∆ws time units. Since voting
will take some time, we require the sensors to send a reading within the first δws time
units of each ∆ws period, where δws < ∆ws:

WSensC1(wchk) � 8i � send(wchk) in [i∆ws; i∆ws +δws]

As before, we assume that a correct reading does not differ too much from the actual
level, i.e. that the error is bounded by some value εws:

WSensC2(wchk) � 8t < ∞;v � send(wchk;v)@t
! v� εws � wl(t) � v+ εws

Define WSensC(wchk) � WSensC1(wchk)^WSensC2(wchk). Then, for k = 1;2;3,

hhnow = 0iiWSensk hhWSensC(wchk)ii (8.1)

Because no two sensors are identical, their readings may differ slightly, even when
taken at the same time. Assume that the voter WSVot takes the average of the two closest
values (the so-called inexact voting). If the reading of one sensor differs substantially
from those of the other two, the voter calls for maintenance on the channel alarms by
asynchronously sending the identification number of the faulty sensor. Notice that this
method only works provided the voter receives at least two correct readings in time.

Failure of a sensor reading to arrive may be due to a defective sensor, or a broken line.
Given CWSens1, this absence can easily be detected. A call for maintenance can then be
sent on the channel alarmw.

During the first δws of each ∆ws interval, the voter WSVot is always willing to receive
one reading from each sensor:

WSVotC1 � 8i;k 2 f1;2;3g�waitrec(wchk) during [i∆ws; i∆ws +δws]
_ 9 t;v� i∆ws � t < i∆ws +δws

^waitrec(wchk) during [i∆ws; t)
^rec(wchk;v)@t
^(:rec(wchk)) during (t; i∆ws +δws]

We have to assume that there are at least two correct readings for each vote. Then in-
exact voting can be considered as applying a function InexactVote which takes three in-
puts. The result part of the outcome is the average of the two values that are closest to
each another; the dissent part is either zero or identifies the value that differs substantially
from the other two. Let the application of the function take TInexactVote time units which
is small enough to guarantee that the voter can produce a reading before the end of the
∆ws interval, i.e. δws+TInexactVote is smaller than ∆ws. The voter produces output as soon
as possible, i.e.

1. if all three readings get through in time, TInexactVote time units after the last vote is
received, and

8.4. RELIABILITY OF THE MINE PUMP 239

2. if only two readings get through in time, TInexactVote time units after the δws win-
dow closes; in this case, by our assumption, these readings are correct. Let the
distinguished value † stand for the missing value when applying InexactVote.

Thus:

WSVotC2 � 8i; t < ∞;v� send(wch;v)@i∆ws + t
$ 9 t1; t2; t3;v1;v2;v3�
^3

k=1 0� tk � δws

^3
k=1rec(wchk;vk)@ i∆ws + tk
^v = result(InexactVote(v1;v2;v3))
^t = max(t1; t2; t3)+TInexactVote

_ 9 t1; t2;v1;v2;k; l;m�
^2

k=1 0� tk � δws

^k 6= l ^ k 6= m ^ l 6= m
^rec(wchk;v1)@ i∆ws + t1
^rec(wchl;v2)@ i∆ws + t2
^waitrec(wchm) during [i∆ws; i∆ws +δws]
^v = result(InexactVote(v1;v2;†))
^t = δws +TInexactVote

The voter calls for maintenance only when necessary, and then as soon as possible:

1. When one sensor’s reading differs too much from the readings of the other two,
the voter sends this sensor’s identity along the channel alarms in TInexactVote time
units after the last vote is received.

2. When one sensor’s reading does not get through, the voter sends this wire’s identity
along the channel alarmw in TNoVote time units after the δws window closes, where
TNoVote < TInexactVote.

This is defined as follows:

WSVotC3 � 8i; t < ∞;v� send(alarms;v)@ i∆ws + t
$9 t1; t2; t3;v1;v2;v3�
^3

k=1 0� tk � δws

^3
k=1rec(wchk;vk)@ i∆ws + tk
^v = dissent(InexactVote(v1;v2;v3)) 6= 0
^t = max(t1; t2; t3)+TInexactVote

^ send(alarmw;v)@ i∆ws + t
$ waitrec(wchv) during [i∆ws; i∆ws +δws]
^ t = δws +TNoVote

Define WSVotC � WSVotC1^WSVotC2^WSVotC3 Then,

hhnow = 0iiWSVot hhWSVotCii (8.2)

It can be shown, after the manner of Chapter 5, that there does indeed exist a voterWSVot
for which hhnow = 0iiWSVot hhWSVotCii; we leave this as an exercise (Exercise 8.6).

Readings are available from at least two of the three sensors for each vote:

240 CHAPTER 8. REAL-TIME SYSTEMS AND FAULT-TOLERANCE

UnRel�1 �^3
k=1 UnRel(wchk)
^8i�9k 6= l 2 f1;2;3g�

SensOK(wchk) during [i∆ws; i∆ws +δws]
^SensOK(wchl) during [i∆ws; i∆ws +δws]

Note: If one sensor has already been reported as faulty, it would be possible also to tol-
erate incorrect readings from another sensor if, for example, the voter selects the more
pessimistic of the readings of these two sensors (for the methane level, for instance, this
is the higher reading). 3

The term now does not occur in WSensC(wchk), k = 1;2;3, so by applying the proof
rule for parallel composition we obtain from (8.1):

hhnow = 0iiWSens1kWSens2kWSens3 hh^3
k=1WSensC(wchk)ii

Clearly, NonProphetic(now = 0). Hence, by the rule for failure hypothesis introduction,
we may conclude that

hhnow = 0ii (WSens1kWSens2kWSens3)oUnRel�1 hhUnrelWSensCii (8.3)

where

UnrelWSensC � 9N � (^3
k=1WSensC(wchk))[N=R]

^UnRel�1[N=Rnml]

We can now prove that, even in the presence of faults, at least two correct readings are
produced every ∆ws time units.

Lemma 8.2 UnrelWSensC ! 8i � 9k 6= l � (WSC(wchk)^WSC(wchl)) where

WSC(wchk) � send(wchk) in [i∆ws; i∆ws +δws]
^ 8t 2 [i∆ws; i∆ws +δws] � send(wchk;v)@t

! v� εws � wl(t) � v+ εws

Proof: Assume UnrelWSensC, i.e. assume that there exists an N such that

(^3
k=1WSensC(wchk))[N=R] ^ UnRel�1[N=Rnml] (8.4)

By (^3
k=1WSensC(wchk))[N=R], we obtain

8k 2 f1;2;3g � 8 i � send(wchk) inN [i∆ws; i∆ws +δws]
^ 8 t < ∞;v � send(wchk;v)@N t

! v� εws � wl(t) � v+ εws

(8.5)

By UnRel�1[N=Rnml], we know that

8i � 9k 6= l � 8 t 2 [i∆ws; i∆ws +δws];v �
send(wchk;v)@N t $ send(wchk;v)@t
^ send(wchl;v)@N t $ send(wchl;v)@t

(8.6)

8.4. RELIABILITY OF THE MINE PUMP 241

The lemma follows from (8.4), (8.5), and (8.6). 2

By the rule for parallel composition, and (8.3) and (8.2), we know that for

TripleWSens � ((WSens1kWSens2kWSens3)oUnRel�1)kWSVot
it is the case that

hhnow = 0iiTripleWSenshhUnrelWSensC^WSVotCii
The next step is to prove that TripleWSens still produces output at least once every
∆ws time units, but that the time taken for voting causes the δws window to increase by
TInexactVote time units.

Lemma 8.3 hhnow = 0iiTripleWSenshhWSensC1(wch)[δws +TInexactVote=δws]ii
Proof: By the consequence rule, we need to prove that

(UnrelWSensC^WSVotC) ! WSensC1(wch)[δws +TInexactVote=δws]

Therefore, assume that UnrelWSensC^WSVotC , or, consequently,

UnrelWSensC^WSVotC1^WSVotC2 (8.7)

By UnrelWSensC and Lemma 8.2, we obtain

8i � 9k 6= l � send(wchk) in [i∆ws; i∆ws +δws]
^ send(wchl) in [i∆ws; i∆ws +δws]

By WSVotC1 from (8.7), this leads to

8i � 9k 6= l � rec(wchk) in [i∆ws; i∆ws +δws]
^ rec(wchl) in [i∆ws; i∆ws +δws]

(8.8)

Independently of whether or not

^3
k=1 rec(wchk) in [i∆ws; i∆ws +δws]

holds for a particular i, we know from WSVotC2 in (8.7) and (8.8) that there exists a
t� δws +TInexactVote such that send(wch)@i∆ws + t Consequently,

8i � send(wch) in [i∆ws; i∆ws +δws +TInexactVote]

2

The following lemma states that due to delays caused by the voting, the reading error
can increase by as much as dεws = λmax

in (3
2δws + TInexactVote).

Lemma 8.4 hhnow = 0iiTripleWSenshhWSensC2(wch)[εws+dεws=εws]ii.
Proof: We leave this as an exercise (Exercise 8.7).

Hence, by Lemmas 8.3 and 8.4:

hhnow = 0iiTripleWSenshhWSensC(wch)[δws+TInexactVote=δws ;
εws+dεws=εws]ii

(8.9)

One effect of triple modular redundancy is that it results in less accurate readings. Since
the original requirement is for at least one reading every ∆ws time units, the increase of
the δws window is not a problem.

242 CHAPTER 8. REAL-TIME SYSTEMS AND FAULT-TOLERANCE

8.4.2 An unreliable pump

If the pump breaks down while running, the outflow drops to zero within some δbd time
units. For simplicity, let us assume that δbd equals δp (see Chapter 5). Malfunctioning of
the pump may also mean that there is no outflow when the pump is activated. Suppose
that, due to the space limitations in the mine shaft, the pump cannot be replicated and
that a defective pump must be replaced. During such a replacement, work can continue
in the mine until the water level rises above a limit.

One way to monitor the proper functioning of a pump is to look for a reduction in the
water level. But, in practice, the feedback would be too slow to be of much use. So to
detect a defective pump we add a water flow sensor to monitor the pump’s outflow. This
sensor is also triplicated.

Failure of the pump to start, or to stop, can be due to a broken control channel. A pump
that will not stop is a hazard as it can burn out if there is no water to pump, or cause
an explosion if the methane level is critical. A broken control channel can be detected
indirectly using the water flow sensors.

Typically, a pump is switched on by energizing a relay. To model this, we replace the
channel pch by the line pln (see Section 5.4.3). Let pln(texp) represent the voltage level
of the line pln at time texp. Assume that the line pln is either high (i.e. pln= 1), or low
(i.e. pln= 0). Assume also that the voltage level drops to zero if the wire is broken. This
provides a fail-safe system: if the wire is broken, the relay is not energized and the pump
stops within δp time units.

Let the maximum outflow of the pump be λmax
out (see Chapter 5):

PumpC1 � 8t < ∞ � 0� outflow(t) < λmax
out

The delays in switching the relay on or off are usually insignificant when compared to
the pump’s reaction time of δp. Consequently, we can safely assume that the pump starts
within δp time units of the line pln becoming high:

PumpC2 � 8t1; t2 < ∞ � pln= 1 during (t1; t2]
! outflow� λmin

out during [t1 +δp; t2]

Similarly, assume that the pump stops within δp time units after the line pln becomes
low:

PumpC3 � 8t1; t2 < ∞ � pln= 0 during (t1; t2]
! outflow= 0 during [t1 +δp; t2]

We specify that no explosion will occur if the methane level is below the critical level
CML, or if the pump has been switched off (see Chapter 5):

PumpC4 � 8t < ∞ � ml(t) < CML _ 9 t0 � t�δp � pln= 0 during [t0; t]
!:expl@t

Let PumpC � PumpC1^PumpC2^PumpC3^PumpC4 . The perfect pump is then de-
fined as

hhnow = 0iiPump hhPumpCii (8.10)

8.4. RELIABILITY OF THE MINE PUMP 243

The following lemma, which is easily proved by reductio ad absurdum, states that the
pump does not start spontaneously.

Lemma 8.5 j= PumpC!8 t < ∞ � outflow(t) > 0
! : (pln= 0 during (t�δp; t])

Define

� PumpOK @ t � outflow(t) = outflownml(t)
� PumpNotOK @ t � outflow(t) < outflownml(t) _ outflow(t) = 0

The way in which specification (8.10) is weakened due to the possible occurrence of
faults must be defined in a failure hypothesis, and this appears below as NoFlow. First,
when a pump breaks down its outflow becomes zero within δp time units. Then, failure
detection and replacement of a defective pump takes at least TRepair time units and the
new pump produces the same outflow as a normal pump within δp time units:

NoFlow � 8t < ∞ � (PumpOK_PumpNotOK)@ t
^outflow(t) = outflownml(t)
!9 t1 > t � outflow< outflownml during (t; t1)
!outflow= 0 during [t+δp; t+δp+TRepair)
^ 9 t1 < t � outflow< outflownml during (t1; t)
! outflow= 0 during (t�δp�TRepair; t�δp]

^pln(t) = plnnml(t) ^ expl(t) = explnml(t)

Thus, obs(NoFlow) = fexpl;outflow;plng.

