
Heap pro�ling for space e�ciencyColin Runciman and Niklas R�ojemoDepartment of Computer Science, University of York,Heslington, York, YO1 5DD, UK(e-mail: fcolin,rojemog@cs.york.ac.uk)1 IntroductionExcessive requirements for memory space have in the past hindered or even pre-vented otherwise attractive applications of functional programming. Althoughthis could be blamed in part on space-hungry implementation methods, in mostcases it would have been possible to cut memory requirements very signi�cantlyby making a few changes to the source program. But there were no tools to helpprogrammers make appropriate changes. Usage of heap memory was reportedonly as a total volume of allocations; there was no way to investigate how dif-ferent parts of a program made demands on heap memory | something whichmay be far from apparent in the source of a sizable program making use of lazyevaluation and higher-order functions. Finding the appropriate place to make aspace-saving change could be very di�cult.In the last few years, there has been a renewed e�ort to provide appro-priate pro�ling tools for functional programmers. Because the �rst aspect ofperformance that many software developers are concerned with is speed, manypro�ling tools are designed mainly to account for the use of execution time bydi�erent program components. But for current functional programming systems,memory-use is often more critical than processor-use. Memory-saving improve-ments typically save time too, whereas the reverse is less often the case. At anyrate, our concern here is with pro�ling the use of heap memory.A brief review of the development of memory-pro�ling systems for functionallanguages will be given towards the end of these notes. Apart from that, weconcentrate throughout on explaining the concepts and use of the latest versionof our own heap-pro�ling tools, as implemented in the nhc Haskell compiler.Perhaps this seems a little narrow-minded! By way of explanation: �rst, so far aswe know the nhc pro�ler is the most advanced memory-pro�ling system currentlyavailable for a lazy functional language such as Haskell1; secondly, it suits ouraim to give a practical tutorial with a series of worked examples and exercises.(We hope that all readers, like the participants at the Summer School, will haveaccess to a computer system with nhc installed. Everything necessary can beobtained by FTP from ftp.cs.york.ac.uk under the directory nhc.)1 Pace Glasgow! Their ghc compiler can pro�le both space and time, with cost centres to helplocalise faults, but has little support for classifying heap contents according to the dynamiccharacteristics of memory cells.

2 How to obtain nhc heap pro�lesTo pro�le the heap usage of a Haskell program prog.hs using the nhc compiler,there are three steps.1. Compile the program. Compilers that support heap-pro�ling typically requireadditional compile-time ags to request an executable with the potential tocollect heap-pro�ling data at run-time. Making pro�ling an optional extrais usually appropriate because it does slow down the program. However,the version of nhc to be used in conjunction with these notes compiles allprograms for heap pro�ling by default.2. Run the program. Heap-pro�ling data of various kinds can be obtained byselecting an appropriate combination of run-time ags. At regular intervals,a census of the heap is taken, and pro�le data is written to a �le prog.hp.By default, a census is taken every time a multiple of the heap size has beenallocated. To request a di�erent interval we use either -isizeb where size isthe number of bytes allocated between censuses, or -itimes where time isthe number of seconds between censuses.3. Post-process the pro�ling data. The �le prog.hp now contains the informa-tion we want, but not in a form that is easy to understand. The programhp2graph transforms .hp �les into readable graphical charts (in PostScriptby default). A command such as hp2graph prog.hp actually creates twonew �les, prog.ps and prog.aux. The former is a single-page PostScript �lein which a graph of the live heap over time is automatically scaled to �ll thepage. The .aux �le is useful if we wish to produce more than one graph onthe same scale, for comparison purposes: hp2graph -pold.aux new.hp.Steps 2 and 3 may be repeated several times, to obtain a variety of pro�les.This may lead to a revision of the program, and restarting from step 1.2.1 An example: pro�ling the xref programTake as an example the xref program shown in Figure 1. The program readstext from the standard input, and writes on the standard output an orderedindex to aid cross-reference; it lists all words in the input, and for each word thenumbers of lines on which it occurs. The program is compiled by the command:nhc -o xref xref.hsTo obtain pro�les of the program running, we need to some test input. Weshall use a 215-line �le fplang3 containing the �rst three messages sent to the`FPlang' mailing-list (the start of discussions that led to the design of Haskell).

main = readChan stdin abort $ \input ->appendChan stdout (xref input) abort donedata Index = Empty | Branch Index String [Int] Indexxref cs = disp (inx 1 cs Empty) ""inx :: Int -> String -> Index -> Indexinx n [] t = tinx n ('\n':cs) t = inx (n+1) cs tinx n (c:cs) t| isAlpha c = case span isAlpha cs of(alphas, etc) -> inx n etc (enter (c:alphas) n t)| otherwise = inx n cs tenter w n Empty = Branch Empty w [n] Emptyenter w n (Branch l k ns r)| w < k = Branch (enter w n l) k ns r| w > k = Branch l k ns (enter w n r)| otherwise = Branch l k (n:ns) rdisp :: Index -> String -> Stringdisp Empty = iddisp (Branch l k ns r) =disp l .(k++) . (": "++) . dispNos ns . ('\n':) .disp rdispNos :: [Int] -> String -> StringdispNos [] = iddispNos (n:ns) = dispNos ns . (' ':) . shows nFig. 1. The xref program.Producer pro�leVarious run-time options request di�erent forms of heap-pro�le. One of the moststraightforward is a producer pro�le: it characterises cells in the heap by identi-fying which function produced them | ie. directly caused them to be allocated.A producer pro�le is requested by the -p option:xref -p < inputWe can now apply hp2graph to create the PostScript �le xref.ps (and scalinginformation in xref.aux).hp2graph xref.hp

