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Nature has served as the inspiration for some of the
most generic and widely used tools in our possession.
For instance, the development of clothing, habitation,
weapons, etc., by early man was probably influenced by
his experience with furs, hides, nests, lairs, horns and
claws. Within the much more recent context of comput-
ing, we routinely employ metaphors derived from nature:
bugs, trees, inheritance, killing, spawning, sleeping, etc.
In terms of novel computational paradigms, biology has
also been a rich source of ideas. Artificial neural net-
works, evolutionary algorithms, swarm intelligence, arti-
ficial immune systems, etc., have all arisen as a result of
our growing appreciation of the sophisticated computa-
tional abilities of naturally occurring biological systems.

There is an undeniable attraction to be found in mech-
anisms that, despite comprising simple elements gov-
erned by simple rules, can manifest powerful, organ-
ised, problem-solving behaviour. This attraction is only
compounded by the possibility that these mechanisms
are, in some powerful sense, general purpose. For in-
stance, a common class of continuous-time recurrent ar-
tificial neural network can be shown to approximate any
dynamical system to an arbitrary degree of accuracy
(Funahashi & Nakamura, 1993); a swarm of artificial
insects can implement a general-purpose optimisation
algorithm (Bonabeau, Dorigo, & Théraulaz, 2000a); a
cellular automaton is capable of universal computation
(Cook, 2004); certain (hotly debated) classes of evo-
lutionary search algorithms may be suited to solving
the poorly defined but extremely general class of “real-
world” problems (e.g., Harvey, 2001); wasp and termite
behaviour might be idealised to deliver general-purpose
construction algorithms for self-organising architectures
(Bonabeau, Guérin, Sners, Kuntz, & Théraulaz, 2000b;
Howsman, O’Neil, & Craft, 2004); artificial immune sys-
tems could offer the ability to efficiently classify arbi-
trary classes of patterns (e.g., Tarakanov, Skormin, &
Sokolova, 2003).

The generality of these idealised, bio-inspired systems
suggests that they might enjoy very wide applicability,
and holds out the possibility that, give or take some sim-
ple parameter setting, we might not need to gain a deep

understanding of a particular problem before we are able
to generate a solution to it. However, things have not
turned out to be this straightforward. Successfully ap-
plying a bio-inspired approach to a real, non-trivial prob-
lem is often surprisingly difficult. Tailoring bio-inspired
algorithms to achieve what we require of them often in-
volves a painstaking and opaque process of tinkering,
reworking, and removal/addition of algorithmic compo-
nents, in addition to mere parameterisation. Moreover,
when success is achieved in a particular instance it is of-
ten difficult to see how it can be generalised to a wider
class of problem. This process is often seriously impeded
by the difficulty that we face in understanding how small
alterations to a decentralised, complex adaptive system
impact on the global behaviour of the whole system.
If bio-inspired approaches have given rise to powerful,
general-purpose algorithms, why are they not more gen-
erally applicable and successful?1

One approach to addressing this question commences
with the observation that real biological systems are only
ever general-purpose accidentally. No biological species,
organism, organ, trait or mechanism has ever evolved to
be general-purpose, i.e., to apply to a class of problems
that is wider than the set of problems actually encoun-
tered by its ancestors so far. It is true that some are
more or less specialised than others, but natural selec-
tion is not in the business of fashioning devices that solve
future problems or potential problems, only actual his-
torical ones.

For instance, the behavioural mechanisms that ter-
mites use to construct their amazing mounds (Bruinsma,
1979) were not evolved for construction, per se, but
for constructing termite mounds, specifically (Ladley &
Bullock, 2004, in press). Our immune system has not

1Perhaps the only current exception to this argument is
to be found in the mainstream success of some kinds of arti-
ficial neural network (ANN) for pattern recognition tasks—
algorithms that by now bear little relation to the biological
neural systems that ultimately inspired them, being more
closely related to forms of multiple non-linear regression.
Furthermore, despite having become a somewhat established
tool, there remains a degree of black magic in getting an ANN
approach to work efficiently.
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evolved to classify arbitrary patterns, but to deal with
the particular kinds of pathogen to which we have histor-
ically been exposed. Even the human brain, indisputably
the most awesome problem-solving mechanism that we
know of, is not a general purpose cognitive machine. It is
specialised to undertake particular cognitive tasks (lan-
guage learning, face recognition, social cognition, etc.).
It is not organised to solve any problem or deal with ev-
ery cognitive challenge (witness the large literature on
our cognitive shortcomings, e.g., Kahnemann, Slovic, &
Tversky, 1982). Rather our brain exhibits properties
that allow it to successfully tackle the reproductively sig-
nificant cognitive problems that faced our evolutionary
ancestors on the African savannah.