Note: This formalization holds for all behaviours, so it may not be illuminating in re-
spect of specific behaviours. For example, the pln signal does not change, but there is
no indication that a defective or disconnected pump reduces the water level. expl does
not change because a pump, whether or not it is defective, can cause an explosion if pln
is high, indicating that it has not been switched off. 3

Since NonProphetic(now = 0), the failure hypothesis introduction rule yields

hhnow = 0iiPumpoNoFlow hhUnrelPumpCii (8.11)

where

UnrelPumpC � 9N � (PumpC[N=R] ^ NoFlow[N=Rnml])

Although the parameters δp and λmin
out have little significance for an unreliable pump, the

outflow is still bounded by λmax
out .

Lemma 8.6 j= UnrelPumpC ! 8t < ∞ � 0� outflow(t) < λmax
out

244 CHAPTER 8. REAL-TIME SYSTEMS AND FAULT-TOLERANCE

Proof: Suppose UnrelPumpC, i.e. suppose that there is an N such that

PumpC[N=R] ^ NoFlow[N=Rnml] (8.12)

Since NoFlow[N=Rnml], we may conclude that

8t < ∞ � 0� outflow(t) � outflowN(t) (8.13)

From (8.12), PumpC[N=R], we know PumpC1[N=R], that is,

8t < ∞ � 0� outflowN(t) < λmax
out (8.14)

The lemma follows from (8.13) and (8.14). 2

A more important property to establish is that even an unreliable pump does not start
spontaneously.

Lemma 8.7
j= UnrelPumpC ! 8t < ∞ � (outflow(t) > 0)!: (pln= 0 during (t�δp; t])

Proof: Assume UnrelPumpC, i.e. assume that there exists an N for which

PumpC[N=R] ^ NoFlow[N=Rnml] (8.15)

Consider anybt such that

outflow(bt)> 0 (8.16)

Since, by (8.15), NoFlow[N=Rnml], we may conclude that

8t < ∞ � outflow(t) � outflowN(t) (8.17)

and

8t < ∞ � pln(t) = plnN(t) (8.18)

By (8.16) and (8.17),

outflowN(bt)> 0 (8.19)

By (8.15), PumpC[N=R]. Consequently, by (8.19) and Lemma 8.5, we may conclude that
: (pln= 0 during N (bt �δp;bt]) , which, by (8.18), yields

: (pln= 0 during (bt �δp;bt])
2

Since faults affect only the outflow, the following lemma is obvious.

Lemma 8.8 UnrelPumpC ! PumpC4

8.4. RELIABILITY OF THE MINE PUMP 245

8.4.3 An unreliable pump controller

The pump controller must monitor the pump’s yield to detect a fault in the pump. Assume
that a sensor FSens sets a line flow to one if there is some outflow from the pump, and
to zero otherwise:

FSensC � 8 t < ∞ � (flow(t) = 1 $ outflow(t) > 0)

Assume further that whenever a flow sensor breaks down, the value of the corresponding
line drops to zero without delay:

� FSensOK @t � flow(t) = flownml(t)
� FSensNotOK @t � flow(t) = 0

The failure hypothesis SensStuckAtZero for the sensor is defined as follows:

SensStuckAtZero � 8t < ∞� (FSensOK_FSensNotOK)@ t
^outflow(t) = outflownml(t)

For reliability, the sensor is triplicated, FSensi � FSens[flowi=flow], i= 1;2;3. A voter
FVot sets the value of the line flow. Assume that the voting takes exactly TVote time
units:

FVotC1 �flow= 0 during [0;TVote)
^ 8t < ∞ � flow(t+TVote) = Majority(fflowj(t) j j = 1; : : :;3g)

The value of the line flow is either zero or one and, provided that at any time at most one
sensor is defective, a line value differing from the majority indicates a defective sensor
or a broken wire:

FVotC2 �8t < ∞; i 2 f1;2;3g � send(alarmf; i)@t
$flowi 6= Majority(fflowj(t) j j = 1; : : :;3g)@t
^ t > 0!9 t1 < t�
flowi = Majority(fflowj(t) j j = 1::3g) during [t1; t)

As before, assume that the voter never fails and that at most one sensor is defective at
any time:

SensStuckAtZero�1 �^3
k=1 SensStuckAtZero[FSensk=FSens;flowk=flow]
^8t < ∞ � 9k 6= l�

FSensOK[flowk=flow]@ t^ FSensOK[flowl=flow]@t

In contrast with a single flow sensor FSens, the triple modular redundant flow sensor
TripleFSens � ((FSens1kFSens2kFSens3)oSensStuckAtZero�1)kFVot is subject to
a delay TVote for the time taken for voting, whether or not faults occur.

Lemma 8.9 hhnow = 0iiTripleFSenshhϕTFSii
where

246 CHAPTER 8. REAL-TIME SYSTEMS AND FAULT-TOLERANCE

ϕTFS �flow= 0 during [0;TVote)
^ 8t < ∞ � (flow(t+TVote) = 1 $ outflow(t) > 0)

Proof: By the rule for parallel composition, we need to show that

(^3
i=1FSensC[flowi=flow])oSensStuckAtZero�1

! 8t < ∞ � (Majority(fflowj(t) j j = 1::3g) = 1 $ outflow(t) > 0)

Therefore, assume (^3
i=1FSensC[flowi=flow])oSensStuckAtZero�1 , i.e. that there exists

an N such that (^3
i=1FSensC[flowi=flow])[N=R] ^ SensStuckAtZero�1[N=Rnml] Conse-

quently,

(8.20)8t < ∞�outflowN(t) > 0
$^3

i=1(flowi)N(t) = 1^ ^3
i=1flowi(t) = (flowi)N(t)

_ 9k; l;m � k 6= l 6= m
^flowk(t) = (flowk)N(t)^flowl(t) = (flowl)N(t)^flowm(t) = 0 ,

and

8t < ∞ � outflow(t) = outflowN(t) (8.21)

Now consider anybt such that Majority(fflowi(bt) j i = 1; : : :;3g) = 1 , which, by defini-
tion, is the case iff

9k 6= l � (flowk(bt) = 1 ^ flowl(bt) = 1) (8.22)

By reductio ad adsurdum we conclude from (8.20) and (8.22) that outflowN(bt) > 0 ,
which, by (8.21), leads to

outflow(bt)> 0

2

The methane level sensors must also be triplicated. This means that we have also to
take into account the possible increase of the methane level during the delay TVote caused
by voting:

MSensC � 8 t < ∞ � (mOK(t) = 1 $ ml(t) < SML�TVote λmax
ml)

Let MSensi � MSens[mOKi=mOK] for i = 1;2;3. Since, apart from the names of the com-
munication lines and channels, the voters MVot and FVot behave identically, define

MVot � FVot[mOKi=flowi]
3
i=1[alarmm=alarmf]

It is likely that faults affect the sensors MSensandFSens in the same way, i.e.

MSensStuckAtZero�1 � SensStuckAtZero�1[FSensi=MSensi;mOKi=flowi]
3
i=1

Then the triple modular redundant methane level sensor,

TripleMSens � ((MSens1kMSens2kMSens3)oMSensStuckAtZero�1)kMVot
conforms to the original specification in Chapter 5.

8.4. RELIABILITY OF THE MINE PUMP 247

Lemma 8.10 hhnow = 0iiTripleMSenshh8 t < ∞ � (mOK(t) = 1$ ml(t) < SML)ii
Proof: Exercise 8.8.

For the component MContr we shall copy with the appropriate changes the commit-
ments CMC1 through CMC6 from Section 5.5.2. For instance, CMC6 becomes

CMC6 � 8t0; t1� t0+δml � t1
^ read(mOK;0)@t0^ (:read(mOK;1)) during [t0; t1]
! 9 t2 � t0 +δml � pln= 0 during [t2; t1]

In addition, MContr reads the line flow at least once every ∆read time units:

CMC7 � 8t < ∞ � read(flow) in [t; t+∆read)

If the controller finds that the line flow is low while the line pln has been high for the
last δp +TVote time units, maintenance is notified (by asynchronously sending the value
one along the channel alarmp) after TNoFlow time units, but only once for each period
that the pump is activated:

CMC8 � 8t� send(alarmp;1)@t+TNoFlow
$ 9 t1� t1 < t� (δp +TVote)

^pln(t1) = 0^pln= 1 during (t1; t]
^ read(flow;0)@t^ (: send(alarmp)) during (t1; t]

Despite the use of the excellent techniques propagated in this book, it is still possible that
the pump controller software has errors! It is also possible that the processor executing
the software fails. This can have serious consequences, as a defective pump controller
may not activate the pump when it should begin pumping out water and it may not switch
the pump off when the methane level is critical. This means that incorrect functioning of
the pump controller should be detected and dealt with as soon as possible.

One way to do this is to duplicate the controller and compare the outputs: the pump can
then be activated only if both controllers agree on the action. For better fault location, it
is more sensible to triplicate the controller and use voting to decide on the action.

Assume that the controller software is sufficiently small and simple to be formally ver-
ified and checked, and that the processor failure rate is not very high. It may then be ac-
ceptable to select a cheaper solution and to use a watchdog timer (cf. Exercise 5.9) which
switches the pump off unless it is regularly restarted by the controller (see Figure 8.2).
This provides a good low-level check for run-away software and provides a fail-safe sys-
tem:

CMC9 � 8t < ∞ � send(restart;1) in [t; t+TRestart)

Once again we see that, in comparison with the pump controller presented in Chapter 5,
taking the water flow sensor and the watchdog timer into account results in an altogether
new component; the restarting of the timer, for instance, is not the consequence of a fault,
but is normal behaviour.

248 CHAPTER 8. REAL-TIME SYSTEMS AND FAULT-TOLERANCE

wch

mOK alarmcontr

flow pln
WDog

restart

ipln

MContr

Figure 8.2 A watchdog for the pump controller

WDog has to enable communication through restart sufficiently often:

WDogC1 � minwait(restart;Init;Period) during [0;∞)

WDog restarts its timer whenever a one is received on channel restart. It sets the line pln
low when this timer expires (for which a reaction time of δWDog is allowed) and notifies
maintenance (by asynchronously sending a one along the channel alarmctrl):

WDogC2 � 8t1; t2 < ∞ � t2 > t1+TRestart

^ t1 = 0 _ rec(restart;1)@t1
^ (:rec(restart;1)) during (t1; t2)
!pln= 0 during [t1 +TRestart+δWDog; t2+δWDog)
^ send(alarmctrl;1) in [t1+TRestart; t1+TRestart +δWDog)

As long as the timer is restarted at least every TRestart time units, the lines ipln and pln

have the same value.

WDogC3 �pln= ipln during [0;TRestart+δWDog)
^ 8t < ∞� rec(restart;1)@t

! pln= ipln during [t+δWDog; t+TRestart+δWDog)

This means that provision must be made to restart the timer at time t = 0.
We must assume that the component WDog never fails. And from the failure hypothesis

NoRestarts it can be seen that the pump controller never restarts the watchdog timer and,
most important, does not let ipln become high when this is not allowed. Define

MContrOK @ t � R # frestart;iplng(t) = Rnml # frestart;iplng(t)
MContrNotOK @ t �: (send(restart)@ t)

^ipln(t) = iplnnml(t) _ ipln(t) = 0

Then

NoRestarts � 8t < ∞� (MContrOK_MContrNotOK)@ t^ flow(t) = flownml(t)
^wch(t) = wchnml(t) ^ mOK(t) = mOKnml(t)

Let SML � CML� (∆read+δml+TRestart+δWDog+δp)λmax
ml . From the following lemma

FailSafeContr � (MControNoRestarts)kWDog sets the voltage level on the line pln
to low within at least ∆read+δml +TRestart +δWDog time units after the methane level is
reported to have exceeded SML.

8.4. RELIABILITY OF THE MINE PUMP 249

Lemma 8.11 hhnow = 0iiFailSafeContrhhϕFSCii ; where

ϕFSC � 8t0; t1 < ∞� t0+∆read+δml +TRestart+δWDog � t1
^mOK= 0 during [t0; t1]
! pln= 0 during [t0 +∆read+δml+TRestart+δWDog; t1]

Proof: There are two cases to consider:

(i) If MContrOK during [t0; t0 +∆read + δml] then, according to CMC1, there exists
t2 (t0 � t2 � t0 +∆read) such that read(mOK;0)@t2, which, by CMC6 (with appro-
priate changes), implies that there exists t3 (t0 � t3 � t0+∆read+δml) such that

pln= 0 during [t3; t0+∆read+δml]

Using CMC6 once more, pln normally remains low up to and including t1, so we
may conclude, based on NoRestarts, that

pln= 0 during [t3; t1]

(ii) According to the worst case scenario, MContrOK during [t0; t0+∆read+δml] does
not hold because MContr fails at t0 +∆read + δml. Also, the timer may not expire
before t0+∆read+δml +TRestart, and, consequently, pln is not set low before

t0 +∆read+δml +TRestart+δWDog

2

Taking account of the maximum increase in the methane level in the time ∆read+δml+
TRestart +δWDog gives the following lemma.