./xref -p -i1000k 1598325 bytes x seconds

59% Prelude.span

22% Main.inx

18% Main.enter

 1% <Op_Int>

second1.5 3.5 5.5 7.5 9.5 11.5 13.5 15.5 17.5 19.5 21.5 23.5

by
te

0k

20k

40k

60k

80k

Fig. 2. A producer pro�le for xref.The result of interpreting the PostScript in xref.ps is shown in Figure 2. Ignorethe banding for the moment. Concentrate instead on the overall shape of thegraph. The graph illustrates how the amount of live heap memory (vertical axis)varies over time (horizontal axis). In this example the live heap grows rapidly toover 100 kb before it starts to decrease. Although the collection of pro�ling dataincreases a program's memory requirements, this is not reected in a heap pro�le| so the pro�le provides an accurate indication of how much heap memory isneeded by the unpro�led program. The total execution time was slightly morethan 25 seconds. Neither garbage-collection time nor heap-pro�ling overheads areincluded in this �gure, so the wall-clock time for the pro�ling run may be muchlonger than the time shown in the heap pro�le. Also, execution times shownin heap pro�les cannot be taken as accurate for unpro�led programs | thoughwhen comparing two programs, the ratio of their execution times is reasonablyaccurate.The thin vertical lines mark the times when a census of the live heap wastaken. Linear interpolation is used between censuses, which can be misleadingfor some programs. In doubtful cases the program can always be run againwith more frequent censuses; there cannot be a hidden spike of more than 20 kbbetween censuses if the interval is -i20kb, for example. The triangles below thetime axis mark garbage collections: every heap census forces a garbage collection,but there may also be collections at other times.The title line contains the command line used when running the program (un-fortunately without any redirections), and the total area of the graph. The lattercan be viewed as a measure of the overall cost of the program in byte�seconds.

./xref -c -i1000k 1586461 bytes x seconds

76% Prelude.:

22% Main.enter

 1% Prelude.Int

 1% Num.Int.+

second1.4 3.5 5.5 7.5 9.4 11.4 13.4 15.4 17.4 19.4 21.4 23.4

by
te

0k

20k

40k

60k

80k

Fig. 3. A constructor/closure pro�le for xref.To the right is a list of keys, describing what each shaded band in the graphstands for. The example in Figure 2 is a producer pro�le so there is a shaded bandfor each di�erent program component that allocates memory. In our example, thefunction span in the module Prelude was the main allocator of heap memory.The percentages indicate how much of the overall cost is attributed to each key.Percentages are rounded to the nearest whole number, so they do not alwayssum to 100. The key <Op Int> marks memory allocated by primitive functionsworking on machine words. If there are more distinct keys in a heap pro�lethan can �t in the graph, then the keys with smallest area are collapsed into anOTHER key.It is possible to obtain a coarser form of producer pro�le, in which producersare whole modules by using the command xref -m < input. This can be veryuseful for large programs, but would in our example only join Main.inx andMain.enter into one key, Main.Constructor/closure pro�leA useful complement to a producer pro�le (and in older heap pro�ling systemsthe only other possibility) is a constructor/closure pro�le. After the run:xref -c < inputhp2graph produces the chart shown in Figure 3. The overall shape and cost arealmost the same as before | they di�er very slightly because of small variationsin timing. Now each key represents a di�erent kind of cell: a constructor pro�le

./xref -r -i1000k 1572088 bytes x seconds

99% {Main.enter}

 1% U

second1.4 3.5 5.5 7.5 9.4 11.4 13.4 15.4 17.4 19.4 21.4 23.4

by
te

0k

20k

40k

60k

80k

Fig. 4. A retainer pro�le for xref.characterises a heap cell by asking `What is it?'. In our example 76% of theoverall cost is accounted for by `cons' cells (Prelude.:). Perhaps surprisingly,there are no cells representing the constructors of the Index tree: we shall returnto this observation in x4.5.Names of functions other than constructors can appear among the keys,indicating that memory is used for unevaluated closures. For example, Figure 3includes a band for closures of the function Main.enter. Closures of functionsthat are de�ned as part of a type-class instance are indicated by a three-partname of the form class.instance.method. For example, 1% is allocated to closuresof the + method for the Int instance of the class Num.Retainer pro�leA retainer pro�le characterises each heap cell according to the program compon-ents that have immediate access to it, perhaps as part of a larger data structure.After the command:xref -r < inputhp2graph generates the retainer pro�le shown in Figure 4 showing that closuresof enter retain almost the entire heap. Notice that the keys are now sets. Aheap cell can be retained by closures of more than one function due to sharing.By default all sets with more than one member are collapsed into one set. Byabuse of terminology this is called the universal set U. To split the U-band,give an integer after the r ag: for example, xref -r3 < input distinguishes