Stated more generally, biological devices are shaped by
natural selection such that they tend to be well suited
to the challenges posed by their Environment of Evo-
lutionary Adaptedness (or EEA, see Foley, 1997). This
“environment” is actually the sum total of the selection
pressures that have been brought to bear on a device’s
lineage (weighted by recency). It is the finite set of re-
productive problems that a particular contemporary bi-
ological device’s ancestors solved in order that this de-
vice (rather than competing forms) currently exists. The
EEA is thus similar to the notion of a biological niche,
in that the “design” of a biological device can be un-
derstood as an attempt to satisfy the demands, pres-
sures, and challenges that characterise this niche. From
an alternative perspective, one can expect biological de-
vices to function successfully only under Normal condi-
tions: the conditions that the device’s ancestors tended
to find themselves in historically (Millikan, 1984, 1993).
Outwith such conditions, the performance of an evolved
device may be suboptimal, or even pathological (e.g.,
some forms of human obesity may result from some of
our evolved devices operating in a modern environment
featuring many abNormal foodstuffs).

What this means is that the biological systems that
inspire novel computational paradigms are likely to be
suited to particular tasks.2 Even when (idealised ab-
stractions of) these mechanisms are capable of exhibit-
ing a very general class of behaviour, they will not do

2It might be suggested that this argument does not apply
to evolutionary algorithms, since these were inspired by the
evolutionary process rather than any product of evolution.
The evolutionary process is already an abstraction and is, by
definition, not tailored to particular tasks. However, even so,
the evolutionary process cannot be claimed to be a general
purpose search algorithm—heritable variation coupled with
competition for some scare resource(s) is not guaranteed to
optimise. Moreover, evolutionary algorithms are typically
influenced not only by the evolutionary process in the ab-
stract, but also by the particular mechanisms by which it
is instantiated in nature (genetic encoding, sexual reproduc-
tion, coevolution, etc). These mechanisms are the product
of natural selection, and are thus subject to the argument
outlined here.

so uniformly—they will be more suited to some tasks
than others. While continuous-time recurrent neural
networks are capable of exhibiting arbitrary dynamics
(given enough nodes), it is still true that a certain kind
of dynamic is characteristic of such networks, i.e., this
class of device does exhibit a generic behaviour (Beer,
1995). Attempting to find or construct networks that ex-
hibit dynamics very different from this generic behaviour
is difficult. Similarly, even if termite construction be-
haviours can be idealised such that they are, in the-
ory, capable of generating arbitrary structures (Hows-
man et al., 2004), it will remain the case that some
classes of structure are more readily buildable by such
systems. In order to configure such a system to con-
struct architectures that are uncharacteristic, one faces
a very difficult reverse engineering task that cannot typ-
ically be solved by hand and is often difficult to solve
using some kind of search algorithm (for difficulties in
evolving and hand-designing artificial termite systems
for arbitrary construction tasks, see Ladley, Bullock, &
Prangnell, in preparation) .

Guidelines

In one sense this argument boils down to a well-known
fact: every tool is good for some things and not so good
for others. However, the ramifications of this fact imply
alterations to the typical working methodology of bio-
inspired computing researchers. The rest of this paper
attempts to spell out these methodological implications
via four guidelines and, subsequently, a brief example.

1. Embrace the “nichiversal” (literally niche-
facing) nature of bio-inspired computation.

First and foremost, we should adopt the working as-
sumption that the limited, task-specific, generic be-
haviour of a bio-inspired system is what is important,
rather than its potential for universality. After all,
demonstrating that a class of mechanism is capable of
universal computation tells us more about the nature
of computation than the class of mechanism. Charac-
terising the “niche” of a class of bio-inspired system is
a challenging, but critically important goal.

2. Accept that multiple idealisations of a biolog-
ical mechanism/organisation/process can coex-
ist.

Within a particular domain of bio-inspired computing,
there often appears to be competition between differ-
ent flavours of system. The evolutionary algorithms
literature offers many clear examples. At one level,
genetic programming, genetic algorithms, evolution-
ary strategies, etc., “compete” (with each other and
with alternative search and optimisation algorithms)
to demonstrate their ability to solve hard optimisa-
tion problems. At a lower level, different genetic en-
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codings, genetic operators, selection schemes, multi-
population set-ups, etc., also compete to outperform
each other. There is rarely an attempt to specify the
ways in which these different flavours of algorithm re-
late to one another, or to specify how one might decide
between them when attempting to solve a particular
problem.