Lemma 8.12
hhnow = 0iiFailSafeContrhh8 t < ∞ � ml(t) � CML�δp λmax

ml ! pln(t) = 0ii

8.4.4 A safe mine

In the presence of faults, it can no longer be guaranteed that the water level stays in be-
tween the specified lower and higher bounds LWL and HWL, even if the methane level
never rises above its safe level SML. Let

SafeMine � (PumpoNoFlow)kTripleWSenskTripleFSens
kTripleMSenskFailSafeContr

Then it is obviously not true that

hhnow = 0iiSafeMinehh8 t < ∞�ml< SML during [0; t]
! LWL< wl(t) < HWLii

But although a number of work-shifts may be lost because the pump fails to operate when
it should, it can be proved that SafeMine is indeed safe.

250 CHAPTER 8. REAL-TIME SYSTEMS AND FAULT-TOLERANCE

Theorem 8.1 hhnow = 0iiSafeMinehh8 t < ∞ � :expl@tii
Proof: Two cases need examination:

(i) If ml(t) < CML, then, by Lemma 8.8, not even an unreliable pump can cause an
explosion at time t.

(ii) If ml(t) � CML, then, considering that the methane level increase is at most λmax
ml

in unit time, there exists a t0 � t�δp such that ml� CML�δp λmax
ml during [t0; t]

Hence, by Lemma 8.12, pln= 0 during [t0; t] ; which, by Lemma 8.8, allows us
to conclude that :expl@ t.

2

8.5 Soundness and completeness of the new proof rule

In this section we show that the failure hypothesis introduction rule is sound: in other
words, if the correctness formula hhAii FP hhCii is derivable, then it is valid. We show
also that the rule is complete: if the correctness formula hhAiiFP hhCii is valid, then it is
derivable.

Theorem 8.2 (Soundness) The failure hypothesis introduction rule is sound.

Proof: Assume NonProphetic(A), that is,

j= A ! 8M � (M # [0;now0] = R # [0;now0] ! A[M=R]) (8.23)

and

j= hhAiiFP hhCii (8.24)

Consider any σ0. Let (σ;ρ)2M [[FPoχ]](σ0). Then, from the definition of the semantics,
there exists a (σnml;ρnml) 2M [[FP]](σ0) such that, for all γ,

(σ0;σnml;σ;ρnml;ρ;γ) j= χ (8.25)

Since χ is a failure hypothesis,

ρ # [0;σ0(now)] = ρnml # [0;σ0(now)] (8.26)

We must prove hhAiiFP oχ hhCoχii. Assume that, for any γ,

(σ0;σ;ρ;γ) j= A[X0=X;now0=now]

i.e. by (8.23),

(σ0;σ;ρ;γ) j= 8M � M # [0;now0] = R # [0;now0]
! A[X0=X;now0=now][M=R]

8.5. SOUNDNESS AND COMPLETENESS OF THE NEW PROOF RULE 251

Let bγ = (γ : M 7! ρnml). By (8.26),

(σ0;σ;ρ;bγ) j= A[X0=X;now0=now][M=R]

By the substitution lemma, we obtain (σ0;σ;ρnml;γ) j= A[X0=X;now0=now]. Since nei-
ther now nor any term x appears in A[X0=X;now0=now], this leads to, e.g.

(σ0;σnml;ρnml;γ) j= A[X0=X;now0=now]

Consequently, by (8.24) and the fact that (σnml;ρnml) 2M [[FP]](σ0),

(σ0;σnml;ρnml;γ) j= C

Define bγ = (γ : V 7! σnml(X); t 7! σnml(now);M 7! ρnml). By the substitution lemma
(σ0; bσ ; bρ ;bγ) j= C[V=X; t=now;M=R] for any bσ and bρ , for instance

(σ0;σ;ρ;bγ) j= C[V=X; t=now;M=R] (8.27)

By (8.25), we know (σ0;σnml;σ;ρnml;ρ;bγ) j= χ. By the substitution lemma, this obvi-
ously leads to (σ0;σnml;σ;ρnml;ρ;bγ) j=χ[V=Xnml; t=nownml;M=Rnml]. Since Rnml, nownml
or any xnml are not in χ[V=Xnml; t=nownml;M=Rnml], the correspondence lemma yields

(σ0;σ;ρ;bγ) j= χ[V=Xnml; t=nownml;M=Rnml] (8.28)

By (8.27) and (8.28),

(σ0;σ;ρ;bγ) j= C[V=X; t=now;M=R] ^ χ[V=Xnml; t=nownml;M=Rnml]

Consequently,

(σ0;σ;ρ;γ) j= 9 t;V;M�(C[V=X; t=now;M=R]^χ[V=Xnml; t=nownml;M=Rnml])

i.e.

(σ0;σ;ρ;γ) j= Coχ

2

As usual when proving completeness, we assume that we can prove any valid formula
of the underlying logic. Thus, using ` ϕ to denote that assertion ϕ is derivable, we add
the following axiom to our proof theory.

Axiom 8.1 (Relative completeness assumption) For an assertion ϕ,

` ϕ if j= ϕ

2

Definition 8.7 (Strongest commitment) An assertion C is called a strongest commit-
ment of the assertion A and the failure prone process FP if, and only if,

(i) j= hhAiiFP hhCii , and

252 CHAPTER 8. REAL-TIME SYSTEMS AND FAULT-TOLERANCE

(ii) 8ϕ � (j= hhAiiFP hhϕii)j= C! ϕ) .

Using the definition of validity, assertion C is a strongest commitment of A and FP if,
and only if,

(i) 8σ0;σ;ρ;γ � (σ0;σ;ρ;γ) j= A[X0=X;now0=now] ^ (σ;ρ) 2M [[FP]](σ0)
) (σ0;σ;ρ;γ) j= C ; and

(ii) 8ϕ � 8σ0;σ;ρ;γ � (σ0;σ;ρ;γ) j= A[X0=X;now0=now] ^ (σ;ρ) 2M [[FP]](σ0)
) (σ0;σ;ρ;γ) j= ϕ

)j=C! ϕ

Suppose that an assertion sc(A;FP) satisfies

8σ0;σ;ρ;γ � (σ0;σ;ρ;γ) j= A[X0=X;now0=now] ^ (σ;ρ) 2M [[FP]](σ0)
, (σ0;σ;ρ;γ) j= sc(A;FP)

This stronger version of (i) also satisfies (ii), because for all ψ,

8σ0;σ;ρ;γ � ((σ0;σ;ρ;γ) j= ψ) (σ0;σ;ρ;γ) j= ϕ))j= ψ! ϕ

We extend the class of assertions from Section 8.1 to a class of conditions that contains
the strongest commitments. The truth value of a condition with respect to (σ0;σ;ρ;γ) is
an extension of the interpretation of assertions with the additional clause

(σ0;σ;ρ;γ) j= sc(A;FP) iff (σ0;σ;ρ;γ) j=A[X0=X;now0=now]
and (σ;ρ) 2M [[FP]](σ0)

The next lemma, which follows directly from the definitions, states that sc(A;FP) is a
semantic characterization of the strongest commitment of A and FP.

Lemma 8.13 For all ϕ, if j= sc(A;FP)$ ϕ then ϕ is a strongest commitment of A and
FP. 2

Observe that a strongest commitment must be an assertion, and hence sc(A;FP) itself is
not a strongest commitment. The following lemma shows how the strongest commitment
of A and FPoχ can be expressed in the case of NonProphetic(A).

Lemma 8.14 If NonProphetic(A) then j= sc(A;FPoχ)$ sc(A;FP)oχ .

Proof: Consider any σ0, σ, ρ and γ and any A such that NonProphetic(A). By the defi-
nition of sc, (σ0;σ;ρ;γ) j= sc(A;FPoχ) iff

(σ0;σ;ρ;γ) j= A[X0=X;now0=now]^ (σ;ρ) 2M [[FPoχ]](σ0)

From the definition of the semantics of FPoχ, we obtain (σ0;σ;ρ;γ) j= sc(A;FPoχ) iff

(σ0;σ;ρ;γ) j= A[X0=X;now0=now]^9σnml;ρnml�
(σnml;ρnml) 2M [[FP]](σ0)^ (σ0;σnml;σ;ρnml;ρ;γ) j= χ

Equivalently, (σ0;σ;ρ;γ) j= sc(A;FPoχ) iff

8.5. SOUNDNESS AND COMPLETENESS OF THE NEW PROOF RULE 253

9σnml;ρnml � (σ0;σ;ρ;γ) j= A[X0=X;now0=now]
^ (σnml;ρnml) 2M [[FP]](σ0)^ (σ0;σnml;σ;ρnml;ρ;γ) j= χ

Observe that

(a) since neither now nor any term x appears in A[X0=X;now0=now],

(σ0;σ;ρ;γ) j= A[X0=X;now0=now]

implies that, for all bσ,

(σ0; bσ ;ρ;γ) j= A[X0=X;now0=now]

(b) by the definition of a failure hypothesis, (σ0;σnml;σ;ρnml;ρ;γ) j= χ implies that

ρ # [0;σ0(now)] = ρnml # [0;σ0(now)]

(c) since NonProphetic(A), and hence NonProphetic(A[X0=X;now0=now]),

(σ0;σ;ρ;γ) j= A[X0=X;now0=now]

implies

(σ0;σ; bρ ;γ) j= A[X0=X;now0=now]

provided bρ # [0;σ0(now)] = ρ # [0;σ0(now)] .

Consequently, (σ0;σ;ρ;γ) j= sc(A;FPoχ) iff

9σnml;ρnml � (σ0;σnml;ρnml;γ) j= A[X0=X;now0=now]
^ (σnml;ρnml) 2M [[FP]](σ0)
^ (σ0;σnml;σ;ρnml;ρ;γ) j= χ

Then, by the definition of sc, (σ0;σ;ρ;γ) j= sc(A;FPoχ) iff

9σnml;ρnml� (σ0;σnml;ρnml;γ) j= sc(A;FP)
(̂σ0;σnml;σ;ρnml;ρ;γ) j= χ

Hence, (σ0;σ;ρ;γ) j= sc(A;FPoχ) if, and only if, (σ0;σ;ρ;γ) j= sc(A;FP)oχ .
2

Now we can establish relative completeness.

Theorem 8.3 (Completeness) The failure hypothesis introduction rule is relatively com-
plete.

Proof: Assume that NonProphetic(A). Assume also that

` hhAiiFP hhCSiiwith sc(A;FP)$ CS

Then, by the failure hypothesis introduction rule, we obtain ` hhAiiFP oχ hhCS oχii .

254 CHAPTER 8. REAL-TIME SYSTEMS AND FAULT-TOLERANCE

Suppose j= hhAiiFP oχ hhCii. From sc(A;FP)$ CS and Lemma 8.14, we obtain

j= sc(A;FPoχ)$ CS oχ

Consequently, by Lemma 8.13 and the definition of a strongest commitment,

j= hhAiiFP oχ hhCii leads to j= CS oχ !C

Then, by the relative completeness assumption, ` CS oχ! C.
From ` hhAiiFP oχ hhCS oχii and ` CS oχ ! C we obtain, using the consequence rule,

` hhAiiFP oχ hhCii

2

The next lemma states that sc(A;FPoχ) does not impose restrictions on the observable
behaviour after termination; the proof is left as an exercise (Exercise 8.9).

Lemma 8.15
j= sc(A;FPoχ)!8M � (M # [0;now] = R # [0;now]! sc(A;FPoχ)[M=R])

8.6 Historical background

Fault-tolerance is the ability of a system to keep functioning correctly, despite faults oc-
curring or having occurred (Laprie, 1985). An elaborate overview of many techniques to
achieve fault-tolerance can be found in Lee and Anderson (1990). For the greater part,
the account in this chapter of the ways of adding to the reliability of the mine pump are
taken from Burns and Lister (1991).

A number of formal methods for dealing with fault-tolerance have been proposed in
the literature. Much of the earlier work on this formalization is state based: in the state
machine approach, the output of several instantiations of a program, each running on a
distinct processor, is compared. Lamport’s original description (1978) dealt with fault-
free environments only; for a survey of the efforts to generalize the state machine ap-
proach to deal with faults see Schneider (1990a). A well-known application of the state
machine approach is the implementation of fail-stop processors (Schlichting & Schnei-
der, 1983).