retainer sets up to size 3. Sets larger than the given limit are still combined intoa universal set.Program components that can occur as retainers are of two kinds. Firstthere are functions whose applications, until fully-evaluated, may retain heapcells in their arguments. Secondly, there are so-called constant applicative forms(or CAFs): named data structures de�ned at the top-level of the program.Biographical pro�leThe �nal kind of heap pro�le provided by nhc is a biographical pro�le, whichcharacterises heap cells according to their past, present and future usefulness inthe computation. After running the xref program by:xref -b < inputhp2graph gives the pro�le shown in Figure 5.
./xref -b -i1000k 1744671 bytes x seconds

80% lag

20% use

second1.5 3.5 5.5 7.5 9.5 11.5 13.5 15.5 17.5 19.5 21.5 23.5 25.5

by
te

0k

20k

40k

60k

80k

Fig. 5. A biographical pro�le for xref.In general, a biographical pro�le splits the heap into four bands (althoughonly two appear in our example). Cells that are never used are void. If a cellis used then it passes through three phases: it is lag between creation and �rstusage, use between the �rst and the last usage, and �nally drag between the lastuse and its destruction.Cell used in the past? yes noCell used in the future? yes no yes noCell phase: use drag lag void

A cell is considered used when it is scrutinised in a case, or taken part in a prim-itive operation, or updated with its result (only possible for function closures).One big di�erence between the biographical pro�le and the others is the lackof references to the source code. Other pro�les have keys that identify parts ofthe source program, but the keys in a biographical pro�le are just cell phases.However, the unique advantage of a biographical pro�le is that it may directlypoint to an apparent waste of heap memory in the drag and void bands, andperhaps in the lag band too | the xref program, for example, seems to createa lot of heap cells long before they are needed (see x4.5).2.2 Choosing the right pro�leOften one resorts to a heap-pro�ler with a question already in mind, and thatdetermines the kind of pro�le needed. For example, the question `Which is tak-ing up more heap-space, the lists or the trees?' would be answered by a con-structor/closure pro�le.But what about the outset of a general examination of space-e�ciency in aprogram? Which kind of pro�le should be looked at �rst?One tactic is to obtain all four, and then proceed by investigating the mostpuzzling of the large bands or spikes. However, we have found that a biographicalpro�le often gives the most useful overall picture of heap-use, without identify-ing speci�c program components. A very large percentage of drag, void or lag isoften the symptom of a space-fault, and the o�ending category of cells shouldbe studied further by one of the pro�ling methods that identi�es program com-ponents. Such investigations of parts of the heap only are made by specifyingrestrictions among the run-time pro�ling options. Examples will be seen in x4,and summary tables of available options are given in an appendix.There is an important caveat to the tactic of beginning with a biographicalpro�le: even if it shows that all cells in the live heap are in their use phase,this is not a proof of an e�cient program. The program might just use a pooralgorithm which re-evaluates everything several times!3 Causes of space-ine�ciencyBefore we look any further into the space-e�ciency of particular programs, wenext give a brief statement in general terms of the typical sources of space-ine�ciency in functional programs. We can divide these into three categories.1. Degree of evaluation. An often-made criticism of lazy evaluation is thatwithout very careful programming it can lead to a large number of unneces-sarily suspended computations taking up a lot of heap space. The criticismis valid, and one use of a heap-pro�ler is to check whether such a fault ispresent so that, if so, it can be remedied. However, it is equally the case thateager evaluation can lead to unnecessary computations whose results �ll theheap. Even in a `lazy' language one can de�ne functions in a way that makesthem unnecessarily strict.

2. Degree of sharing. Sharing is another two-edged sword. One might thinkthat shared reference to a single structure would always give better space-e�ciency than reference to multiple versions of the same value. But the`same value' when shared must also be evaluated to the same extent: onceevaluated because of the demands of one reference, a large shared structuremust remain in heap pending its access by other references. By contrast, thepattern of demand in the evaluation of an unshared structure may allow it tobe traversed in constant space (unevaluated `in front' of current references,and garbage-collected `behind' them).3. Representation and algorithmic choices. These choices are often closely con-nected with the two previous issues, but can also stand alone as sources ofspace-ine�ciency. Even in the stylised world of sum-of-products data types,there are more-compact and less-compact alternatives. The e�ect of an al-gorithm choice on space-e�ciency often has to do with the order in whichparts of the computation are done: advancing or delaying the use of a com-ponent function may be one way to avoid long-lived large structures, forexample.There is no �xed association between each source of space-ine�ciency anda single kind of pro�le by which it is detected. A degree-of-evaluation problem,for example, might be apparent either in a high proportion of closures in aconstructor/closure pro�le or in a large lag component in a biographical pro�le.However, only retainer pro�ling yields direct information about sharing.It is beyond the scope of these notes to discuss implementation aspects ofspace-ine�ciency in any detail, though the space-e�ciency of some functionalprograms is certainly compiler-dependent. Beware!4 A series of examplesIn this the major section of the notes we shall examine various aspects of heappro�ling and space e�ciency as they arise in a series of example programs. Likexref, all the programs are small utilities that take text �les as input; some areloosely based on unix tools. Pro�les throughout are of runs with the 215-line�le fplang3 as input.4.1 The cat programWe begin with something very simple that already makes e�cient use of heapspace. The cat program of Figure 6 prints its input as its output. Figure 7shows a heap pro�le of cat running with the `FPlang' sample as input. Wenote with pleasure that cat runs using a small and almost constant amount ofheap-space | about 200 bytes. What exactly do those 200 bytes contain? Theconstructor/closure pro�le of Figure 7 gives the answer: about half the space isoccupied by cons (:) cells forming the spine of the lazy list of characters repres-enting the text. As the input is lazily demanded for consumption as output, each

