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According to the Church-Turing Thesis, it is impossible to devise a ‘recipe-driven’ model of com-
puting that is more powerful than the Turing machine – but it says nothing about other forms of
computing.

Hypercomputation is the study of real or theoretical systems which display ‘super-Turing’ potential,
systems that can do provably more than today’s machines. The study of these systems is truly
interdisciplinary, involving fields as diverse as computer science [13], mathematics [18], quantum
theory [5], biology [7], neural networks [12], general relativity [4], the theory of intelligence [6] and
philosophy [2]. Surprisingly for such an unusual topic, the field has also reached public notice with
recent articles in the popular computing press [1].

Mathematicians love to explore the limits of their theories – even Turing suggested that human
intelligence requires more than the standard version of computing described by the Turing ma-
chine [16, 10]. Subsequent work has done much to characterise the computational difficulty of
mathematical concepts; in addition to the development of the Arithmetical Hierarchy [9], key
undecidability results range from Church and Turing’s work on the Halting Problem [3, 15] to
Matiyasevitch’s celebrated proof of the undecidability of Hilbert’s Tenth Problem [8].

More recently, researchers have begun to ask whether physical systems exist which display hyper-
computational traits [14] – could we one day design and build a hypercomputer? The answer to
this question depends on precisely what you think physics itself looks like. Computers are physical
devices, and what they can do depends on whether they’re operating in a Newtonian universe, or
near the the vicinity of a space-time singularity.

The most familiar non-standard model is the quantum computer. These are super-Turing in a very
real sense – for some problems, they can outperform even the fastest Turing machine [11]. Less
well-known are hypercomputers that exploit general relativistic features. In Malament-Hogarth
spacetimes, for example, one can set up a thought experiment in which a computer falling into a
singularity experiences infinite time, yet its entire existence seems to last only finitely long to an
external observer [4]. Suppose we want to find out if some problem will eventually halt; all we
have to do is set it running on a PC that’s falling into the singularity. From our point of view,
the program’s entire execution takes place in finite time, and we can arrange matters so that a
message is sent by the PC to an agreed location if and only if the program eventually halts. In
other words, we can solve the Halting Problem.

But we don’t need exotic physics to solve the Halting Problem – even Newtonian physics is powerful
enough to allow hypercomputation. One of the more surprising findings of recent years is Xia’s
observation that a physical body under the influence of gravity can be propelled to ‘infinity’ in
finite time [19]. If we arrange for a Turing machine to follow such a trajectory, and to execute
one instruction for every mile of its journey, we again manage to complete an infinite number
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of program instructions in finite time; so watching the machine’s execution through a telescope
allows us to determine the Halting Problem.

So why isn’t the world rushing to build hypercomputers? The problem is one of technical feasibil-
ity. In the first place, we don’t know for certain what physics is really like, and even the examples
described above have their fair share of teething problems (where do you buy a space-time singu-
larity, for example?). Moreover, the various examples people have suggested to date tend to refer
to universes that are exclusively quantum mechanical, or exclusively relativistic, or exclusively
Newtonian – but the ‘real world’ combines features from all of these basic underlying models. So
the race is on to describe a physically sensible hypercomputer that matches the world around us;
only then will it be time to worry about making hypercomputers, first on an experimental, and
eventually on an industrial, scale.
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