In layered architectures, the exception handling concept (see, e.g. Lee and Anderson,
1990) is popular: a layer that provides a service to some higher level layer raises an ex-
ception to signal to that layer when a problem is detected that prevents the completion
of the requested service, and the higher level layer contains handlers to deal with such
exceptions. In a proof system based on Hoare triples, fpgSfqg, correctness requires the
final state to satisfy q and Cristian (1985) used Hoare logic to make the normal and ex-
ceptional domains of execution explicit by partitioning the initial state space (specified
by p) into disjoint subspaces for normal and exceptional behaviour by providing a sep-
arate specification for each part. Started in the normal subspace the program terminates

8.6. HISTORICAL BACKGROUND 255

normally, but started in the exceptional subspace the program terminates by raising an ex-
ception. In Lodaya and Shyamasundar (1990), a proof system is proposed for exception
handling in a concurrent program, such as in Ada-like languages.

This kind of fault-tolerance accounts for processor crashes and the effects of faults that
occur before the invocation of the program. The resulting specifications are often trivially
satisfied by any process that just raises an exception. In Coenen (1993) deontic logic
was proposed to overcome this ‘lazy programmer paradox’. All the same, an unreliable
communication medium, for instance, does not raise an exception if a message becomes
corrupted and simply delivers the bad message.

In the formalisms of Joseph et al. (1987) and He and Hoare (1987) the execution of a
process restarts as soon as a fault occurs. Hence, a failure prone execution of a process P
consists of a number of partial executions of P that end in failure followed by a final and
complete execution. Liu (1991) and Liu and Joseph (1992) describe a framework for rea-
soning about programs in the presence of faults and show how program transformations
can be used to derive fault-tolerant behaviour by composing specifications of the fault en-
vironment and recovery actions with the program. The incorporation of checkpointing
and backward recovery into a program have been investigated in Liu and Joseph (1993;
1994) which also contain laws for fault-refinement; Peled and Joseph (1994) contains an
extended study of specification and recovery transformations using linear temporal logic.

Processes that crash are studied in Peleska (1991): more precisely, a dual computer
system is proved correct. Such a system contains two replicas of the crash prone process,
a ‘master’ and a ‘slave’ which shadows the operation of the master and takes over if and
when the master crashes. The failure hypothesis in this case stipulates that at least one
replica remains active.

The formalism proposed in Cau and de Roever (1993) allows a program to exhibit ar-
bitrary behaviour after a fault occurs. This approach results in conditional specifications:
a process behaves according to its specification as long as no faults have occurred. Fault-
tolerance is proved by virtue of the system’s failure hypothesis and the available redun-
dancy. This approach is not adequate for dealing with the effects of faults that cannot
be masked. For instance, when verifying a system or protocol which employs an error
detecting code it is crucial to be certain that one valid codeword has not been changed
into another.

The effects of faults are taken into account by Weber (1989), where he introduces fault
scenarios which are traces that include, besides records of the system’s input and output
operations, a description of the faults that have occurred. A fault-tolerance property is
expressed as an equivalence between a fault scenario, from which the fault events have
been removed, and a fault-free trace; this tolerance relation is not elaborated.

In Nordahl (1993), the normal behaviour Soriginal of a system S is distinguished from
its exceptional ‘failure mode’ behaviour Sf . However, it is not possible to derive Sf from
Soriginal and once in failure mode there is no way back. A similar treatment of normal
and exceptional behaviour can be found in Coenen and Hooman (1993).

The idea of formalizing a failure hypothesis as a relation between the normal and the
acceptable process behaviour was introduced in Schepers (1993). The early attempts to-
wards the compositional specification and verification of distributed fault-tolerant sys-

256 CHAPTER 8. REAL-TIME SYSTEMS AND FAULT-TOLERANCE

tems abstract from the internal state of a process as well as the timing of its actions (Schep-
ers & Hooman, 1994; Schepers & Coenen, 1995). Consequently, they do not include
rules for atomic statements or sequential composition and such proof theories are called
network proof theories. Network proof theories for distributed real-time fault-tolerant
systems are given in Schepers and Gerth (1993), where maximal parallelism is assumed
and in Schepers (1994), where the limited resources are shared. The proof theory pre-
sented in this chapter extends these approaches in that it does take the internal state of a
process into account.

8.7 Exercises

Exercise 8.1 For a process SORT, where

hhnow = 0iiSORT hhx = min(x0;y0) ^ y = max(x0;y0) ^ now < ∆Sortii
which of the following transformation expressions do not qualify as a failure hypothesis,
and why?

(a) x0 = 0 ^ y0 = 0
(b) now = now0
(c) O @ now0�1
(d) x = ynml ^ y = xnml
(e) now > nownml ^ O @ nownml +5

Exercise 8.2 For a continuously observable variable x, formalize stuck-at-zero memory
faults.

Exercise 8.3 Consider a transmission medium MEDIUM that waits to (synchronously) ac-
cept an input message from a set MSG via a channel in, and within ∆Medium time units en-
ables its delivery through the synchronous channel out. Fresh input cannot be accepted
until the previous message has been delivered.

(a) Specify the normal behaviour of MEDIUM.
(b) Formalize omission.
(c) Formalize corruption. (Hint: if the failure hypothesis does not restrict the output

values, they are arbitrary.)

Exercise 8.4 Consider the communication medium of Exercise 8.3. In practice, an en-
coding function is used to transform a dataword into a codeword which contains some
redundant bits. Thus the set of datawords is mapped into a small part of a much larger
set of codewords. Codewords to which a dataword is mapped are called valid, and the
encoding ensures that it is very unlikely that due to corruption one valid codeword is
changed into another. Formalize this detectable corruption hypothesis. You may assume
that the functions Encode, Decode and Valid are given.

8.7. EXERCISES 257

Exercise 8.5 Consider Figure 8.1. Assume that the channels wch1, wch2 and wch3 are
replaced by media that are prone to detectable corruption, such as the one discussed in the
previous exercise. Design a failure hypothesis that allows that, per vote, at most either
one sensor or one wire fails.

Exercise 8.6 Show, in the style of Chapter 5, that there exists a voter WSVot such that
hhnow = 0iiWSVot hhWSVotCii. You may assume that the function InexactVote is given.

Exercise 8.7 Prove Lemma 8.4. Remember to take into account the effect of a missing
or incorrect reading. (Hint: because the voter allows each sensor to communicate at most
one reading for each vote and because channels do not buffer messages, the average of
two correct readings differs at most by εws+

1
2δws λmax

in from the water level to which the
most recently received reading corresponds. This occurs when the two readings arrive at
the start and the end of the window, respectively, and either both readings are ε too high
while the water level drops maximally during the interval, or both readings are ε too low
while the water level rises maximally.)

Exercise 8.8 Prove Lemma 8.10. (Hint: the proof is similar to that of Lemma 8.9.)

Exercise 8.9 Prove Lemma 8.15.

Exercise 8.10 Show as in Section 8.5, soundness and completeness of the proof rules
of Chapter 5. (Hint: for atomic statements, the strongest commitments follow directly
from the relevant axioms and rules, and the non-termination axiom.)

References

Abadi, M., & Lamport, L. 1994. An old-fashioned recipe for real-time. ACM Trans. on
Prog. Lang. & Syst., 16, 1543–1571.

Alur, R., & Henzinger, T. 1990. Real-time logics: complexity and expressiveness. Pages
390–401 of: Proc. Symp. on Logic in Comp. Sc.

Alur, R., Courcoubetis, C., & Dill, D.L. 1990. Model-checking for real-time systems.
Pages 414–425 of: Proc. Symp. on Logic in Comp. Sc.

Apt, K.R. 1981. Ten years of Hoare’s logic: a survey – part I. ACM Trans. on Prog.
Lang. & Syst., 3, 431–483.

Apt, K.R. 1984. Ten years of Hoare’s logic: a survey – part II: nondeterminism. Th.
Comp. Sc., 28, 83–109.

Apt, K.R., Francez, N., & de Roever, W.-P. 1980. A proof system for communicating
sequential processes. ACM Trans. on Prog. Lang. & Syst., 2, 359–385.

Audsley, N.C. 1993. Flexible scheduling in hard real-time systems. Ph.D. thesis, Dept.
of Comp. Sc., University of York, UK.

Audsley, N.C., Burns, A., Richardson, M.F., & Wellings, A.J. 1991. Hard real-time
scheduling: the deadline monotonic approach. Pages 127–132 of: Proc. 8th IEEE
Workshop on Real-Time Op. Syst. and Softw.

Audsley, N.C., Burns, A., Richardson, M.F., Tindell, K.W., & Wellings, A.J. 1993a. Ap-
plying new scheduling theory to static priority pre-emptive scheduling. Softw. Eng.
J., 8(5), 284–292.

Audsley, N.C., Burns, A., & Wellings, A.J. 1993b. Deadline monotonic scheduling the-
ory and application. J. Control Eng. Pr., 1(1), 71–78.

Audsley, N.C., Burns, A., Davis, R.I., Tindell, K.W., & Wellings, A.J. 1995. Fixed pri-
ority scheduling: an historical perspective. J. Real-Time Syst., 8, 173–198.

Baker, T.P. 1990. A stack-based resource allocation policy for realtime processes. In:
Proc. 11th IEEE Real-Time Syst. Symp.

Baker, T.P. 1991. Stack-based scheduling of real-time processes. J. Real-Time Syst., 3(1).
Barringer, H., Kuiper, R., & Pnueli, A. 1984. Now you may compose temporal logic

specifications. Pages 51–63 of: Proc. 16th ACM Symp. on Theory of Comp.

259

260 REFERENCES

Baruah, S., & Rosier, L.E. 1991. Limitations concerning on-line scheduling algorithms
for overloaded systems. Pages 128–132 of: 8th IEEE Workshop on Real-Time Op.
Syst. and Softw.

Baruah, S., Koren, G., Mao, D., Mishra, B., Rosier, A.R.L., Shasha, D.E., & Wang, F.
1992. On the competitiveness of on-line real-time tasks scheduling. J. Real-Time
Syst., 4(2).

Bate, G. 1986. Mascot3: an informal introductory tutorial. Softw. Eng. J., 1(3), 95–102.
Bernstein, A.J. 1987. Predicate transfer and timeout in message passing. Inf. Proc. Letts.,

24, 43–52.
Bernstein, A.J., & Harter, Jr., P.K. 1981. Proving real-time properties of programs with

temporal logic. Pages 1–11 of: Proc. 8th Annual ACM Symp. on Op. System Prin-
ciples.

Berry, G., & Gonthier, G. 1992. The ESTEREL synchronous programming language,
design semantics, implementation. Sc. of Comp. Progr., 19(2), 87–152.

Biyabani, S., Stankovic, J.A., & Ramamritham, K. 1988.. The integration of deadline
and criticalness in hard real-time scheduling. In: Proc. 9th IEEE Real-Time Syst.
Symp.

Bjørner, D., Langmaack, H., & Hoare, C.A.R. 1993. ProCos I final deliverable. Tech.
rept. ID/DTH DB 13/1. Dept. of Comp. Sc., Technical University of Denmark.

Blake, B.A., & Schwan, K. 1991. Experimental evaluation of a real-time scheduler for
a multiprocessor system. IEEE Trans. Softw. Eng., 17(1).

Blazewicz, J., Cellary, W., Slowinski, R., & Weglarz, J. 1986. Scheduling under resource
constraints – deterministic models. Annals of Op. Res., 7.

Bondavalli, A., Stankovic, J.A., & Strigini, L. 1993. Adaptable fault-tolerance for real-
time systems. Tech. rept. ESPRIT BRA 6362 Predictably Dependable Comp. Syst.
2.

Brookes, S.D., & Roscoe, A.W. 1985. An improved failures model for communicating
sequential processes. In: Proc. Pittsburgh Seminar on Concurrency. LNCS 197.
Springer-Verlag.

Brookes, S.D., Hoare, C.A.R., & Roscoe, A.W. 1984. A theory of communicating se-
quential processes. J. ACM, 31(7).

Burns, A. 1994. Preemptive priority-based scheduling: an appropriate engineering ap-
proach. Pages 225–248 of: Son, S.H. (ed), Advances in Real-Time Systems. Prentice
Hall.

Burns, A., & Lister, A.M. 1991. A framework for building dependable systems. Comp.
J., 34(2), 173–181.

Burns, A., & Wellings, A.J. 1994. HRT-HOOD: a design method for hard real-time sys-
tems. J. Real-Time Syst., 6(1), 73–114.

Burns, A., Lister, A.M., & Wellings, A.J. 1987. A review of Ada tasking. LNCS 262.
Springer-Verlag.

Burns, A., Wellings, A.J., Bailey, C.M., & Fyfe, E. 1993. The Olympus attitude and
orbital control system: a case study in hard-real-time system design and implemen-
tation. Pages 19–35 of: Ada sans frontieres: Proc. 12th Ada-Europe Conf. LNCS
688. Springer-Verlag.