main = readChan stdin abort $ \input ->appendChan stdout (cat input) abort donecat = id Fig. 6. The cat program.
./cat -c -i25k 75 bytes x seconds

49% Prelude.:

10% Prelude.driverWriteChan

 8% Prelude.succDispatch

 8% Prelude.doIo

 8% <Builtin>

 4% Prelude.WriteError

 4% Prelude.Failure

 4% Prelude.forceList

 3% <APPLY>

 2% Prelude.driverReadChan

second0.0 0.1 0.1 0.2 0.2 0.3 0.3 0.4

by
te

0

20

40

60

80

100

120

140

160

180

Fig. 7. A constructor/closure pro�le of cat.cell is short-lived and only a tiny fraction of the spine for the whole text is presentin the heap at any time. The rest of the live heap is accounted for by primitiveauxiliaries such as Prelude.driverReadChan and Prelude.driverWriteChanthat deal with input and output. Individual characters do not appear: there isexactly one copy of each distinct character constant, stored outside the heap.Exercise The function lines :: String -> [String] breaks text into a list oflines; the inverse function is unlines. So one should be able to replace id in thecat program by unlines . lines. Both functions are de�ned in the Haskellprelude, but try de�ning your own equivalents. Check that their compositioncan be used in cat without upsetting its space behaviour (apart from a modestconstant overhead).4.2 The trail programOur next example can be viewed as a re�nement of the cat program. Instead ofthe whole of the input, the output of trail is only the trailing n lines of input,

where n is an argument to the program2.One popular way to approach such a problem is to decompose it into afunctional pipeline. The auxiliaries lines and unlines let us transfer betweenlists of lines and lists of characters. The asymmetric cons-list representationmakes it awkward to extract n lines from the back of a list. But to extract nitems from the front is straightforward using the auxiliary take; so let's reduceour problem to this case by applying reverse to both input and output. Hencewe obtain the program in Figure 8.main = readChan stdin abort $ \input ->getArgs abort $ \[n]->appendChan stdout (trail (read n) input) abort donetrail :: Int -> String -> Stringtrail n = unlines . reverse . take n . reverse . linesFig. 8. A prototype trail program.But is it space-e�cient? Applying trail -b 50 with fplang3 as input givesthe biographical pro�le in Figure 9. The live heap grows to about 100kb. Thebulk of it is occupied by void cells, with a signi�cant minority in the lag phase.Seeking an explanation in terms of program components, we apply retainer pro-�ling to each of the void and lag components. The pro�les show that void cells areretained by reverse (and subsequently take) on the input side (Figure 10); andsimilarly that the lag cells are retained by reverse (and subsequently unlines)on the output side.The use of a recursively-strict function over a data structure in a composi-tional pipeline is a standard pitfall. It negates the space-e�ciency of lazy eval-uation by forcing an unbounded amount of data structure into live heap. Thereverse function is a classic example. There are various techniques for avoid-ing this sort of problem. A change of representation is not an option for thetrail program. But a revised algorithm can make simultaneous access to awhole structure and some part(s) of it, as yet unevaluated, in order to combinestructure-creating computations with structure-discarding ones. In conventionalterms, we maintain two pointers into the �le. See Figure 11 for the new program.Figure 12 shows a pro�le with the same input and scale as before. It might seemthat the program still has unduly large void and lag components, but this isnot the case. The program maintains a bounded bu�er containing the requirednumber of lines of text. The bu�er contents are void until the �nal section of theinput is reached; this �nal section builds up as lag in the bu�er until it is printed.2 So it is a version of the UNIX utility tail, but renamed to avoid a clash with Haskell'sprelude function tail that extracts the tail of list.