3. Take note of negative results, carefully exam-
ined.

In the context of (2), above, one can see why negative
results are unpopular: “I’ve invented a new type of a
genetic algorithm—here’s a number of ways in which
it is outperformed by existing genetic algorithms”. Of
course, if we understand that no evolutionary algo-
rithm will outperform all others on all classes of prob-
lem, then it is precisely this type of negative result
that can be valuable, when carefully analysed. Zaera,
Cliff, and Bruten (1996), for example, present a failed
attempt to evolve realistic flocking behaviour as an
indicator of what makes constructing a fitness func-
tion hard or easy. Unfortunately, this type of research
is rarely undertaken and remains difficult to get pub-
lished when it is.

4. Attend to the limits of natural biological
mechanisms/organisations/processes in situ.

Biologists cannot completely and accurately charac-
terise a biological mechanism’s EEA or its Normal
conditions for functioning. However, biologists of-
ten know something about the character of a mecha-
nism’s niche. In particular, where a mechanism varies
across different populations, there is scope for explain-
ing these differences as resulting from the different
selection pressures that these populations have been
subjected to. This information can be useful in de-
termining what one might expect a bio-inspired ap-
proach to be good for. However, gathering it involves
serious engagement with the relevant biological com-
munity and their literature, which is time-consuming
and difficult work.

A Brief Example

Within neuroscience there is an increasing realisation
that the traditional abstraction of neural systems as es-
sentially networks of units interacting via neurotrans-
mission is unsatisfactory since it neglects the role of the
chemical substrate within which this electrical activity is
embedded (Katz, 1999). The chemicals involved are im-
plicated in numerous kinds of adaptive behaviour, from
triggering plasticity and learning, reconfiguring neural
circuits, and balancing gross levels of activity, to switch-
ing between multiple modes of behaviour. From this
research is emerging a new “liquid brain” perspective on
real neural networks (Changeux, 1993).

GasNets are a class of recurrent artificial neural net-
work inspired by this line of neuroscience research (Hus-
bands, Smith, Jakobi, & O’Shea, 1998). In addition to
a relatively standard explicit network of neurons com-
municating via idealised neurotransmission, these ANNs
employ an idealised type of chemical signalling in the
form of simulated neuromodulators. GasNets have been
artificially evolved successfully for a range of tasks in-
cluding the control of autonomous mobile robots. In
fact, they appear to be particularly suited to this kind
of application (op. cit.).

What is important for the purposes of this paper is
that this particular flavour of bio-inspired robot control
architecture should not be regarded as in a flat compe-
tition with alternative schemes, e.g., continuous-time re-
current neural networks or CTRNNs (Beer & Gallagher,
1992; Beer, 1995). Instead, the pertinent question should
be: in what circumstances are GasNets, or CTRNNs, the
appropriate architecture to employ?

Answering this question requires more than collecting
a large number of examples of one paradigm outperform-
ing another. Rather, a combination of carefully anal-
ysed successes (Smith, Husbands, Philippides, & O.Shea,
2002), basic research into the original biological mech-
anisms (Philippides, Husbands, & O’Shea, 2000), new
conceptual frameworks (Philippides, Husbands, Smith,
& O’Shea, 2002), and fundamental modelling work (e.g.,
Buckley, Bullock, & Cohen, 2004) is necessary in order
to reveal why, for example, ANN schemes that involve
analogues of neuromodulatory chemicals are able to ex-
hibit robust, evolvable, adaptive behaviour over multiple
timescales (temporal adaptivity). It is only through this
interdisciplinary activity that the GasNet niche can be
characterised.

Summary

Only once we accept that in general biological devices,
processes and organisations are properly viewed as spe-
cific to their particular niches, and develop theoretical
accounts of what it is that individual biological devices,
processes or organisations are good at—what it is that
they have been “designed” to achieve—are we in a posi-
tion to exploit idealisations of them efficiently.

Acknowledgements Thanks to Chris Buckley, Dan
Ladley, and the Leeds Biosystems group for wide-ranging
discussions of these issues. Responsibility for the opin-
ions stated here rests solely with myself.
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