REFERENCES 261

Butazzo, G., & Stankovic, J.A. 1993. RED: Robust earliest deadline scheduling. In:
Proc. 3rd Intl. Workshop on Resp. Comp. Syst.

Cau, A., & de Roever, W.-P. 1993. Specifying fault-tolerance within Stark’s formalism.
Pages 392–401 of: Proc. 23rd Symp. on Fault-Tolerant Comp. IEEE Comp. Society
Press.

Chetto, H., & Chetto, M. 1989. Some results of the earliest deadline scheduling algo-
rithm. IEEE Trans. on Softw. Eng.

Coenen, J. 1993. Top-down development of layered fault-tolerant systems and its prob-
lems – A deontic perspective. Annals of Maths. and AI, 9, 133–150.

Coenen, J., & Hooman, J. 1993. Parameterized semantics for fault-tolerant real-time
systems. Pages 51–78 of: Vytopil, J. (ed), Formal Tech. in Real-Time and Fault-
Tolerant Syst. Kluwer Academic Publishers.

Coffman, E.G. (ed). 1976. Computer and Job-shop Scheduling Theory. John Wiley &
Sons.

Cristian, F. 1985. A rigorous approach to fault-tolerant programming. IEEE Trans. on
Softw. Eng., SE-11(1), 23–31.

Cristian, F., Aghili, H., Strong, R., & Dolev, D. 1989. Atomic broadcast: from simple
message diffusion to Byzantine agreement. Research Report RJ 5244. IBM Almaden
Research Center.

Davies, J.W. 1993. Specification and Proof in Real-Time Systems. Cambridge University
Press.

Davies, J.W., & Schneider, S.A. 1990. Factorising proofs in timed CSP. In: Proc.
5th Intl. Conf. on the Mathematical Foundations of Prog. Semantics. LNCS 442.
Springer-Verlag.

Davies, J.W., & Schneider, S.A. 1993. Recursion induction for real-time processes. For-
mal Asp. of Comp., 5(6).

Davies, J.W., & Schneider, S.A. 1995. Real-time CSP. In: Rus, T., & Rattray, C. (eds),
Theories and Experiences for Real-Time System Development. AMAST Series in
Comp., vol. 2. World Scientific.

Davies, J.W., Jackson, D.M., & Schneider, S.A. 1992. Broadcast communication for real-
time processes. In: Vytopil, J. (ed), Proc. Symp. on Real-Time and Fault-Tolerant
Syst. LNCS 571. Springer-Verlag.

de Bakker, J. 1980. Mathematical Theory of Program Correctness. Prentice Hall Inter-
national.

de Roever, W.-P. 1985. The quest for compositionality – A survey of assertion-based
proof systems for concurrent programs, Part I: Concurrency based on shared vari-
ables. Pages 181–207 of: Proc. IFIP Working Conf. 1985: The role of abstract
models in computer science. North-Holland.

Dertouzos, M.L., & Mok, A.K.-L. 1989. Multiprocessor on-line scheduling of hard-real-
time tasks. IEEE Trans. on Softw. Eng., 15(12).

Dijkstra, E.W. 1976. A Discipline of Programming. Prentice Hall.
Emerson, E., Mok, A.K.-L., Sistla, A.P., & Srinivasan, J. 1989. Quantitative temporal

reasoning. Workshop On Automatic Verification Methods for Finite State Syst.,
Grenoble, France.

262 REFERENCES

Engel, M., & Rischel, H. 1994. Dagstuhl seminar specification problem – a duration
calculus solution. Personal communication.

Engel, M., Kubica, M., Madey, J., Parnas, D.L., Ravn, A.P., & van Schouwen, A.J. 1993.
A formal approach to computer systems requirements documentation. Pages 452–
474 of: Grossman, R.L., Nerode, A., Ravn, A.P., & Rischel, H. (eds), Hybrid Sys-
tems. LNCS 736. Springer-Verlag.

Francez, N., Lehman, D., & Pnueli, A. 1984. A linear history semantics for distributed
programming. Th. Comp. Sc., 32, 25–46.

Furht, B., Grostick, D., Gluch, D., Rabbat, G., Parker, J., & Roberts, M. 1991. Real-time
Unix Systems. Kluwer Academic Publishers.

Gerber, R., & Lee, I. 1989. Communicating shared resources: a model for distributed
real-time systems. Pages 68–78 of: Proc. 10th IEEE Real-Time Syst. Symp.

Gerber, R., & Lee, I. 1990. CCSR: a calculus for communicating shared resources. Pages
263–277 of: CONCUR 90. LNCS 458. Springer-Verlag.

Gibbins, P., Kay, A., & Schneider, S.A. 1993. Asynchronous perceptrons in real-time
CSP. ESPRIT CONCUR2 project deliverable.

Goli, P., Kurose, J., & Towsley, D. 1990. Approximate minimum laxity scheduling al-
gorithms for real-time systems. Tech. rept. University of Massachusetts, Amherst,
Dept. of Comp. and Inf. Sc.

Goodenough, J.B., & Sha, L. 1988. The priority ceiling protocol: A method for mini-
mizing the blocking of high priority Ada tasks. Chap. 8(7), pages 20–31 of: Proc.
2nd Intl. Workshop on Real-Time Ada Issues, ACM Ada Letts.

Gudmundsson, O., Mose, D., Ko, K., Agrawala, A., & Tripathi, S. 1992. Maruti, an en-
vironment for hard real-time applications. In: Agrawala, A., Gordon, K., & Hwang,
P. (eds), Mission Critical Operating Systems. IOS Press.

Haase, V.H. 1981. Real-time behaviour of programs. IEEE Trans. on Softw. Eng., SE-
7(5), 494–501.

Hammer, D., Luit, E., van Roosmalen, O., van der Stok, P., & Verhoosel, J. 1994. Dedos:
A distributed real-time environment. IEEE Parallel & Distr. Technology, Syst. &
Applications, 2(4), 32–47.

Hansen, M.R., & Zhou, C.C. 1992. Semantics and completeness of the duration calculus.
Pages 209–225 of: de Bakker, J.W., Huizing, K., de Roever, W.-P., & Rozenberg,
G. (eds), Real-time: Theory in Practice, 1991. LNCS 600. Springer-Verlag.

Hansen, M.R., Zhou, C.C., & Staunstrup, J. 1992. A real-time duration semantics for
circuits. In: Proc. 1992 ACM/SIGDA Workshop on Timing Issues in Specification
and Synthesis of Digital Systems. Princeton, NJ, March 18–20.

Hansen, M.R., Olderog, E.-R., Schenke, M., Fränzle, M., v. Karger, B., Müller-Olm, M.,
& Rischel, H. 1993a. A duration calculus semantics for real-time reactive systems.
Tech. rept. OLD MRH 1/1. Oldenburg Universität.

Hansen, M.R., Pandya, P.K., & Zhou, C.C. 1993b. Finite divergence. Tech. rept. Rep.
15. UNU/IIST, Macau.

Hansson, H., & Jonsson, B. 1989. A framework for reasoning about time and reliability.
Pages 102–111 of: Proc. IEEE Real-Time Syst. Symp.

REFERENCES 263

Harel, D. 1987. Statecharts: a visual formalism for complex systems. Sc. Comp. Prog.,
8, 231–274.

Harel, E. 1988. Temporal analysis of real-time systems. Master’s Thesis. The Weizmann
Institute of Sc., Rehovot, Israel.

Harel, E., Lichtenstein, O., & Pnueli, A. 1990. Explicit clock temporal logic. Pages
402–413 of: Proc. Symp. on Logic in Comp. Sc. IEEE.

Harter Jr., P.K. 1987. Response times in level structured systems. ACM Trans. Comp.
Sys., 5(3), 232–248.

He, J., & Bowen, J. 1992. Time interval semantics and implementation of a real-time pro-
gramming language. In: Proc. 4th Euromicro Workshop on Real-Time Syst. IEEE
Comp. Society Press.

He, J., & Hoare, C.A.R. 1987. Algebraic specification and proof of a distributed recovery
algorithm. Distr. Comp., 2, 1–12.

He, J., Hoare, C.A.R., Fänzle, M., Müller-Olm, M., Olderog, E., Schenke, M., Hansen,
M.R., Ravn, A.P., & Rischel, H. 1994. Provably correct systems. Pages 288–335
of: Langmaack, H., de Roever, W.-P., & Vytopil, J. (eds), Proc. Symp. on Formal
Tech. in Real-Time and Fault-Tolerant Syst. LNCS 853. Springer-Verlag.

Hehner, E.C.R. 1989. Real-time programming. Inf. Proc. Letts., 30, 51–56.
Hoare, C.A.R. 1969. An axiomatic basis for computer programming. Comm. ACM,

12(10), 576–580, 583.
Hoare, C.A.R. 1978. Communicating sequential processes. Comm. ACM, 21(8).
Hoare, C.A.R. 1985. Communicating Sequential Processes. Prentice Hall International.
Holmes, V.P., Harris, D., Piorkowski, K., & Davidson, G. 1987. Hawk: An operating

system kernel for a real-time embedded multiprocessor. Tech. rept. Sandia National
Labs.

Hong, J., Tan, X., & Towsley, D. 1989. A performance analysis of minimum laxity
and earliest deadline scheduling in a real-time systems. IEEE Trans. on Comp.,
C-38(12).

Hong, K.S., & Leung, J.Y-T. 1988. On-line scheduling of real-time tasks. In: Proc. 9th
IEEE Real-Time Syst. Symp.

Hooman, J. 1987. A compositional proof theory for real-time distributed message pass-
ing. Pages 315–332 of: Parallel Architectures and Languages Europe. LNCS 259.
Springer-Verlag.

Hooman, J. 1990. Compositional verification of distributed real-time systems. Pages
1–20 of: Proc. Workshop on Real-Time Syst. – Theory and Applications. North-
Holland.

Hooman, J. 1991. Specification and Compositional Verification of Real-Time Systems.
LNCS 558. Springer-Verlag.

Hooman, J. 1993. Specification and verification of a distributed real-time arbitration pro-
tocol. Pages 284–293 of: Proc. 14th IEEE Real-Time Syst. Symp.

Hooman, J. 1994a. Compositional verification of a vistributed real-time arbitration pro-
tocol. J. Real-Time Syst., 6(2), 173–205.

264 REFERENCES

Hooman, J. 1994b. Correctness of real-time systems by construction. Pages 19–40 of:
Langmaack, H., de Roever, W.-P., & Vytopil, J. (eds), Formal Tech. in Real-Time
and Fault-Tolerant Syst. LNCS 863. Springer-Verlag.

Hooman, J., & de Roever, W.-P. 1986. The quest goes on: a survey of proof systems
for partial correctness of CSP. Pages 343–395 of: Current Trends in Concurrency.
LNCS 224. Springer-Verlag.

Hooman, J., & de Roever, W.-P. 1990. Design and verification in real-time distributed
computing: an introduction to compositional methods. Pages 37–56 of: Protocol
Specification, Testing and Verification, IX. North-Holland.

Hooman, J., & Widom, J. 1989. A temporal-logic based compositional proof system
for real-time message passing. Pages 424–441 of: Parallel Architectures and Lan-
guages Europe. LNCS 366. Springer-Verlag.

Hooman, J., Kuiper, R., & Zhou, P. 1991. Compositional verification of real-time sys-
tems using explicit clock temporal logic. Pages 110–117 of: Proc. 6th Intl. Work-
shop on Softw. Specification and Design. IEEE.

Howles, F. 1993. Distributed arbitration in the Futurebus protocol. M.Sc. thesis, Oxford
University.

Huizing, C., Gerth, R., & de Roever, W.-P. 1987. Full abstraction of a real-time denota-
tional semantics for an OCCAM-like language. Pages 223–237 of: Proc. 14th ACM
Symp. on Principles of Prog. Languages.

Hung, D.V., & Zhou, C.C. 1994. Probabilistic duration calculus for continuous time.
Tech. rept. UNU/IIST Report 25. UNU/IIST, Macau.

IEEE. 1988. Standard backplane and bus specification for multiprocessor architectures:
Futurebus. IEEE.

Jackson, D.M. 1989. The specification of aircraft engine control software in timed CSP.
M.Sc. thesis, Oxford University.

Jackson, D.M. 1990. Specifying timed communicating sequential processes using tempo-
ral logic. Tech. rept. TR–5–90. Programming Research Group, Oxford University.

Jackson, D.M. 1992. Logical verification of reactive software systems. D.Phil thesis,
Oxford University.

Jahanian, F., & Mok, A.K.-L. 1986. Safety analysis of timing properties in real-time
systems. IEEE Trans. on Softw. Eng., SE-12(9), 890–904.

Jensen, D. 1992. The kernel computational model of the Alpha real-time distributed op-
erating system. In: Agrawala, A., Gordon, K., & Hwang, P. (eds), Mission Critical
Operating Systems. IOS Press.

Joseph, M. 1985. On a problem in real-time computing. Inf. Proc. Letts, 20(4), 173–177.
Joseph, M., & Pandya, P.K. 1986. Finding response times in a real-time system. Comp.