./trail -b -i100k 50 87302 bytes x seconds

93% void

 7% lag

second0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

by
te

0k

20k

40k

60k

80k

Fig. 9. Biographical pro�le of the trail prototype.
trail -r -bvoid -i25k 50 69484 bytes x seconds

96% {Prelude.reverse}

 4% {Prelude.take}

second0.0 0.2 0.4 0.6 0.8 1.0 1.2

by
te

0k

20k

40k

60k

80k

Fig. 10. A retainer pro�le for the heap void of the trail prototype.

main = readChan stdin abort $ \input ->getArgs abort $ \[n] ->appendChan stdout (trail (read n) input) abort donetrail :: Int -> String -> Stringtrail n = unlines . trail' n . linestrail' n xs = tandem xs (drop n xs)tandem xs [] = xstandem (x:xs) (y:ys) = tandem xs ysFig. 11. An improved version of trail.
./trail2 -b -i100k 50 29577 bytes x seconds

78% void

18% lag

 3% use

 1% drag

second0.1 0.3 0.5 0.7 0.9 1.1 1.3

by
te

0k

20k

40k

60k

80k

Fig. 12. An improved trail pro�le (cf. Figure 9).One last puzzle: why does live-heap size dip in the middle of the computation?Because the author of the second contribution to `FPlang' wrote in short lines!4.3 The maxw program.The maxw program lists the longest words it can �nd in its input, in alphabeticalorder.Again we can tackle the problem as one of composing appropriate elementsin a pipeline, keeping in mind that because of lazy evaluation the computationsof pipeline elements do not necessarily occur in strict sequence. A prototype pro-

main = readChan stdin abort $ \input ->appendChan stdout (maxw input) abort donemaxw = unlines . reverse . maxw' [] 0 .sortUniq . filter (all isAlpha) . wordsmaxw' mws _ [] = mwsmaxw' mws m (w:ws) | n > m = maxw' [w] n ws| n == m = maxw' (w:mws) m ws| n < m = maxw' mws m wswhere n = length wsortUniq = foldr insertUniq []insertUniq x [] = [x]insertUniq x (y:ys) | x < y = x : y : ys| x == y = y : ys| otherwise = y : insertUniq x ysFig. 13. The prototype maxw program.gram is shown in Figure 13. From the input we extract words: using the standardwords auxiliary we actually obtain more than that | it gives all maximal se-quences of non-space characters | so the next element is a filter selecting thealphabetic strings only. A sortUniq at this stage also enables duplicates to bediscovered and discarded. A list of the longest words is extracted and unlinesprints them one-per-line.Exercise The prototype maxw program is far from space-e�cient: can you predictthe shape of its heap pro�le? There is a remedy without any major rewriting ofthe program; only a couple of minor changes are needed. With the aid of theheap pro�ler, obtain and verify much-improved space-e�ciency (and speed) ina revised version of the program. Is the revised program better for all inputs?4.4 The wc programThe unix wc (for word-count) program does slightly more than its name sug-gests. It actually counts the numbers of lines, words and characters in its input,which may be speci�ed as named �les. Our version will do the same, but for thestandard input only.Figure 14 shows a naive prototype, in which the three required counts arecomputed by three separate expressions over the input. This is not a space-e�cient solution: because of the shared references to the list cs of input charac-ters, as the �rst expression is evaluated the entire spine of cs is forced into heapmemory. It cannot be discarded as the �rst computation advances through it,

main = readChan stdin abort $ \input ->appendChan stdout (wc input) abort donewc cs = show (length (lines cs)) ++" "++show (length (words cs)) ++" "++show (length cs) ++"\n"Fig. 14. A naive wc program.because it will also be needed by the other two. A retainer pro�le for cons-cells(Figure 15) shows the e�ect. The auxiliary functions break and dropWhile areused in the Prelude de�nitions of lines and words. The two dark spikes occurbecause in a small number of censuses, words had just passed the remainder ofthe �le contents to its auxiliary dropWhile: a pro�le with �ne enough intervalswould show many more such spikes. Note: since the retained spine is used again
./wc -r3 -cPrelude.: -i100k 463727 bytes x seconds

44% {Prelude.length}

38% {Prelude.break,Prelude.length}

15% {Prelude.words,Prelude.length}

 3% {Prelude.dropWhile,Prelude.length}

second0.1 0.6 1.1 1.6 2.1 2.6 3.1 3.6 4.1 4.6

by
te

0k

20k

40k

60k

80k

Fig. 15. The cons-cell retainers in naive wc.later, a biographical pro�le would not in this case point to wasted memory.Aiming for a program that runs in a small constant space for all inputs, werewrite wc as in Figure 16. This program makes a single traversal of the input,checking for both word and line boundaries. The �rst argument of the tail-recursive auxiliary wc' is a triple accumulator for the line, word and charactercounts.