J., 29(5), 390–395.
Joseph, M., Moitra, A., & Soundararajan, N. 1987. Proof rules for fault-tolerant dis-

tributed programs. Sc. Comp. Prog., 8, 43–67.
Kay, A., & Reed, J.N. 1990. A specification of a telephone exchange in timed CSP. Tech.

rept. TR–19–90. Programming Research Group, Oxford University.

REFERENCES 265

Klein, M.H., Ralya, T.A., Pollak, B., Obenza, R., & Harbour, M.G. 1993. A Practi-
tioner’s Handbook for Real-time Analysis: a guide to rate monotonic analysis for
real-time systems. Kluwer Academic Publishers.

Koymans, R. 1990. Specifying real-time properties with metric temporal logic. J. Real-
Time Syst., 2(4), 255–299.

Koymans, R. 1992. Specifying Message Passing and Time-Critical Systems with Tem-
poral Logic. LNCS 651. Springer-Verlag.

Koymans, R., & de Roever, W.-P. 1985. Examples of a real-time temporal logic specifica-
tion. Pages 231–252 of: The Analysis of Concurrent Systems. LNCS 207. Springer-
Verlag.

Koymans, R., Vytopyl, J., & de Roever, W.-P. 1983. Real-time programming and asyn-
chronous message passing. Pages 187–197 of: Proc. 2nd ACM Symp. on Principles
of Distr. Comp.

Koymans, R., Shyamasundar, R.K., de Roever, W.-P., Gerth, R., & Arun-Kumar, S. 1988.
Compositional semantics for real-time distributed computing. Inf. & Comp., 79(3),
210–256.

Kramer, J., Magee, J., Sloman, M.S., & Lister, A.M. 1983. CONIC: an integrated ap-
proach to distributed computer control systems. Proc. IEE (Part E), 180(1), 1–10.

Lamport, L. 1978. Time, clocks, and the ordering of events in a distributed system.
Comm. ACM, 21(7), 558–565.

Lamport, L. 1983. Specifying concurrent program modules. ACM Trans. on Prog. Lang.
& Syst., 5(2), 190–222.

Lamport, L. 1993. Hybrid systems in TLA+. Pages 77–102 of: Workshop on Theory of
Hybrid Systems. LNCS 736. Springer-Verlag.

Lamport, L. 1994. The temporal logic of actions. ACM Trans. on Prog. Lang. & Syst.,
1(3), 872–923.

Lamport, L., & Merz, S. 1994. Specifying and verifying fault-tolerant systems. Pages
41–76 of: Langmaak, H., de Roever, W.-P., & Vytopil, J. (eds), Formal Tech. in
Real-Time and Fault-Tolerant Syst. LNCS 863. Springer-Verlag.

Laprie, J.C. 1985. Dependable computing and fault-tolerance: concepts and terminology.
Pages 2–11 of: Proc. 15th Symp. on Fault-Tolerant Comp. IEEE Comp. Society
Press.

Lee, P.A., & Anderson, T. 1990. Fault-Tolerance: Principles and Practice. Springer-
Verlag.

Lehoczky, J. 1990. Fixed priority scheduling or periodic task sets with arbitrary dead-
lines. Pages 201–209 of: Proc. 11th IEEE Real-Time Syst. Symp.

Lehoczky, J., Sha, L., & Ding, Y. 1989. The rate-monotonic scheduling algorithm: exact
characterisation and average case behavior. Pages 261–270 of: Proc. 10th IEEE
Real-Time Syst. Symp.

Leveson, N. 1995. Safeware: System Safety and Computers. Addison-Wesley.
Levin, G.M., Gries, D. 1981 A proof technique for communicating sequential processes.

Acta Informatica, 15, 281–302.

266 REFERENCES

Lincoln, P., & Rushby, J. 1993. The formal verification of an algorithm for interactive
consistency under a hybrid fault model. Pages 292–304 of: Comp. Aided Verif. 93.
LNCS 697. Springer-Verlag.

Liu, C.L., & Layland, J.W. 1973. Scheduling algorithms for multiprogramming in a hard-
real-time environment. J. ACM, 20(1), 40–61.

Liu, J.W.S., Lin, K., Shih, W., Yu, A., Chung, J., & Zhao., W. 1991. Algorithms for
scheduling imprecise calculations. IEEE Comp., 24(5), 58–68.

Liu, J.W.S., Shih, W.K., Lin, K.J., Bettati, R., & Chung, J.Y. 1994. Imprecise computa-
tions. In: Proc. IEEE.

Liu, Z. 1991. Fault-tolerant programming by transformations. Ph.D. thesis, University
of Warwick.

Liu, Z., & Joseph, M. 1992. Transformation of programs for fault-tolerance. Formal
Asp. Comp., 4, 442–469.

Liu, Z., & Joseph, M. 1993. Specification and verification of recovery in asynchronous
communicating systems. Pages 137–165 of: Vytopil, J. (ed), Formal Techiques in
Real-Time and Fault-Tolerant Systems Kluwer Academic Publishers.

Liu, Z., & Joseph, M. 1994. Stepwise development of fault-tolerant reactive systems.
Pages 529–546 of: Langmaak, H., de Roever, W.-P., & Vytopil, J. (eds), Formal
Tech. in Real-Time and Fault Tolerant Syst. LNCS 863. Springer-Verlag.

Liu, Z., Nordahl, J., & Sørensen, E.V. 1993a. Composition and refinement of probabilis-
tic real-time systems. Pages 31–40 of: Górski, Janusz (ed), Proc. 12th Intl. Conf.
on Comp. Safety, Reliability and Security. Springer-Verlag.

Liu, Z., Nordahl, J., & Sørensen, E.V. 1993b. Compositional design and refinement of
probabilistic real-time systems. In: IMA Conf. on Maths. of Dependable Syst.

Liu, Z., Ravn, A.P., Sørensen, E.V., & Zhou, C.C. 1993c. A probabilistic duration calcu-
lus. Pages 29–52 of: Kopetz, H., & Kakuda, Y. (eds), Responsive Comp. Syst. Dep.
Comp. and Fault-Tol. Syst., vol. 7. Springer-Verlag.

Liu, Z., Ravn, A.P., Sørensen, E.V., & Zhou, C.C. 1994b. Towards a calculus of systems
dependability. High Integrity Syst., 1(1), 49–75.

Liu, Z., Joseph, M., & Janowski, T. 1995. Verification of schedulability for real-time
programs. Formal Asp. of Comp., 7(5), 510–532.

Locke, C.D. 1985. Best-effort decision making for real-time scheduling. Ph.D. thesis,
Carnegie-Mellon University, Pittsburgh, PA.

Lodaya, K., & Shyamasundar, R.K. 1990. Proof theory for exception handling in a task-
ing environment. Acta Inf., 28, 7–41.

Lowe, G. 1993. Probabilities and priorities in timed CSP. D.Phil thesis, Oxford Univer-
sity.

Mahony, B.P., & Hayes, I.J. 1992. A case-study in timed refinement: a mine pump. IEEE
Trans. on Softw. Eng., 18(9), 817–826.

Manna, Z., & Pnueli, A. 1982. Verification of concurrent programs: a temporal proof
system. Pages 163–255 of: Foundations of Comp. Sc. IV, Distr. Syst.: Part 2. Math-
ematical Centre Tracts, vol. 159.

Mislove, M.W., Roscoe, A.W., & Schneider, S.A. 1995. Fixed points without complete-
ness. Th.Comp. Sc., 138.

REFERENCES 267

Mok, A.K.-L. 1983. Fundamental design problems of distributed systems for the hard
real-time environment. Ph.D. thesis, Dept. of Electrical Eng. and Comp. Sc., M.I.T,
Cambridge, MA.

Mok, A.K.-L., & Dertouzos, M.L. 1978. Multiprocessor scheduling in a hard real-time
environment. In: Proc. 7th Texas Conf. on Comp. Syst.

Moszkowski, B. 1985. A temporal logic for multi-level reasoning about hardware. IEEE
Comp., 18(2).

Nassor, E., & Bres, G. 1991. Hard real-time sporadic task scheduling for fixed priority
schedulers. Pages 44–47 of: Proc. Intl. Workshop on Responsive Comp. Syst.

Nguyen, V., Demers, A., Gries, D., & Owicki, S. 1986. A model and temporal proof
system for networks of processes. Distr. Comp., 1(1), 7–25.

Nordahl, J. 1993. Design for dependability. Pages 65–89 of: Dependable Computing
and Fault Tolerant Systems, 8. Springer-Verlag.

Olderog, E.R. 1985. Process theory: semantics, specification and verification. Pages
509–519 of: ESPRIT/LPC Advanced School on Current Trends in Concurrency.
LNCS 194. Springer-Verlag.

Ostroff, J. 1989. Temporal Logic for Real-Time Systems. Advanced Softw. Development
Series. Research Studies Press.

Owicki, S., & Gries, D. 1976. An axiomatic proof technique for parallel programs. Acta
Inf., 6, 319–340.

Owicki, S., & Lamport, L. 1982. Proving liveness properties of concurrent programs.
ACM Trans. on Prog. Lang. & Syst., 4(3), 455–495.

Owre, S., Rushby, J., & Shankar, N. 1992. PVS: A prototype verification system. Pages
748–752 of: 11th Conf. on Automated Deduction. LNAI 607, Springer-Verlag.

Pandya, P.K. 1994. Weak chop inverses and liveness in duration calculus. Tech. rept.
Computer Science Group, TIFR, India,. TR-95-1.

Panwar, S.S., & Towsley, D. 1988. On the optimality of the step rule for multiple server
queues that serve customers with deadlines. Tech. rept. COINS 88-81. University
of Massachusetts Amherst, Dept. of Comp. and Inf. Sc.

Panwar, S.S., Towsley, D., & Wolf, J.K. 1988. Optimal scheduling policies for a class of
queues with customer deadlines until the beginning of service. J. ACM, 35(4).

Peled, D., & Joseph, M. 1994. A compositional framework for fault-tolerance by speci-
fication transformation. Th. Comp. Sc., 128, 99–125.

Peleska, J. 1991. Design and verification of fault-tolerant systems with CSP. Distr.
Comp., 5, 95–106.

Pnueli, A. 1977. The temporal logic of programs. Pages 46–57 of: Proc. 18th Symp. on
Foundations of Comp. Sc.

Pnueli, A., & Harel, E. 1988. Applications of temporal logic to the specification of real-
time systems. Pages 84–98 of: Joseph, M. (ed), Formal Tech. in Real-Time and
Fault-Tolerant Syst. LNCS 331. Springer-Verlag.

Ramamritham, K., & Stankovic, J.A. 1984. Dynamic task scheduling in distributed hard
real-time systems. IEEE Softw., 1(3), 65–75.

268 REFERENCES

Ramamritham, K., Stankovic, J.A., & Zhao, W. 1989. Distributed scheduling of tasks
with deadlines and resource requirements. Pages 1110–23 of: IEEE Trans. on
Comp., vol. 38(8).

Ramamritham, K., Stankovic, J.A., & Shiah, P. 1990. Efficient scheduling algorithms for
real-time multiprocessor systems. IEEE Trans. on Parallel and Distr. Syst., 1(2),
184–94.

Ravn, A.P. 1994. Design of embedded real-time computing systems. Tech. rept. ID/DTH.
Ravn, A.P., & Rischel, H. 1991. Requirements capture for embedded real-time sys-

tems. Pages 147–152 of: Proc. IMACS-MCTS’91 Symp. on Modelling and Control
of Techn. Syst., Villeneuve d’Ascq, France 7–10, 1991, vol. 2. IMACS.

Ravn, A.P., Rischel, H., & Hansen, K.M. 1993. Specifying and verifying requirements
of real-time systems. IEEE Trans. Softw. Eng., 19(1), 41–55.

Ready, J. 1986. VRTX: A real-time operating system for embedded microprocessor ap-
plications. IEEE Micro, 8–17.

Reed, G.M. 1988. A uniform mathematical theory for distributed computing. D.Phil
thesis, Oxford University.

Reed, G.M. 1990. A hierarchy of models for real-time distributed computing. In: Proc.
5th Intl. Conf. on the Mathematical Foundations of Prog. Semantics. LNCS 442.
Springer-Verlag.

Reed, G.M., & Roscoe, A.W. 1986. A timed model for communicating sequential pro-
cesses. Pages 314–323 of: Proc. 13th Intl. Coll. on Automata, Languages and Prog.
LNCS 226. Springer-Verlag.

Reed, G.M., & Roscoe, A.W. 1987. Metric spaces as models for real-time concurrency.
In: Proc. Workshop on the Mathematical Foundations of Prog. Languages Seman-
tics. LNCS 298. Springer-Verlag.

Reed, G.M., & Roscoe, A.W. 1991. A study of nondeterminism in real-time concurrency.
In: Proc. 2nd UK–Japan CS Workshop. LNCS 491. Springer-Verlag.