main = readChan stdin abort $ \input ->appendChan stdout (wc input) abort donedata LWC = LWC Int Int Intwc = wc' (LWC 0 0 0) Falsewc' (LWC l w c) _ [] =show l ++" "++ show w ++" "++ show c ++ "\n"wc' (LWC l w c) inAWord (x:xs)| isSpace x = let l' = if x=='\n' then l+1 else l inwc' (LWC l' w (c+1)) False xs| otherwise = let w' = if inAWord then w else w+1 inwc' (LWC l w' (c+1)) True xsFig. 16. A single-pass wc program.Is this program space-e�cient? No! A biographical pro�le shows a heap thatgrows to a peak size almost twice that of the `naive' wc, only diminishing in thelast 10% of execution time. To the nearest 1% the heap is 100% lag! This suggestsan accumulation of unevaluated closures, con�rmed by a constructor/closure pro-�le for the heap lag (Figure 17). Unevaluated additions and other computationsfrom the body of wc'3 �ll up the heap. No further pro�le is needed to determinewhere they accumulate; it can only be in the LWC counters.This is the kind of space-fault that can discourage one from using a lazyfunctional language, even though the use of laziness can also be elegant ande�ective. Of course, it can save space to delay the evaluation of a recursively-structured value; the structure may be larger than the closure that computesit. But it never saves space to delay the evaluation of a basic value such as aninteger | though it may save time if the integer turns out not to be needed. Inthe wc program, all three integers of the LWC accumulator are needed, so they arebetter evaluated strictly. In Haskell, strict evaluation can be speci�ed by adding!-annotations to the Int components in the de�nition of LWC.data LWC = LWC !Int !Int !IntNow if we re-run the program and print a pro�le to the same scale, the live heapalmost vanishes, barely exceeding 350 bytes.4.5 The xref program (resumed).Reviewing the heap pro�les of the prototype xref program in x2, we make thefollowing observations.3 These `other computations' are actually the conditional increments.

wc2 -c -blag -i100k 348245 bytes x seconds

50% Num.Int.+

50% Main.wc’

second0.2 0.7 1.2 1.7 2.2 2.7 3.2

by
te

0k

20k

40k

60k

80k

100k

120k

140k

160k

Fig. 17. Lazy accumulation; closures lagging in wc.1. In the constructor/closure pro�le (Figure 3), as expected there are manycons-cells forming list spines. But there is no sign of constructors for thecells representing the constructors of the Index tree; and almost a �fth ofthe space is occupied by enter closures.2. In the retainer pro�le (Figure 4) enter closures account for the retention ofalmost the entire heap.3. In the biographical pro�le (Figure 5) most of the heap is lag.It seems that we may be losing space-e�ciency because computation is delayed.The function enter inserts occurrences of a word into the Index tree. But be-cause evaluation is lazy, successive applications of enter simply extend a chainof closures. The Index tree is only built when the time comes to print it | itdoes not show up in the heap pro�le because each piece is discarded as soon asit has been printed.Our preferred order for the main computational events is clear: as each wordis reached in the input text it should be transferred to an entry in the index tree,so that only one copy of each word need be retained. Continuation-passing is astandard technique for expressing sequence in functional programs. To ensurethat application of a function f occurs after an enter computation is complete,we make f an additional argument to enter, rede�ning it like this:

enter w n Empty f = f (Branch Empty w [n] Empty)enter w n (Branch l k ns r) f| w < k = enter w n l $ \l' -> f (Branch l' k ns r)| w > k = enter w n r $ \r' -> f (Branch l k ns r')| otherwise = f (Branch l k (n:ns) r)Correspondingly, the call to enter from inx becomes:enter (c:alphas) n t $ inx n etcThese changes ensure that enter records each word in the Index tree beforeinx reads the next. Figure 18 shows a constructor pro�le of the new program,on the same scale as Figure 3. Overall cost is reduced by about 25%. The enterclosures are gone, replaced by constructors of the index tree; and there is lesslist structure representing words of the text. A biographical pro�le would show
./xref2 -c -i1000k 1048134 bytes x seconds

80% Prelude.:

16% Main.Branch

 3% Num.Int.+

 0% Main.enter

second1.2 3.2 5.2 7.2 9.2 11.2 13.2 15.2 17.2 19.2 21.2 23.2

by
te

0k

20k

40k

60k

80k

Fig. 18. A constructor/closure pro�le of improved xref.that there still is quite a lot of lag: much of the Index tree, including all therecorded line numbers, will only be used in the �nal stage of printing.Exercise As seen in the wc example, strictness annotations can also be used tobring computation forward. What is the e�ect of introducing strictness annota-tions in the de�nition of the Index type in the original xref program? Can thisbe the basis of a similar improvement in space e�ciency?

4.6 The diff program.Our �nal example is diff, a �le-comparison program. The problem of listingthe di�erences between �les is often tackled using simple rules of thumb | fastto compute but not guaranteed to �nd the least expression of di�erences. Thisversion of diff gives as output aminimal sequence of editing steps that if appliedto the �rst �le would make it identical to the second.The program in Figure 19 is based on one given by Allison [1] to computedistances between strings. De�nitions of main and format have been omitted to�t the program on the page: main simply reads two �les whose names are argu-ments to the program, and prints the result of applying diff to the �le contents;format is of type [Edit]->String, and constructs the output representation ofa sequence of edits.The central idea is to compute a matrix of correction sequences by dynamicprogramming. For an application diff file1 file2, with M lines in file1 andN in file2, the matrix has rows 0..M and columns 0..N. The element at row mand column n is the minimal correction sequence between lines 1..m of file1and lines 1..n of file2. In particular, the desired result is the sequence at(M,N). The elements of the matrix are computed recursively. As the base case,the correction sequence at (0,0) is empty; otherwise at (0,n) it adds at thestart of file1 the �rst n lines of file2, and at (m,0) it deletes the �rst mlines of file1. For positive (m,n), if the �les di�er at those lines, the correctionsequence is obtained by appropriately extending a shortest sequence from thoseat (m-1,n), (m-1,n-1) and (m,n-1); if the lines do not di�er the correctionsequence is just that at (m-1,n-1).Because a line-by-line simultaneous advance through each �le corresponds toa diagonal path in the matrix, the matrix is most conveniently represented as acollection of diagonals. We de�ne the principal diagonal prince, and two furtherlists of diagonals (uppers and lowers) each ordered by increasing distance fromthe principal.Figure 20 shows the biographical heap pro�le of the program in Figure 19applied to our usual 215-line trio of mail messages and a corrupted version ofthem with one change (in line 138). The space consumption is monstrous! Astep-by-step investigation by successive heap pro�les would be too extensive toinclude here. But in this case Allison has already made the critical observationin [1]: the matrix should only be computed by need. If the two �les are in factidentical we need no more than the principal diagonal. More generally, we shouldbe careful not to demand the evaluation of diagonals to any greater extent thanis strictly necessary. For just this reason head and tail are used in the bodyof diagTails rather than deeper pattern-matching on the left-hand side. Toimprove space-e�ciency we must do the same in diag, revising the �nal equationin its de�nition as follows:diag u ((i,x):xs) ((j,y):ys) w nw n =me : diag u xs ys (tail w) me (tail n)whereme = if x == y then nw else min3 (head w) nw (head n)

data Edit =Del Int String Int | Add Int String Int | Cha Int String Int Stringdiff f1 f2 =format (last (diagFor (length xs - length ys)))wherexs,ys :: [(Int,String)]xs = zip [1..] (lines f1)ys = zip [1..] (lines f2)diagFor :: Int -> [(Int,[Edit])]diagFor 0 = princediagFor d | d > 0 = lowers !! (d-1)| d < 0 = uppers !! (-d-1)prince = (0,[]) :diag True xs ys (head lowers) (head prince) (head uppers)uppers = zipWith (:) (top ys [])(diagTails True xs ys (prince : uppers))lowers = zipWith (:) (lhs xs [])(diagTails False ys xs (prince : lowers))top [] _ = []top ((j,y):ys) e = (j,e') : top ys e' where e' = Add 0 y j : elhs [] _ = []lhs ((i,x):xs) e = (i,e') : lhs xs e' where e' = Del i x 0 : ediag _ _ [] _ _ _ = []diag _ [] _ _ _ _ = []diag u ((i,x):xs) ((j,y):ys) (w:ws) nw (n:ns) =me : diag u xs ys ws me nswhereme = if x == y then nw else min3 w nw nmin3 (a,ae) (c,ce) (d,de)| a < c = (1+a, (if u then Add i y j else Del j y i): ae)| c < d = (1+c, (if u then Cha i x j y else Cha j y i x): ce)| otherwise = (1+d, (if u then Del i x j else Add j y i): de)diagTails _ _ [] _ = []diagTails u xs (y:ys) (last:diags) =diag u xs ys (tail last) (head this) next :diagTails u xs ys diagswherethis = head diagsnext = head (tail diags)Fig. 19. A diff program.

diff-1 -b -i1000k -h2000k fplang3 fplang3.broken 14074903 bytes x seconds

43% void

34% lag

23% drag

second1.2 3.2 5.2 7.2 9.2

by
te

0k

500k

1000k

1500k

2000k

2500k

Fig. 20. A monster pro�le: diff at work.Now if we repeat the previous diff application, we obtain the pro�le of Figure 21(plotted to the same scale). Making the evaluation lazier has saved a lot of space.Exercises Though only a fraction of the size of the more eager diff's live heap,the live heap even in the improved version remains large. In part this is aninevitable consequence of insisting on minimal edit sequences, but perhaps thereis still scope for improvement.1. Early in the computation the length of each �le is computed, forcing thefull contents of both �les into heap memory, where they remain as they willbe needed again. Investigate the e�ect on heap-use of re-reading the �lesinstead.2. Use heap-pro�ling with restrictions to characterise each of the void, dragand lag components of the heap. Can you further reduce the volume of cellsin any of these phases?5 A brief history of heap-pro�lingProgramming languages with heap-based implementations are hardly new. Yet,whereas many such implementations provide pro�lers for execution-time, weknow of very little development and use of tools to examine the make-up ofheap memory during a computation. We do not count pro�lers that measure