Roscoe, A.W. 1994. Model-checking CSP. In: Roscoe, A.W. (ed), A Classical Mind:
Essays in Honour of C.A.R. Hoare. Prentice Hall International.

Rushby, J. 1993. A fault-masking and transient-recovery model for digital flight-control
systems. Pages 109–136 of: Vytopil, J. (ed), Formal Tech. in Real-Time and Fault-
Tolerant Syst. Kluwer Academic Publishers.

Rushby, J., & von Henke, F. 1993. Formal verification of algorithms for critical systems.
IEEE Trans. on Softw. Eng., 19(1), 13–23.

Scattergood, B. 1990. The description of a laboratory robot in timed CSP. M.Sc. thesis,
Oxford University.

Schepers, H. 1993. Tracing fault-tolerance. Pages 91–110 of: Dependable Computing
and Fault Tolerant Systems, 8. Springer-Verlag.

Schepers, H. 1994. Compositional reasoning about responsive systems with limited re-
sources. J. Real-Time Syst., 7(3), 291–313. Reprinted in M.Malek (Ed.), Responsive
Computing, Kluwer Academic Publishers, 1994, 65-87.

Schepers, H., & Coenen, J. 1995. Trace-based compositional refinement of fault-tolerant
distributed systems. Pages 309–324 of: Dependable Computing and Fault-tolerant
Systems, 9. Springer-Verlag.

REFERENCES 269

Schepers, H., & Gerth, R. 1993. A compositional proof theory for fault-tolerant real-
time distributed systems. Pages 34–43 of: Proc. 12th Symp. on Reliable Distr. Syst.
IEEE Comp. Society Press.

Schepers, H., & Hooman, J. 1994. A trace-based compositional proof theory for fault
tolerant distributed systems. Th. Comp. Sc., 128, 127–158.

Schlichting, R.D., & Schneider, F.B. 1983. Fail-stop processors: an approach to design-
ing fault tolerant computing systems. ACM Trans. on Comp. Syst., 1(3), 222–238.

Schneider, F.B. 1990a. Implementing fault-tolerant services using the state machine ap-
proach: A tutorial. ACM Comp. Surveys, 22(4), 299–319.

Schneider, F.B., Bloom, B., & Marzullo, K. 1992. Putting time into proof outlines. Pages
618–639 of: Workshop on Real-Time: Theory in Practice. LNCS 600. Springer-
Verlag.

Schneider, S.A. 1990b. Correctness and communication of real-time systems. D.Phil
thesis, Oxford University.

Schneider, S.A. 1991. Unbounded non-determinism in timed CSP. ESPRIT SPEC project
deliverable.

Schneider, S.A. 1993. Fischer’s protocol in timed CSP. ESPRIT CONCUR2 project
deliverable.

Schneider, S.A. 1994. Timewise refinement for communicating processes. In: Proc.
9th Intl. Conf. on the Mathematical Foundations of Prog. Semantics. LNCS 802.
Springer-Verlag.

Schneider, S.A. 1995. An operational semantics for timed CSP. Inf. & Comp., 116(2).
Scholfield, D.J., Zedan, H.S.M., & He, J. 1994. A specification-oriented semantics for

real-time systems. Th. Comp. Sc., 131, 219–241.
Schwan, K., Geith, A., & Zhou, H. 1990. From Chaosbase to Chaosarc: A family of real-

time kernels. Pages 82–91 of: Proc. 11th IEEE Real-Time Syst. Symp.
Scott, B.G.O. 1994. Translating timed CSP processes to occam2. In: Proc. 1994 World

Transputer Congress. IOS Press.
Sha, L., Rajkumar, R., & Lehoczky, J.P. 1990. Priority inheritance protocols: An ap-

proach to real-time synchronisation. IEEE Trans. on Comp., 39(9), 1175–1185.
Shankar, A.U., & Lam, S.S. 1987. Time-dependent distributed systems: proving safety,

liveness and real-time properties. Distr. Comp., 2, 61–79.
Shankar, N. 1993. Verification of real-time systems using PVS. Pages 280–291 of:

Comp. Aided Verif. ’93. LNCS 697. Springer-Verlag.
Shasha, D.E., Pnueli, A., & Ewald, W. 1984. Temporal verification of carrier-sense local

area network protocols. Pages 54–65 of: Proc. 11th ACM Symp. on Principles of
Prog. Languages.

Shen, C., Ramamritham, K., & Stankovic, J.A. 1993. Resource reclaiming in multipro-
cessor real-time systems. IEEE Trans. on Parallel and Distr. Syst., 4(4), 382–397.

Skakkebæk, J.U. 1994. Liveness and fairness in duration calculus. Pages 283–298 of:
Jonsson, B., & Parrow, J. (eds), CONCUR ’94: Concurrency Theory. LNCS 836.
Springer-Verlag.

270 REFERENCES

Skakkebæk, J.U., & Shankar, N. 1994. Towards a duration calculus proof assistant in
PVS. Pages 660–679 of: Langmaack, H., de Roever, W.-P., & Vytopil, J. (eds),
Formal Tech. in Real-time and Fault-Tolerant Syst. LNCS 863. Springer-Verlag.

Skakkebæk, J.U., Ravn, A.P., Rischel, H., & Zhou, C.C. 1992. Specification of embed-
ded real-time systems. In: Proc. Euromicro Workshop on Real-time Syst. IEEE
Comp. Society Press.

Stamper, R. 1990. The specification of AGV control software in timed CSP. M.Sc. thesis,
Oxford University.

Stankovic, J.A., & Ramamritham, K. 1988. Hard Real-Time Systems: Tutorial Text.
IEEE Comp. Society Press.

Stankovic, J.A., & Ramamritham, K. 1991. The Spring kernel: A new paradigm for hard
real-time operating systems. IEEE Softw., 8(3), 62–72.

Stankovic, J.A., & Ramamritham, K. 1993. Advances in Hard Real-Time Systems. IEEE
Comp. Society Press.

Stankovic, J.A., Ramamritham, K., & Cheng, S. 1985. Evaluation of a flexible task
scheduling algorithm for distributed hard real-time systems. IEEE Trans. on Comp.,
C-34(12), 1130–43.

Superville, S. 1991. Specifying complex systems with timed CSP: a decomposition and
specification of a telephone exchange system which has a central controller. M.Sc.
thesis, Oxford University.

Tindell, K.W. 1993. Fixed priority scheduling of hard real-time systems. Ph.D. thesis,
Dept. of Comp. Sc., University of York, UK.

Turski, W.M. 1988. Time considered irrelevant for real-time systems. BIT, 28, 473–486.
Venema, Y. 1991. A modal logic for chopping intervals. J. Logic of Comp., 1(4), 453–

796.
Wallace, A.R. 1991. A TCSP case study of a flexible manufacturing system. M.Sc. thesis,

Oxford University.
Wang, F. 1993. Issues Related to Dynamic Scheduling in Real-Time Systems. Ph.D.

thesis, University of Massachusetts.
Weber, D.G. 1989. Formal specification of fault-tolerance and its relation to computer

security. ACM Softw. Eng. Notes, 14(3), 273–277.
Wirth, N. 1977. Towards a discipline of real-time programs. Comm. ACM, 20(8), 577–

583.
Yu, H., Pandya, P.K., & Sun, Y. 1994a. A calculus for hybrid sampled data systems.

Pages 716–737 of: Langmaack, H., de Roever, W.-P., & Vytopil, J. (eds), Formal
Tech. in Real-time and Fault-Tolerant Syst. LNCS 863. Springer-Verlag.

Yu, X., Wang, J., Zhou, C.C., & Pandya, P.K. 1994b. A formal design of hybrid systems.
Pages 738–755 of: Langmaack, H., de Roever, W.-P., & Vytopil, J. (eds), Formal
Tech. in Real-time and Fault-Tolerant Syst. LNCS 863. Springer-Verlag.

Zheng, Y., & Zhou, C.C. 1994. A formal proof of the deadline driven scheduler. Pages
756–775 of: Langmaack, H., de Roever, W.-P., & Vytopil, J. (eds), Formal Tech. in
Real-time and Fault-Tolerant Syst. LNCS 863. Springer-Verlag.

Zhao, W., & Ramamritham, K. 1987. Simple and integrated heuristic algorithms for
scheduling tasks with time and resource constraints. J. Syst. & Softw., 7, 195–205.

REFERENCES 271

Zhao, W., Ramamritham, K., & Stankovic, J.A. 1987a. Preemptive scheduling under
time and resource constraints. IEEE Trans. on Comp., C-36(8), 949–60.

Zhao, W., Ramamritham, K., & Stankovic, J.A. 1987b. Scheduling tasks with resource
requirements in hard real-time systems. IEEE Trans. on Softw. Eng., SE-12(5), 567–
77.

Zhou, C.C. 1993. Duration calculii: An overview. Pages 256–266 of: Bjørner, D., Broy,
M., & Pottosin, I.V. (eds), Proc. Formal Methods in Prog. and Their Application.
LNCS 735. Springer-Verlag.

Zhou, C.C., & Xiaoshan, L. 1994. A mean-value duration calculus. Pages 431–451 of:
Roscoe, A. W. (ed), A Classical Mind: Essays in Honour of C. A. R. Hoare. Prentice
Hall International.

Zhou, C.C., Hoare, C.A.R., & Ravn, A.P. 1991a. A calculus of durations. Inf. Proc.
Letts., 40(5).

Zhou, C.C., Hansen, M.R., Ravn, A.P., & Rischel, H. 1991b. Duration specifications for
shared processors. Pages 21–32 of: Vytopil, J. (ed), Formal Tech. in Real-time and
Fault-Tolerant Syst. LNCS 571. Springer-Verlag.

Zhou, C.C., Hansen, M.R., & Sestoft, P. 1993a. Decidability results for duration calculus.
Pages 58–68 of: Enjalbert, P., Finkel, A., & Wagner, K.W. (eds), Proc. STACS 93.
LNCS 665. Springer-Verlag.

Zhou, C.C., Ravn, A.P., & Hansen, M.R. 1993b. An extended duration calculus for hy-
brid real-time systems. Pages 36–59 of: Grossman, R.L., Nerode, A., Ravn, A.P.,
& Rischel, H. (eds), Hybrid Systems. LNCS 736. Springer-Verlag.

Zhou, C.C., Zhang, J., Yang, L., & Li, X. 1994. Linear duration invariants. Pages 86–109
of: Langmaack, H., de Roever, W.-P., & Vytopil, J. (eds), Formal Tech. in Real-time
and Fault-Tolerant Syst. LNCS 863. Springer-Verlag.

Zhou, C.C., Dang, V. H., & Li, X. 1995. A duration calculus with infinite intervals. Pages
16–41 of: Reichel, H. (ed), Fundamentals of Computation Theory. 10th Intl. Conf.,
Dresden, Germany. LNCS 965. Springer-Verlag.

Zhou, P., & Hooman, J. 1995. Formal specification and compositional verification of an
atomic broadcast protocol. J. Real-Time Sys., 9(6), 119–145.

Zlokapa, G. 1993. Real-time systems: well-timed scheduling and scheduling with prece-
dence constraints. Ph.D. thesis, University of Massachusetts.

Zwarico, A., & Lee, I. 1985. Proving a network of real-time processes correct. Pages
169–177 of: Proc. 6th IEEE Real-Time Syst. Symp.

Zwiers, J. 1989. Compositionality, Concurrency and Partial Correctness. LNCS 321.
Springer-Verlag.