diff -b -i250k -h2000k fplang3 fplang3.broken 2944016 bytes x seconds

26% void

18% lag

50% drag

 6% use

second0.3 2.3 4.3 6.3 8.3 10.3

by
te

0k

500k

1000k

1500k

2000k

2500k

Fig. 21. Pro�le of a lazier diff (cf. Figure 20).only memory allocation: for most applications the allocation count is just an-other run-time clock; it is no guide to the continuing size and content of the liveheap.The earliest `true' memory-pro�ling tools were not for use by programmerswishing to improve their programs. Rather they were developed by researcherswho wished to understand better the memory characteristics of implementationmethods, with a view to improving them. For example, there was a publishedstudy of this kind in the late '70s for a SNOBOL4 system[4], and another a dec-ade later for a �xed-combinator implementation of the lazy functional languageSASL[3]. The emphasis in both cases was on summary statistics.The �rst heap-pro�ler intended for functional programmers was developed in1992; its design and use are described in [6]. The pro�ler recorded census datafor static cell attributes only (constructor/closure or producer), and a separateprogram generated PostScript charts. Extended with whole-module producersand whole-type constructors, the pro�ler could be used to improve the space-e�ciency of large programs, such as compilers [7]. Limitations of a `who produceswhat' view of the heap prompted the subsequent development of the nhc pro�ler,with its extensions to dynamic characteristics of heap cells: see [5] for details ofretainer pro�ling4; see [9] for more about biographical pro�ling.There has also been a concerted e�ort to develop pro�ling tools as part ofthe ghc optimising compiler project at Glasgow. Their pro�ler can attributeboth time and space costs to `cost centres' assigned either implicitly (eg. each4 Also lifetime pro�ling, now largely superceded by biographical pro�ling, but occasionallystill a useful source of auxiliary information.

function is a cost centre) or by explicit annotation of expressions | in whichcase the attributed costs are those expended in evaluating the entire expression(excluding free variables or separately annotated subexpressions). For pro�lingheap-memory cost-centres are treated as producers. See [11] or [10] for details ofthe ghc pro�ler.Several other implementors have done work on their own heap-pro�ling tools,yet to be reported in the literature: for example, we know of such work byAppel (sml of New Jersey), Jones (hugs/Gofer) and Tofte (ml with region-based memory management).References1. Allison, L.: Lazy dynamic-programming can be eager Information ProcessingLetters 43 (1992) 207{2122. Clack, C., Clayman, S., Parrott, D.: Lexical pro�ling: theory and practice. J.Functional Programming 5 (1995) 225{2773. Hartel, P.H., Veen, A.H.: Statistics on graph reduction of SASL programs. Soft-ware | Practice and Experience 18 (1988) 239{2534. Ripley, G.D., Griswold, R.E., Hanson, D.R.: Performance of storage managementin an implementation of SNOBOL4. IEEE Transactions on Software EngineeringSE-4 (1978) 130{1375. Runciman, C., R�ojemo, N.: New dimensions in heap pro�ling. J. FunctionalProgramming 6 (1996) to appear6. Runciman, C., Wakeling, D.: Heap pro�ling of lazy functional programs. J. Func-tional Programming 3 (1993) 217{2457. Runciman, C., Wakeling, D.: Heap pro�ling of a lazy functional compiler. InFunctional Programming, Glasgow 1992, Springer{Verlag Workshops in Comput-ing (1993) 203{2148. R�ojemo, N.: Garbage collection, and memory e�ciency, in lazy functional lan-guages. Ph.D. thesis, Computer Sciences, Chalmers Univ. of Technology, G�oteborg(1995)9. R�ojemo, N., Runciman, C.: Lag, drag, void and use | heap pro�ling and space-e�cient compilation revisited. In Proc. Intl. Conf. on Functional Programming(ICFP'96), ACM Press (1996) 34{4110. Sansom, P.M.: Execution pro�ling for non-strict functional languages. Ph.D.thesis, Computing Science, Univ. of Glasgow (1994)11. Sansom, P.M., Peyton Jones, S.L.: Time and space pro�ling for non-strict higher-order functional languages. Proc. ACM Conf. on Principles of Programming Lan-guages (POPL'95), ACM Press (1995) 355{366

Appendix: summary of pro�ling optionsRun-time agsUsage:program pro�le-kind restrictions heap-size census-interval argumentspro�le-kind:-p producer by function-m producer by module-c constructor-r retainer (can be given optional number formaximum retainer-set size)-b biographic-l lifetimeZero or more restrictions can then be speci�ed:-pcomma separated list restrict to functions in list-mcomma separated list restrict to modules in list-ccomma separated list restrict to constructors/closures in list-rcomma separated list restrict to nodes for which at least one retaineris in the list-bcomma separated list restrict to the phases in the list.-lmin-max restrict to nodes with lifetimes of at least min,and at most max, censuses | one of the limitsmay be omittedSet heap size. The pre�x M(106) or k(103) can be used:-hsizeb heap size in bytes-hsizew heap size in wordsSet census interval. The pre�x M(106) or k(103) can be used for allocationintervals, m(10�3) for timed intervals:-iintervals census interval in seconds-iintervalb census interval in allocated bytes-iintervalw census interval in allocated wordsArguments to the Haskell program:- stop decoding of run-time ags | only neededif �rst argument starts with -

Hp2graphUsage: hp2graph options �le.hpOptions:-tpercentage ignore trace bands | all those bands that to-gether contribute less than the given percent-age of overall cost-pfilename.aux use same scale as in the given aux-�le-x produce an exploded graph-c omit pro�ling comments-y omit census lines-m omit garbage-collection marks

This article was processed using the LATEX macro package with LLNCS style