Index

Abadi, M., 137, 141
abnormal behaviour, 229, 232
abstraction, 147, 163, 178
acceptable behaviour, 232
Ada, 33, 35, 50, 64, 255

mine pump, 56
priority, 46

Aghili, H., 137
Agrawala, A., 94
Alur, R., 140
Anderson, T., 254
Apt, K.R., 139
Arun-Kumar, S., 138
assertional reasoning, 97
asynchronous, 148, 179

communication, 33
Audsley, N.C., 30, 64
automated verification, 138
axiomatic proof, 13
axiomatization, 126
axioms

DC, 194, 198

Baker, T.P., 64
Barringer, H., 140
Baruah, S., 93
basic state, 192
Bate, G., 64
behaviour, 147, 167, 209
Bernstein, A.J., 139, 140

Berry, G., 13
Bettati, R., 94
Biyabani, S., 94
Bjørner, D., 224
Blake, B.A., 94
Blazewicz, J., 93
blocking factor, 42
Bloom, B., 139
Bondavalli, A., 64
Bowen, J., 227
Bres, G., 30
Brookes, S.D., 178
Burns, A., 14, 30, 64, 254
Butazzo, G., 94

catastrophic behaviour, 229
Cau, A., 255
Cellary, W., 93
checkpoint, 255
Cheng, S., 94
Chetto, H., 93
Chetto, M., 93
chop operator, 187, 191, 193, 196, 198
chop-monotonic, 196, 198
Chung, J.Y., 94
Coenen, J., 255
Coffman, E.G., 93
commitment, 190
communication, 73, 109, 147, 148

asynchronous, 50, 64, 73, 109

272

INDEX 273

lines, 113
synchronous, 50, 73, 112

competitiveness analysis, 76, 82
completeness, 234, 250
compositional proof system, 98
correctness formula, 101
Courcoubetis, C., 140
Cristian, F., 137, 254
critical instant, 24
CSP, 147

abstraction, 178
alphabet, 148, 153, 161
asynchronous, 148, 152
behaviour, 147, 150, 151, 154, 156,

158, 160–162, 165, 167, 171, 179
choice, 152, 161
communication, 147, 148, 153
computational model, 148
deadlock, 149, 150, 152, 178
events, 148–157, 160, 162, 165, 168,

177
exception, 151
external choice, 150, 160, 165
external events, 148, 149
failures, 158, 178
hiding, 152
implementation, 164, 170, 171, 177
infinite behaviour, 179
infinite choice, 154
infinite traces, 156
internal events, 148
macros, 166
mine pump, 167, 169, 177
nondeterministic choice, 154
observation, 156–158, 164
operators, 149
prefix choice, 162
processes, 148
proof rules, 165
recursion, 153, 165, 174, 179
refinement, 177, 179
refusals, 148, 156–158, 163
semantics, 159

specification, 156, 162–167, 171, 173,
174, 177–179

synchronization, 148
termination, 150, 159
tick event, 159
timed events, 156–158
timed failure, 158
timed failures, 157, 162, 178, 179
timed refusals, 157–160, 165
timed trace, 157, 158
timed traces, 161
timeout choice, 151, 154
timewise refinement, 178
trace, 156, 161, 162, 177
trace events, 156
verification, 164–169

Dang, V.H., 226
Davidson, G., 94
Davies, J., 178, 179
Davis, R.I., 30, 64
DC

axioms, 194, 196, 225
behaviour, 184
induction rule, 197
probabilistic, 205
semantics, 225, 227

de Bakker, J., 139
de Roever, W.-P., 138–140, 255
deadline, 38

external, 39
internal, 39, 45

deadline-constrained transaction, 72
deadlines, 70
deadlock, 149
Demers, A., 140
deontic logic, 255
Dertouzos, M.L., 93
Dijkstra, E.W., 139
Dill, D.L., 140
Ding, Y., 30
dispatching, 66, 69, 91
Dolev, D., 137
dual computer system, 255

274 INDEX

duration, 185, 192
duration calculus, 182
duration formula, 193
dynamic planning, 83
dynamic priority, 76

early warning, 68
Emerson, E., 140
Engel, M., 226, 227
environment, 148
Esterel, 13
event projection, 230
events, 148, 150
Ewald, W., 140
exception handling, 254, 255
exceptional behaviour, 229
execution time, 38

fail-safe, 242, 247
fail-stop processor, 254
failure, 205–207, 214, 229

detection, 236, 243
hypothesis, 229, 230, 232–234, 237,

245, 255
proof rule, 234

fault, 229
refinement, 255
transformations, 255

fault-tolerance, 86, 229
correctness, 231
software, 65

faults
hardware, 229
random, 229
software, 229
systematic, 229

feasibility analysis, 66
feasibility checking, 66, 90
feasible, 46, 202
finite variability, 124, 148, 149, 157, 197
Fischer’s protocol, 179
flexible time-constraints, 72
Francez, N., 138, 139
Fränzle, M., 227

Furht B., 94
Futurebus+, 179

Geith, A., 94
Gerber, R., 139
Gerth, R., 138, 255
Gibbins, P., 179
Gluch, D., 94
Goli, P., 94
Gonthier, G., 13
Goodenough, J., 64
grateful degradation, 67
Gries, D., 139, 140
Grostick, D., 94
guarantees, 70
Gudmundsson, O., 94

Haase, V.H., 139
Hammer, D., 137
Hansen, K.M., 227
Hansen, M.R., 225
Hansson, H., 140
Harbour, M.G., 30
Harel, D., 13
Harel, E., 140
Harris, D., 94
Harter, P.K., 30, 140
Hayes, I.J., 14
He, J., 64, 137, 227, 255
Hehner, E.C.R., 13
Henzinger, T., 140
Hoare logic, 97
Hoare triple, 97, 139, 254
Hoare, C.A.R., 12, 137, 139, 141, 178,

224, 226, 254, 255
Holmes, V.P., 94
Hong, J., 94
Hong, K.S., 93
Hooman, J., 137–140, 255
Howles, F., 179
HRT-HOOD, 64
Huizing, C., 138
Hung, D.V., 226

IEEE868 Bus, 137

INDEX 275

implementation, 11, 147, 182, 183, 188,
191, 204, 205, 225

infinite choice, 154
inter-arrival time, 33, 42
internal choice, 150
interval projection, 230
interval temporal logic, 182, 191

Jackson, D.M., 178, 179
Jahanian, F., 141
Janowski, T., 12
Jensen, D., 94
jitter, 42
Jonsson, B., 140
Joseph, M., 12, 30, 255

Karger, B.V., 227
Kay, A., 179
Klein, M.H., 30
Ko, K., 94
Koren, G., 93
Koymans, R., 138, 140
Kramer, J, 14
Kubica, M., 227
Kuiper, R., 140
Kurose, J., 94

Lam, S.S., 141
Lamport, L., 137, 139–141, 254
Langmaack, H., 224
Laprie, J.C., 254
layered architecture, 254
Layland, J.W., 12, 30, 93
Lee, I., 139, 141
Lee, P.A., 254
Lehman, D., 138
Lehoczky, J., 30
Leung, J.Y-T, 93
Leveson, N., 14
Levin, G.M., 139
Li, X., 225, 226
Lichtenstein, O., 140
Lin, K., 94
Lin, K.J., 94
Lincoln, P., 139

Lister, A.M., 14, 254
Liu, C.L., 12, 30, 93
Liu, J.W.S., 94
Liu, Z., 12, 225, 226, 255
liveness, 98, 163
load relation, 23
Locke, C.D., 93, 94
Lodaya, K., 254
LOTOS, 179
Lowe, G., 179
Luit, E., 137
Lustre, 13

Madey, J., 227
Magee, J., 14
Mahony, B.P., 14
Manna, Z., 139, 140
Mao, D., 93
Markov chains, 205
Marzullo, K., 139
Mascot, 64
master-slave, 255
maximal progress, 148
maximum parallelism, 148
Merz, S., 141
mine pump, 5–11, 14, 53, 105, 169, 183–

186, 188, 191, 192, 198, 205, 206,
216, 223

reliability, 236
Mishra, B., 93
Mislove, M.W., 178
Moitra, A., 255
Mok, A.K.-L., 12, 93, 140, 141
Mose, D., 94
Moszkowski, B., 224
Müller-Olm, M., 227

Nassor, E., 30
Nguyen, V., 140
non-periodic, 86
nondeterministic choice, 154
Nordahl, J., 226, 255

Obenza, R., 30
observation interval, 191

276 INDEX

Olderog, E.R., 138, 227
Ostroff, J., 140
Owicki, S., 139, 140
Owre, S., 138, 139

Pandya, P.K., 30, 226, 227
Panwar, S.S., 94
parallel composition, 99
Parker, J., 94
Parnas, D.L., 227
PDC, 205

axioms, 211, 212
Peled, D., 255
Peleska, J., 255
periodic, 32
periodic tasks, 86
Piorkowski, K., 94
planning-based, 83
Pnueli, A., 138–140
Pollak, B., 30
pre-emption, 204
priority, 76

allocation, 45
ceiling, 39, 40, 42, 64
inheritance, 40, 64
inversion, 40
pragma, 52

priority ceiling, 204
probabilistic duration calculus, 205
probabilistic logic, 182
programming language, 122
proof rules, 103
proof system, 124
punctual point, 88, 94

Rabbat, G., 94
Rajkumar, R., 64
Ralya, T.A., 30
Ramamritham, K., 93, 94
rate-monotonic, 24
Ravn, A.P., 137, 224–227
reactive, 147
Ready, J., 94
real-time behaviour, 100

recovery, 214
backward, 255
transformation, 255

recurrence relation, 38, 43
recursion, 149, 153, 178, 179
Reed, G.M., 139, 178
Reed, J.N., 179
refinement, 147, 177, 182, 191, 226
relative completeness, 253
requirements, 3, 182, 189, 191, 200, 205,

224, 227
functional, 3
non-functional, 3
safety, 6

response time, 26, 33, 38
restart, 255
Richardson, M.F., 64
Rischel, H., 226, 227
Roberts, M., 94
Roscoe, A.W., 139, 178, 180
Rosier, A.R.L., 93
Rushby, J., 138, 139

safety, 3, 54, 98, 163
satisfaction, 210
satisfaction probability, 210
Scattergood, B., 179
schedulability analysis, 66
schedule construction, 66, 68, 90
scheduler, 11, 202–204
scheduling, 13, 32, 64, 136, 182

best-effort, 65, 67, 80, 90, 93
clairvoyant, 76
deadline-monotonic, 45
earliest-deadline, 76, 77, 93
exact analysis, 24
first-come-first-served, 77, 93, 204
fixed priority, 38, 40
greedy, 78
heuristic, 94
least-laxity, 76, 93, 94
list, 78
messages, 49
minimum-earliest-start-time, 77

INDEX 277

minimum-processing-time, 77
minimum-value, 77
minimum-value-density, 77
optimal, 76
overheads, 46
periodic, 93
planning-based, 67, 90, 94
policy, 202, 204, 227
pre-emption, 19
pre-emptive, 79
priority, 19, 204
priority-based, 65
rate monotonic, 23
rate-monotonic, 45
reclaiming, 92
recurrence relation, 28
shortest-processing-time-first, 93
static, 18
well-timed, 89, 94

scheduling fault-tolerance, 86
scheduling point, 74
Schenke, M., 227
Schepers, H., 255
Schlichting, R.D., 254
Schneider, F.B., 139, 254
Schneider, S.A., 178, 179
Scholefield, D.J., 64, 137
Schwan, K., 94
Scott, B.G.O., 179
semantics

chop, 193
sensors, 117
Sestoft, P., 225
Sha, L., 30, 64
Shankar, A.U., 141
Shankar, N., 138, 139, 225
Shasha, D.E., 93, 140
Shen, C., 94
Shiah, P., 94
Shih, W., 94
Shih, W.K., 94
Shyamasundar, R.K., 138, 254
Signal, 13
Sistla, A.P., 140

Skakkebæk, J.U., 225, 227
Sloman, M.S., 14
Slowinski, R., 93
software

failures, 247
Soundararajan, N., 255
soundness, 234, 250
specification, 7, 10, 11, 100, 147, 162,

177, 179, 182, 187, 190, 191, 204
mine pump, 188

sporadic, 32
Spring, 94
Srinivasan, J., 140
Stamper, R., 179
Stankovic, J., 64
Stankovic, J.A., 93, 94
start-time constraints, 72
state machine, 254
Statecharts, 13
Staunstrup, J., 227
Strigini, L., 64
strong synchrony, 13
Strong, R., 137
strongly feasible, 84
Sun, Y., 227
Superville, S., 179
synchronization, 148
synchrony hypothesis, 13
Sørensen, E.V., 225, 226

Tan, X., 94
task graph, 74
task precedence, 87
task value, 72
time domain, 99
time interval, 191
time-value function, 67
Timed CSP, 147

language, 147–155
timeout choice, 154
timewise refinement, 147
timing, 124
timing fault, 83
Tindell, K.W., 30, 64

278 INDEX

Towsley, D., 94
trace, 156
transaction, 33, 66
transformation expression, 232–234
Tripathi, S., 94
triple modular redundancy, 229, 237, 245,

246
Turski, W.M., 13

unreliable controller, 245
unreliable pump, 242
unreliable sensors, 236
utilization, 21, 45

van der Stok, P., 137
van Roosmalen, O., 137
van Schouwen, A.J., 227
Verhoosel, J., 137
verification, 11, 164, 190, 191
von Henke, F., 139
Vytopil, J., 140

Wallace, A.R., 179
Wang, F., 93
Wang, J., 227
watchdog timer, 247
Weber, D.G., 255
Weglarz, J., 93
Wellings, A., 30
Wellings, A.W., 64
Widom, J., 140
Wirth, N., 12
within deadline statement, 72
Wolf, J.K., 94
worst-case, 16, 33, 38, 39

Yang, L., 225
Yu, A., 94
Yu, H., 227
Yu, X., 227

Zedan, H.S.M., 64, 137
Zhang, J., 225
Zhang, Y., 227
Zhao, W., 94

Zhou, C.C., 137, 224–227
Zhou, H., 94
Zhou, P., 140
Zlokapa, G., 94
Zwarico, A., 141
Zwiers, J., 138, 139

